linux/drivers/scsi/qla4xxx/ql4_nx.c
Dwaipayan Ray 3352901829 scsi: qla4xxx: Convert uses of __constant_cpu_to_<foo> to cpu_to_<foo>
The macros cpu_to_le16() and cpu_to_le32() have special cases for
constants.  Their __constant_<foo> versions are not required.

On little endian systems, both cpu_to_le16() and __constant_cpu_to_le16()
expand to the same expression. Same is the case with cpu_to_le32().

On big endian systems, cpu_to_le16() expands to __swab16() which has a
__builtin_constant_p check. Similarly, cpu_to_le32() expands to __swab32().

Consequently these macros can be safely used with constants, and hence all
those uses are converted. This was discovered as a part of a checkpatch
evaluation, looking at all reports of WARNING:CONSTANT_CONVERSION error
type.

Link: https://lore.kernel.org/r/20210716112852.24598-1-dwaipayanray1@gmail.com
Signed-off-by: Dwaipayan Ray <dwaipayanray1@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-08-01 13:39:17 -04:00

4210 lines
114 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* QLogic iSCSI HBA Driver
* Copyright (c) 2003-2013 QLogic Corporation
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/ratelimit.h>
#include "ql4_def.h"
#include "ql4_glbl.h"
#include "ql4_inline.h"
#include <linux/io-64-nonatomic-lo-hi.h>
#define TIMEOUT_100_MS 100
#define MASK(n) DMA_BIT_MASK(n)
#define MN_WIN(addr) (((addr & 0x1fc0000) >> 1) | ((addr >> 25) & 0x3ff))
#define OCM_WIN(addr) (((addr & 0x1ff0000) >> 1) | ((addr >> 25) & 0x3ff))
#define MS_WIN(addr) (addr & 0x0ffc0000)
#define QLA82XX_PCI_MN_2M (0)
#define QLA82XX_PCI_MS_2M (0x80000)
#define QLA82XX_PCI_OCM0_2M (0xc0000)
#define VALID_OCM_ADDR(addr) (((addr) & 0x3f800) != 0x3f800)
#define GET_MEM_OFFS_2M(addr) (addr & MASK(18))
/* CRB window related */
#define CRB_BLK(off) ((off >> 20) & 0x3f)
#define CRB_SUBBLK(off) ((off >> 16) & 0xf)
#define CRB_WINDOW_2M (0x130060)
#define CRB_HI(off) ((qla4_82xx_crb_hub_agt[CRB_BLK(off)] << 20) | \
((off) & 0xf0000))
#define QLA82XX_PCI_CAMQM_2M_END (0x04800800UL)
#define QLA82XX_PCI_CAMQM_2M_BASE (0x000ff800UL)
#define CRB_INDIRECT_2M (0x1e0000UL)
static inline void __iomem *
qla4_8xxx_pci_base_offsetfset(struct scsi_qla_host *ha, unsigned long off)
{
if ((off < ha->first_page_group_end) &&
(off >= ha->first_page_group_start))
return (void __iomem *)(ha->nx_pcibase + off);
return NULL;
}
static const int MD_MIU_TEST_AGT_RDDATA[] = { 0x410000A8,
0x410000AC, 0x410000B8, 0x410000BC };
#define MAX_CRB_XFORM 60
static unsigned long crb_addr_xform[MAX_CRB_XFORM];
static int qla4_8xxx_crb_table_initialized;
#define qla4_8xxx_crb_addr_transform(name) \
(crb_addr_xform[QLA82XX_HW_PX_MAP_CRB_##name] = \
QLA82XX_HW_CRB_HUB_AGT_ADR_##name << 20)
static void
qla4_82xx_crb_addr_transform_setup(void)
{
qla4_8xxx_crb_addr_transform(XDMA);
qla4_8xxx_crb_addr_transform(TIMR);
qla4_8xxx_crb_addr_transform(SRE);
qla4_8xxx_crb_addr_transform(SQN3);
qla4_8xxx_crb_addr_transform(SQN2);
qla4_8xxx_crb_addr_transform(SQN1);
qla4_8xxx_crb_addr_transform(SQN0);
qla4_8xxx_crb_addr_transform(SQS3);
qla4_8xxx_crb_addr_transform(SQS2);
qla4_8xxx_crb_addr_transform(SQS1);
qla4_8xxx_crb_addr_transform(SQS0);
qla4_8xxx_crb_addr_transform(RPMX7);
qla4_8xxx_crb_addr_transform(RPMX6);
qla4_8xxx_crb_addr_transform(RPMX5);
qla4_8xxx_crb_addr_transform(RPMX4);
qla4_8xxx_crb_addr_transform(RPMX3);
qla4_8xxx_crb_addr_transform(RPMX2);
qla4_8xxx_crb_addr_transform(RPMX1);
qla4_8xxx_crb_addr_transform(RPMX0);
qla4_8xxx_crb_addr_transform(ROMUSB);
qla4_8xxx_crb_addr_transform(SN);
qla4_8xxx_crb_addr_transform(QMN);
qla4_8xxx_crb_addr_transform(QMS);
qla4_8xxx_crb_addr_transform(PGNI);
qla4_8xxx_crb_addr_transform(PGND);
qla4_8xxx_crb_addr_transform(PGN3);
qla4_8xxx_crb_addr_transform(PGN2);
qla4_8xxx_crb_addr_transform(PGN1);
qla4_8xxx_crb_addr_transform(PGN0);
qla4_8xxx_crb_addr_transform(PGSI);
qla4_8xxx_crb_addr_transform(PGSD);
qla4_8xxx_crb_addr_transform(PGS3);
qla4_8xxx_crb_addr_transform(PGS2);
qla4_8xxx_crb_addr_transform(PGS1);
qla4_8xxx_crb_addr_transform(PGS0);
qla4_8xxx_crb_addr_transform(PS);
qla4_8xxx_crb_addr_transform(PH);
qla4_8xxx_crb_addr_transform(NIU);
qla4_8xxx_crb_addr_transform(I2Q);
qla4_8xxx_crb_addr_transform(EG);
qla4_8xxx_crb_addr_transform(MN);
qla4_8xxx_crb_addr_transform(MS);
qla4_8xxx_crb_addr_transform(CAS2);
qla4_8xxx_crb_addr_transform(CAS1);
qla4_8xxx_crb_addr_transform(CAS0);
qla4_8xxx_crb_addr_transform(CAM);
qla4_8xxx_crb_addr_transform(C2C1);
qla4_8xxx_crb_addr_transform(C2C0);
qla4_8xxx_crb_addr_transform(SMB);
qla4_8xxx_crb_addr_transform(OCM0);
qla4_8xxx_crb_addr_transform(I2C0);
qla4_8xxx_crb_table_initialized = 1;
}
static struct crb_128M_2M_block_map crb_128M_2M_map[64] = {
{{{0, 0, 0, 0} } }, /* 0: PCI */
{{{1, 0x0100000, 0x0102000, 0x120000}, /* 1: PCIE */
{1, 0x0110000, 0x0120000, 0x130000},
{1, 0x0120000, 0x0122000, 0x124000},
{1, 0x0130000, 0x0132000, 0x126000},
{1, 0x0140000, 0x0142000, 0x128000},
{1, 0x0150000, 0x0152000, 0x12a000},
{1, 0x0160000, 0x0170000, 0x110000},
{1, 0x0170000, 0x0172000, 0x12e000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x01e0000, 0x01e0800, 0x122000},
{0, 0x0000000, 0x0000000, 0x000000} } },
{{{1, 0x0200000, 0x0210000, 0x180000} } },/* 2: MN */
{{{0, 0, 0, 0} } }, /* 3: */
{{{1, 0x0400000, 0x0401000, 0x169000} } },/* 4: P2NR1 */
{{{1, 0x0500000, 0x0510000, 0x140000} } },/* 5: SRE */
{{{1, 0x0600000, 0x0610000, 0x1c0000} } },/* 6: NIU */
{{{1, 0x0700000, 0x0704000, 0x1b8000} } },/* 7: QM */
{{{1, 0x0800000, 0x0802000, 0x170000}, /* 8: SQM0 */
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x08f0000, 0x08f2000, 0x172000} } },
{{{1, 0x0900000, 0x0902000, 0x174000}, /* 9: SQM1*/
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x09f0000, 0x09f2000, 0x176000} } },
{{{0, 0x0a00000, 0x0a02000, 0x178000}, /* 10: SQM2*/
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x0af0000, 0x0af2000, 0x17a000} } },
{{{0, 0x0b00000, 0x0b02000, 0x17c000}, /* 11: SQM3*/
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x0bf0000, 0x0bf2000, 0x17e000} } },
{{{1, 0x0c00000, 0x0c04000, 0x1d4000} } },/* 12: I2Q */
{{{1, 0x0d00000, 0x0d04000, 0x1a4000} } },/* 13: TMR */
{{{1, 0x0e00000, 0x0e04000, 0x1a0000} } },/* 14: ROMUSB */
{{{1, 0x0f00000, 0x0f01000, 0x164000} } },/* 15: PEG4 */
{{{0, 0x1000000, 0x1004000, 0x1a8000} } },/* 16: XDMA */
{{{1, 0x1100000, 0x1101000, 0x160000} } },/* 17: PEG0 */
{{{1, 0x1200000, 0x1201000, 0x161000} } },/* 18: PEG1 */
{{{1, 0x1300000, 0x1301000, 0x162000} } },/* 19: PEG2 */
{{{1, 0x1400000, 0x1401000, 0x163000} } },/* 20: PEG3 */
{{{1, 0x1500000, 0x1501000, 0x165000} } },/* 21: P2ND */
{{{1, 0x1600000, 0x1601000, 0x166000} } },/* 22: P2NI */
{{{0, 0, 0, 0} } }, /* 23: */
{{{0, 0, 0, 0} } }, /* 24: */
{{{0, 0, 0, 0} } }, /* 25: */
{{{0, 0, 0, 0} } }, /* 26: */
{{{0, 0, 0, 0} } }, /* 27: */
{{{0, 0, 0, 0} } }, /* 28: */
{{{1, 0x1d00000, 0x1d10000, 0x190000} } },/* 29: MS */
{{{1, 0x1e00000, 0x1e01000, 0x16a000} } },/* 30: P2NR2 */
{{{1, 0x1f00000, 0x1f10000, 0x150000} } },/* 31: EPG */
{{{0} } }, /* 32: PCI */
{{{1, 0x2100000, 0x2102000, 0x120000}, /* 33: PCIE */
{1, 0x2110000, 0x2120000, 0x130000},
{1, 0x2120000, 0x2122000, 0x124000},
{1, 0x2130000, 0x2132000, 0x126000},
{1, 0x2140000, 0x2142000, 0x128000},
{1, 0x2150000, 0x2152000, 0x12a000},
{1, 0x2160000, 0x2170000, 0x110000},
{1, 0x2170000, 0x2172000, 0x12e000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000} } },
{{{1, 0x2200000, 0x2204000, 0x1b0000} } },/* 34: CAM */
{{{0} } }, /* 35: */
{{{0} } }, /* 36: */
{{{0} } }, /* 37: */
{{{0} } }, /* 38: */
{{{0} } }, /* 39: */
{{{1, 0x2800000, 0x2804000, 0x1a4000} } },/* 40: TMR */
{{{1, 0x2900000, 0x2901000, 0x16b000} } },/* 41: P2NR3 */
{{{1, 0x2a00000, 0x2a00400, 0x1ac400} } },/* 42: RPMX1 */
{{{1, 0x2b00000, 0x2b00400, 0x1ac800} } },/* 43: RPMX2 */
{{{1, 0x2c00000, 0x2c00400, 0x1acc00} } },/* 44: RPMX3 */
{{{1, 0x2d00000, 0x2d00400, 0x1ad000} } },/* 45: RPMX4 */
{{{1, 0x2e00000, 0x2e00400, 0x1ad400} } },/* 46: RPMX5 */
{{{1, 0x2f00000, 0x2f00400, 0x1ad800} } },/* 47: RPMX6 */
{{{1, 0x3000000, 0x3000400, 0x1adc00} } },/* 48: RPMX7 */
{{{0, 0x3100000, 0x3104000, 0x1a8000} } },/* 49: XDMA */
{{{1, 0x3200000, 0x3204000, 0x1d4000} } },/* 50: I2Q */
{{{1, 0x3300000, 0x3304000, 0x1a0000} } },/* 51: ROMUSB */
{{{0} } }, /* 52: */
{{{1, 0x3500000, 0x3500400, 0x1ac000} } },/* 53: RPMX0 */
{{{1, 0x3600000, 0x3600400, 0x1ae000} } },/* 54: RPMX8 */
{{{1, 0x3700000, 0x3700400, 0x1ae400} } },/* 55: RPMX9 */
{{{1, 0x3800000, 0x3804000, 0x1d0000} } },/* 56: OCM0 */
{{{1, 0x3900000, 0x3904000, 0x1b4000} } },/* 57: CRYPTO */
{{{1, 0x3a00000, 0x3a04000, 0x1d8000} } },/* 58: SMB */
{{{0} } }, /* 59: I2C0 */
{{{0} } }, /* 60: I2C1 */
{{{1, 0x3d00000, 0x3d04000, 0x1dc000} } },/* 61: LPC */
{{{1, 0x3e00000, 0x3e01000, 0x167000} } },/* 62: P2NC */
{{{1, 0x3f00000, 0x3f01000, 0x168000} } } /* 63: P2NR0 */
};
/*
* top 12 bits of crb internal address (hub, agent)
*/
static unsigned qla4_82xx_crb_hub_agt[64] = {
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_PS,
QLA82XX_HW_CRB_HUB_AGT_ADR_MN,
QLA82XX_HW_CRB_HUB_AGT_ADR_MS,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_SRE,
QLA82XX_HW_CRB_HUB_AGT_ADR_NIU,
QLA82XX_HW_CRB_HUB_AGT_ADR_QMN,
QLA82XX_HW_CRB_HUB_AGT_ADR_SQN0,
QLA82XX_HW_CRB_HUB_AGT_ADR_SQN1,
QLA82XX_HW_CRB_HUB_AGT_ADR_SQN2,
QLA82XX_HW_CRB_HUB_AGT_ADR_SQN3,
QLA82XX_HW_CRB_HUB_AGT_ADR_I2Q,
QLA82XX_HW_CRB_HUB_AGT_ADR_TIMR,
QLA82XX_HW_CRB_HUB_AGT_ADR_ROMUSB,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGN4,
QLA82XX_HW_CRB_HUB_AGT_ADR_XDMA,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGN0,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGN1,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGN2,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGN3,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGND,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGNI,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGS0,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGS1,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGS2,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGS3,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGSI,
QLA82XX_HW_CRB_HUB_AGT_ADR_SN,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_EG,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_PS,
QLA82XX_HW_CRB_HUB_AGT_ADR_CAM,
0,
0,
0,
0,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_TIMR,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX1,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX2,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX3,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX4,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX5,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX6,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX7,
QLA82XX_HW_CRB_HUB_AGT_ADR_XDMA,
QLA82XX_HW_CRB_HUB_AGT_ADR_I2Q,
QLA82XX_HW_CRB_HUB_AGT_ADR_ROMUSB,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX0,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX8,
QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX9,
QLA82XX_HW_CRB_HUB_AGT_ADR_OCM0,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_SMB,
QLA82XX_HW_CRB_HUB_AGT_ADR_I2C0,
QLA82XX_HW_CRB_HUB_AGT_ADR_I2C1,
0,
QLA82XX_HW_CRB_HUB_AGT_ADR_PGNC,
0,
};
/* Device states */
static char *qdev_state[] = {
"Unknown",
"Cold",
"Initializing",
"Ready",
"Need Reset",
"Need Quiescent",
"Failed",
"Quiescent",
};
/*
* In: 'off' is offset from CRB space in 128M pci map
* Out: 'off' is 2M pci map addr
* side effect: lock crb window
*/
static void
qla4_82xx_pci_set_crbwindow_2M(struct scsi_qla_host *ha, ulong *off)
{
u32 win_read;
ha->crb_win = CRB_HI(*off);
writel(ha->crb_win,
(void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase));
/* Read back value to make sure write has gone through before trying
* to use it. */
win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase));
if (win_read != ha->crb_win) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Written crbwin (0x%x) != Read crbwin (0x%x),"
" off=0x%lx\n", __func__, ha->crb_win, win_read, *off));
}
*off = (*off & MASK(16)) + CRB_INDIRECT_2M + ha->nx_pcibase;
}
#define CRB_WIN_LOCK_TIMEOUT 100000000
/*
* Context: atomic
*/
static int qla4_82xx_crb_win_lock(struct scsi_qla_host *ha)
{
int done = 0, timeout = 0;
while (!done) {
/* acquire semaphore3 from PCI HW block */
done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM7_LOCK));
if (done == 1)
break;
if (timeout >= CRB_WIN_LOCK_TIMEOUT)
return -1;
timeout++;
udelay(10);
}
qla4_82xx_wr_32(ha, QLA82XX_CRB_WIN_LOCK_ID, ha->func_num);
return 0;
}
void qla4_82xx_crb_win_unlock(struct scsi_qla_host *ha)
{
qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM7_UNLOCK));
}
void
qla4_82xx_wr_32(struct scsi_qla_host *ha, ulong off, u32 data)
{
unsigned long flags = 0;
int rv;
rv = qla4_82xx_pci_get_crb_addr_2M(ha, &off);
BUG_ON(rv == -1);
if (rv == 1) {
write_lock_irqsave(&ha->hw_lock, flags);
qla4_82xx_crb_win_lock(ha);
qla4_82xx_pci_set_crbwindow_2M(ha, &off);
}
writel(data, (void __iomem *)off);
if (rv == 1) {
qla4_82xx_crb_win_unlock(ha);
write_unlock_irqrestore(&ha->hw_lock, flags);
}
}
uint32_t qla4_82xx_rd_32(struct scsi_qla_host *ha, ulong off)
{
unsigned long flags = 0;
int rv;
u32 data;
rv = qla4_82xx_pci_get_crb_addr_2M(ha, &off);
BUG_ON(rv == -1);
if (rv == 1) {
write_lock_irqsave(&ha->hw_lock, flags);
qla4_82xx_crb_win_lock(ha);
qla4_82xx_pci_set_crbwindow_2M(ha, &off);
}
data = readl((void __iomem *)off);
if (rv == 1) {
qla4_82xx_crb_win_unlock(ha);
write_unlock_irqrestore(&ha->hw_lock, flags);
}
return data;
}
/* Minidump related functions */
int qla4_82xx_md_rd_32(struct scsi_qla_host *ha, uint32_t off, uint32_t *data)
{
uint32_t win_read, off_value;
int rval = QLA_SUCCESS;
off_value = off & 0xFFFF0000;
writel(off_value, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase));
/*
* Read back value to make sure write has gone through before trying
* to use it.
*/
win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase));
if (win_read != off_value) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Written (0x%x) != Read (0x%x), off=0x%x\n",
__func__, off_value, win_read, off));
rval = QLA_ERROR;
} else {
off_value = off & 0x0000FFFF;
*data = readl((void __iomem *)(off_value + CRB_INDIRECT_2M +
ha->nx_pcibase));
}
return rval;
}
int qla4_82xx_md_wr_32(struct scsi_qla_host *ha, uint32_t off, uint32_t data)
{
uint32_t win_read, off_value;
int rval = QLA_SUCCESS;
off_value = off & 0xFFFF0000;
writel(off_value, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase));
/* Read back value to make sure write has gone through before trying
* to use it.
*/
win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase));
if (win_read != off_value) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Written (0x%x) != Read (0x%x), off=0x%x\n",
__func__, off_value, win_read, off));
rval = QLA_ERROR;
} else {
off_value = off & 0x0000FFFF;
writel(data, (void __iomem *)(off_value + CRB_INDIRECT_2M +
ha->nx_pcibase));
}
return rval;
}
#define IDC_LOCK_TIMEOUT 100000000
/**
* qla4_82xx_idc_lock - hw_lock
* @ha: pointer to adapter structure
*
* General purpose lock used to synchronize access to
* CRB_DEV_STATE, CRB_DEV_REF_COUNT, etc.
*
* Context: task, can sleep
**/
int qla4_82xx_idc_lock(struct scsi_qla_host *ha)
{
int done = 0, timeout = 0;
might_sleep();
while (!done) {
/* acquire semaphore5 from PCI HW block */
done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM5_LOCK));
if (done == 1)
break;
if (timeout >= IDC_LOCK_TIMEOUT)
return -1;
timeout++;
msleep(100);
}
return 0;
}
void qla4_82xx_idc_unlock(struct scsi_qla_host *ha)
{
qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM5_UNLOCK));
}
int
qla4_82xx_pci_get_crb_addr_2M(struct scsi_qla_host *ha, ulong *off)
{
struct crb_128M_2M_sub_block_map *m;
if (*off >= QLA82XX_CRB_MAX)
return -1;
if (*off >= QLA82XX_PCI_CAMQM && (*off < QLA82XX_PCI_CAMQM_2M_END)) {
*off = (*off - QLA82XX_PCI_CAMQM) +
QLA82XX_PCI_CAMQM_2M_BASE + ha->nx_pcibase;
return 0;
}
if (*off < QLA82XX_PCI_CRBSPACE)
return -1;
*off -= QLA82XX_PCI_CRBSPACE;
/*
* Try direct map
*/
m = &crb_128M_2M_map[CRB_BLK(*off)].sub_block[CRB_SUBBLK(*off)];
if (m->valid && (m->start_128M <= *off) && (m->end_128M > *off)) {
*off = *off + m->start_2M - m->start_128M + ha->nx_pcibase;
return 0;
}
/*
* Not in direct map, use crb window
*/
return 1;
}
/*
* check memory access boundary.
* used by test agent. support ddr access only for now
*/
static unsigned long
qla4_82xx_pci_mem_bound_check(struct scsi_qla_host *ha,
unsigned long long addr, int size)
{
if (!QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET,
QLA8XXX_ADDR_DDR_NET_MAX) ||
!QLA8XXX_ADDR_IN_RANGE(addr + size - 1,
QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX) ||
((size != 1) && (size != 2) && (size != 4) && (size != 8))) {
return 0;
}
return 1;
}
static int qla4_82xx_pci_set_window_warning_count;
static unsigned long
qla4_82xx_pci_set_window(struct scsi_qla_host *ha, unsigned long long addr)
{
int window;
u32 win_read;
if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET,
QLA8XXX_ADDR_DDR_NET_MAX)) {
/* DDR network side */
window = MN_WIN(addr);
ha->ddr_mn_window = window;
qla4_82xx_wr_32(ha, ha->mn_win_crb |
QLA82XX_PCI_CRBSPACE, window);
win_read = qla4_82xx_rd_32(ha, ha->mn_win_crb |
QLA82XX_PCI_CRBSPACE);
if ((win_read << 17) != window) {
ql4_printk(KERN_WARNING, ha,
"%s: Written MNwin (0x%x) != Read MNwin (0x%x)\n",
__func__, window, win_read);
}
addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_DDR_NET;
} else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM0,
QLA8XXX_ADDR_OCM0_MAX)) {
unsigned int temp1;
/* if bits 19:18&17:11 are on */
if ((addr & 0x00ff800) == 0xff800) {
printk("%s: QM access not handled.\n", __func__);
addr = -1UL;
}
window = OCM_WIN(addr);
ha->ddr_mn_window = window;
qla4_82xx_wr_32(ha, ha->mn_win_crb |
QLA82XX_PCI_CRBSPACE, window);
win_read = qla4_82xx_rd_32(ha, ha->mn_win_crb |
QLA82XX_PCI_CRBSPACE);
temp1 = ((window & 0x1FF) << 7) |
((window & 0x0FFFE0000) >> 17);
if (win_read != temp1) {
printk("%s: Written OCMwin (0x%x) != Read"
" OCMwin (0x%x)\n", __func__, temp1, win_read);
}
addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_OCM0_2M;
} else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET,
QLA82XX_P3_ADDR_QDR_NET_MAX)) {
/* QDR network side */
window = MS_WIN(addr);
ha->qdr_sn_window = window;
qla4_82xx_wr_32(ha, ha->ms_win_crb |
QLA82XX_PCI_CRBSPACE, window);
win_read = qla4_82xx_rd_32(ha,
ha->ms_win_crb | QLA82XX_PCI_CRBSPACE);
if (win_read != window) {
printk("%s: Written MSwin (0x%x) != Read "
"MSwin (0x%x)\n", __func__, window, win_read);
}
addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_QDR_NET;
} else {
/*
* peg gdb frequently accesses memory that doesn't exist,
* this limits the chit chat so debugging isn't slowed down.
*/
if ((qla4_82xx_pci_set_window_warning_count++ < 8) ||
(qla4_82xx_pci_set_window_warning_count%64 == 0)) {
printk("%s: Warning:%s Unknown address range!\n",
__func__, DRIVER_NAME);
}
addr = -1UL;
}
return addr;
}
/* check if address is in the same windows as the previous access */
static int qla4_82xx_pci_is_same_window(struct scsi_qla_host *ha,
unsigned long long addr)
{
int window;
unsigned long long qdr_max;
qdr_max = QLA82XX_P3_ADDR_QDR_NET_MAX;
if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET,
QLA8XXX_ADDR_DDR_NET_MAX)) {
/* DDR network side */
BUG(); /* MN access can not come here */
} else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM0,
QLA8XXX_ADDR_OCM0_MAX)) {
return 1;
} else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM1,
QLA8XXX_ADDR_OCM1_MAX)) {
return 1;
} else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET,
qdr_max)) {
/* QDR network side */
window = ((addr - QLA8XXX_ADDR_QDR_NET) >> 22) & 0x3f;
if (ha->qdr_sn_window == window)
return 1;
}
return 0;
}
static int qla4_82xx_pci_mem_read_direct(struct scsi_qla_host *ha,
u64 off, void *data, int size)
{
unsigned long flags;
void __iomem *addr;
int ret = 0;
u64 start;
void __iomem *mem_ptr = NULL;
unsigned long mem_base;
unsigned long mem_page;
write_lock_irqsave(&ha->hw_lock, flags);
/*
* If attempting to access unknown address or straddle hw windows,
* do not access.
*/
start = qla4_82xx_pci_set_window(ha, off);
if ((start == -1UL) ||
(qla4_82xx_pci_is_same_window(ha, off + size - 1) == 0)) {
write_unlock_irqrestore(&ha->hw_lock, flags);
printk(KERN_ERR"%s out of bound pci memory access. "
"offset is 0x%llx\n", DRIVER_NAME, off);
return -1;
}
addr = qla4_8xxx_pci_base_offsetfset(ha, start);
if (!addr) {
write_unlock_irqrestore(&ha->hw_lock, flags);
mem_base = pci_resource_start(ha->pdev, 0);
mem_page = start & PAGE_MASK;
/* Map two pages whenever user tries to access addresses in two
consecutive pages.
*/
if (mem_page != ((start + size - 1) & PAGE_MASK))
mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE * 2);
else
mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE);
if (mem_ptr == NULL) {
*(u8 *)data = 0;
return -1;
}
addr = mem_ptr;
addr += start & (PAGE_SIZE - 1);
write_lock_irqsave(&ha->hw_lock, flags);
}
switch (size) {
case 1:
*(u8 *)data = readb(addr);
break;
case 2:
*(u16 *)data = readw(addr);
break;
case 4:
*(u32 *)data = readl(addr);
break;
case 8:
*(u64 *)data = readq(addr);
break;
default:
ret = -1;
break;
}
write_unlock_irqrestore(&ha->hw_lock, flags);
if (mem_ptr)
iounmap(mem_ptr);
return ret;
}
static int
qla4_82xx_pci_mem_write_direct(struct scsi_qla_host *ha, u64 off,
void *data, int size)
{
unsigned long flags;
void __iomem *addr;
int ret = 0;
u64 start;
void __iomem *mem_ptr = NULL;
unsigned long mem_base;
unsigned long mem_page;
write_lock_irqsave(&ha->hw_lock, flags);
/*
* If attempting to access unknown address or straddle hw windows,
* do not access.
*/
start = qla4_82xx_pci_set_window(ha, off);
if ((start == -1UL) ||
(qla4_82xx_pci_is_same_window(ha, off + size - 1) == 0)) {
write_unlock_irqrestore(&ha->hw_lock, flags);
printk(KERN_ERR"%s out of bound pci memory access. "
"offset is 0x%llx\n", DRIVER_NAME, off);
return -1;
}
addr = qla4_8xxx_pci_base_offsetfset(ha, start);
if (!addr) {
write_unlock_irqrestore(&ha->hw_lock, flags);
mem_base = pci_resource_start(ha->pdev, 0);
mem_page = start & PAGE_MASK;
/* Map two pages whenever user tries to access addresses in two
consecutive pages.
*/
if (mem_page != ((start + size - 1) & PAGE_MASK))
mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE*2);
else
mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE);
if (mem_ptr == NULL)
return -1;
addr = mem_ptr;
addr += start & (PAGE_SIZE - 1);
write_lock_irqsave(&ha->hw_lock, flags);
}
switch (size) {
case 1:
writeb(*(u8 *)data, addr);
break;
case 2:
writew(*(u16 *)data, addr);
break;
case 4:
writel(*(u32 *)data, addr);
break;
case 8:
writeq(*(u64 *)data, addr);
break;
default:
ret = -1;
break;
}
write_unlock_irqrestore(&ha->hw_lock, flags);
if (mem_ptr)
iounmap(mem_ptr);
return ret;
}
#define MTU_FUDGE_FACTOR 100
static unsigned long
qla4_82xx_decode_crb_addr(unsigned long addr)
{
int i;
unsigned long base_addr, offset, pci_base;
if (!qla4_8xxx_crb_table_initialized)
qla4_82xx_crb_addr_transform_setup();
pci_base = ADDR_ERROR;
base_addr = addr & 0xfff00000;
offset = addr & 0x000fffff;
for (i = 0; i < MAX_CRB_XFORM; i++) {
if (crb_addr_xform[i] == base_addr) {
pci_base = i << 20;
break;
}
}
if (pci_base == ADDR_ERROR)
return pci_base;
else
return pci_base + offset;
}
static long rom_max_timeout = 100;
static long qla4_82xx_rom_lock_timeout = 100;
/*
* Context: task, can_sleep
*/
static int
qla4_82xx_rom_lock(struct scsi_qla_host *ha)
{
int done = 0, timeout = 0;
might_sleep();
while (!done) {
/* acquire semaphore2 from PCI HW block */
done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM2_LOCK));
if (done == 1)
break;
if (timeout >= qla4_82xx_rom_lock_timeout)
return -1;
timeout++;
msleep(20);
}
qla4_82xx_wr_32(ha, QLA82XX_ROM_LOCK_ID, ROM_LOCK_DRIVER);
return 0;
}
static void
qla4_82xx_rom_unlock(struct scsi_qla_host *ha)
{
qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM2_UNLOCK));
}
static int
qla4_82xx_wait_rom_done(struct scsi_qla_host *ha)
{
long timeout = 0;
long done = 0 ;
while (done == 0) {
done = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_STATUS);
done &= 2;
timeout++;
if (timeout >= rom_max_timeout) {
printk("%s: Timeout reached waiting for rom done",
DRIVER_NAME);
return -1;
}
}
return 0;
}
static int
qla4_82xx_do_rom_fast_read(struct scsi_qla_host *ha, int addr, int *valp)
{
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ADDRESS, addr);
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ABYTE_CNT, 3);
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_INSTR_OPCODE, 0xb);
if (qla4_82xx_wait_rom_done(ha)) {
printk("%s: Error waiting for rom done\n", DRIVER_NAME);
return -1;
}
/* reset abyte_cnt and dummy_byte_cnt */
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
udelay(10);
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ABYTE_CNT, 0);
*valp = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_ROM_RDATA);
return 0;
}
static int
qla4_82xx_rom_fast_read(struct scsi_qla_host *ha, int addr, int *valp)
{
int ret, loops = 0;
while ((qla4_82xx_rom_lock(ha) != 0) && (loops < 50000)) {
udelay(100);
loops++;
}
if (loops >= 50000) {
ql4_printk(KERN_WARNING, ha, "%s: qla4_82xx_rom_lock failed\n",
DRIVER_NAME);
return -1;
}
ret = qla4_82xx_do_rom_fast_read(ha, addr, valp);
qla4_82xx_rom_unlock(ha);
return ret;
}
/*
* This routine does CRB initialize sequence
* to put the ISP into operational state
*/
static int
qla4_82xx_pinit_from_rom(struct scsi_qla_host *ha, int verbose)
{
int addr, val;
int i ;
struct crb_addr_pair *buf;
unsigned long off;
unsigned offset, n;
struct crb_addr_pair {
long addr;
long data;
};
/* Halt all the indiviual PEGs and other blocks of the ISP */
qla4_82xx_rom_lock(ha);
/* disable all I2Q */
qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x10, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x14, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x18, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x1c, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x20, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x24, 0x0);
/* disable all niu interrupts */
qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x40, 0xff);
/* disable xge rx/tx */
qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x70000, 0x00);
/* disable xg1 rx/tx */
qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x80000, 0x00);
/* disable sideband mac */
qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x90000, 0x00);
/* disable ap0 mac */
qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0xa0000, 0x00);
/* disable ap1 mac */
qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0xb0000, 0x00);
/* halt sre */
val = qla4_82xx_rd_32(ha, QLA82XX_CRB_SRE + 0x1000);
qla4_82xx_wr_32(ha, QLA82XX_CRB_SRE + 0x1000, val & (~(0x1)));
/* halt epg */
qla4_82xx_wr_32(ha, QLA82XX_CRB_EPG + 0x1300, 0x1);
/* halt timers */
qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x0, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x8, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x10, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x18, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x100, 0x0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x200, 0x0);
/* halt pegs */
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0 + 0x3c, 1);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1 + 0x3c, 1);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2 + 0x3c, 1);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3 + 0x3c, 1);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_4 + 0x3c, 1);
msleep(5);
/* big hammer */
if (test_bit(DPC_RESET_HA, &ha->dpc_flags))
/* don't reset CAM block on reset */
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0xfeffffff);
else
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0xffffffff);
qla4_82xx_rom_unlock(ha);
/* Read the signature value from the flash.
* Offset 0: Contain signature (0xcafecafe)
* Offset 4: Offset and number of addr/value pairs
* that present in CRB initialize sequence
*/
if (qla4_82xx_rom_fast_read(ha, 0, &n) != 0 || n != 0xcafecafeUL ||
qla4_82xx_rom_fast_read(ha, 4, &n) != 0) {
ql4_printk(KERN_WARNING, ha,
"[ERROR] Reading crb_init area: n: %08x\n", n);
return -1;
}
/* Offset in flash = lower 16 bits
* Number of enteries = upper 16 bits
*/
offset = n & 0xffffU;
n = (n >> 16) & 0xffffU;
/* number of addr/value pair should not exceed 1024 enteries */
if (n >= 1024) {
ql4_printk(KERN_WARNING, ha,
"%s: %s:n=0x%x [ERROR] Card flash not initialized.\n",
DRIVER_NAME, __func__, n);
return -1;
}
ql4_printk(KERN_INFO, ha,
"%s: %d CRB init values found in ROM.\n", DRIVER_NAME, n);
buf = kmalloc_array(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
if (buf == NULL) {
ql4_printk(KERN_WARNING, ha,
"%s: [ERROR] Unable to malloc memory.\n", DRIVER_NAME);
return -1;
}
for (i = 0; i < n; i++) {
if (qla4_82xx_rom_fast_read(ha, 8*i + 4*offset, &val) != 0 ||
qla4_82xx_rom_fast_read(ha, 8*i + 4*offset + 4, &addr) !=
0) {
kfree(buf);
return -1;
}
buf[i].addr = addr;
buf[i].data = val;
}
for (i = 0; i < n; i++) {
/* Translate internal CRB initialization
* address to PCI bus address
*/
off = qla4_82xx_decode_crb_addr((unsigned long)buf[i].addr) +
QLA82XX_PCI_CRBSPACE;
/* Not all CRB addr/value pair to be written,
* some of them are skipped
*/
/* skip if LS bit is set*/
if (off & 0x1) {
DEBUG2(ql4_printk(KERN_WARNING, ha,
"Skip CRB init replay for offset = 0x%lx\n", off));
continue;
}
/* skipping cold reboot MAGIC */
if (off == QLA82XX_CAM_RAM(0x1fc))
continue;
/* do not reset PCI */
if (off == (ROMUSB_GLB + 0xbc))
continue;
/* skip core clock, so that firmware can increase the clock */
if (off == (ROMUSB_GLB + 0xc8))
continue;
/* skip the function enable register */
if (off == QLA82XX_PCIE_REG(PCIE_SETUP_FUNCTION))
continue;
if (off == QLA82XX_PCIE_REG(PCIE_SETUP_FUNCTION2))
continue;
if ((off & 0x0ff00000) == QLA82XX_CRB_SMB)
continue;
if ((off & 0x0ff00000) == QLA82XX_CRB_DDR_NET)
continue;
if (off == ADDR_ERROR) {
ql4_printk(KERN_WARNING, ha,
"%s: [ERROR] Unknown addr: 0x%08lx\n",
DRIVER_NAME, buf[i].addr);
continue;
}
qla4_82xx_wr_32(ha, off, buf[i].data);
/* ISP requires much bigger delay to settle down,
* else crb_window returns 0xffffffff
*/
if (off == QLA82XX_ROMUSB_GLB_SW_RESET)
msleep(1000);
/* ISP requires millisec delay between
* successive CRB register updation
*/
msleep(1);
}
kfree(buf);
/* Resetting the data and instruction cache */
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_D+0xec, 0x1e);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_D+0x4c, 8);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_I+0x4c, 8);
/* Clear all protocol processing engines */
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0+0x8, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0+0xc, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1+0x8, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1+0xc, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2+0x8, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2+0xc, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3+0x8, 0);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3+0xc, 0);
return 0;
}
/**
* qla4_8xxx_ms_mem_write_128b - Writes data to MS/off-chip memory
* @ha: Pointer to adapter structure
* @addr: Flash address to write to
* @data: Data to be written
* @count: word_count to be written
*
* Return: On success return QLA_SUCCESS
* On error return QLA_ERROR
**/
int qla4_8xxx_ms_mem_write_128b(struct scsi_qla_host *ha, uint64_t addr,
uint32_t *data, uint32_t count)
{
int i, j;
uint32_t agt_ctrl;
unsigned long flags;
int ret_val = QLA_SUCCESS;
/* Only 128-bit aligned access */
if (addr & 0xF) {
ret_val = QLA_ERROR;
goto exit_ms_mem_write;
}
write_lock_irqsave(&ha->hw_lock, flags);
/* Write address */
ret_val = ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_HI, 0);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: write to AGT_ADDR_HI failed\n",
__func__);
goto exit_ms_mem_write_unlock;
}
for (i = 0; i < count; i++, addr += 16) {
if (!((QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET,
QLA8XXX_ADDR_QDR_NET_MAX)) ||
(QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET,
QLA8XXX_ADDR_DDR_NET_MAX)))) {
ret_val = QLA_ERROR;
goto exit_ms_mem_write_unlock;
}
ret_val = ha->isp_ops->wr_reg_indirect(ha,
MD_MIU_TEST_AGT_ADDR_LO,
addr);
/* Write data */
ret_val |= ha->isp_ops->wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_LO,
*data++);
ret_val |= ha->isp_ops->wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_HI,
*data++);
ret_val |= ha->isp_ops->wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_ULO,
*data++);
ret_val |= ha->isp_ops->wr_reg_indirect(ha,
MD_MIU_TEST_AGT_WRDATA_UHI,
*data++);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: write to AGT_WRDATA failed\n",
__func__);
goto exit_ms_mem_write_unlock;
}
/* Check write status */
ret_val = ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL,
MIU_TA_CTL_WRITE_ENABLE);
ret_val |= ha->isp_ops->wr_reg_indirect(ha,
MD_MIU_TEST_AGT_CTRL,
MIU_TA_CTL_WRITE_START);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: write to AGT_CTRL failed\n",
__func__);
goto exit_ms_mem_write_unlock;
}
for (j = 0; j < MAX_CTL_CHECK; j++) {
ret_val = ha->isp_ops->rd_reg_indirect(ha,
MD_MIU_TEST_AGT_CTRL,
&agt_ctrl);
if (ret_val == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: failed to read MD_MIU_TEST_AGT_CTRL\n",
__func__);
goto exit_ms_mem_write_unlock;
}
if ((agt_ctrl & MIU_TA_CTL_BUSY) == 0)
break;
}
/* Status check failed */
if (j >= MAX_CTL_CHECK) {
printk_ratelimited(KERN_ERR "%s: MS memory write failed!\n",
__func__);
ret_val = QLA_ERROR;
goto exit_ms_mem_write_unlock;
}
}
exit_ms_mem_write_unlock:
write_unlock_irqrestore(&ha->hw_lock, flags);
exit_ms_mem_write:
return ret_val;
}
static int
qla4_82xx_load_from_flash(struct scsi_qla_host *ha, uint32_t image_start)
{
int i, rval = 0;
long size = 0;
long flashaddr, memaddr;
u64 data;
u32 high, low;
flashaddr = memaddr = ha->hw.flt_region_bootload;
size = (image_start - flashaddr) / 8;
DEBUG2(printk("scsi%ld: %s: bootldr=0x%lx, fw_image=0x%x\n",
ha->host_no, __func__, flashaddr, image_start));
for (i = 0; i < size; i++) {
if ((qla4_82xx_rom_fast_read(ha, flashaddr, (int *)&low)) ||
(qla4_82xx_rom_fast_read(ha, flashaddr + 4,
(int *)&high))) {
rval = -1;
goto exit_load_from_flash;
}
data = ((u64)high << 32) | low ;
rval = qla4_82xx_pci_mem_write_2M(ha, memaddr, &data, 8);
if (rval)
goto exit_load_from_flash;
flashaddr += 8;
memaddr += 8;
if (i % 0x1000 == 0)
msleep(1);
}
udelay(100);
read_lock(&ha->hw_lock);
qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0 + 0x18, 0x1020);
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0x80001e);
read_unlock(&ha->hw_lock);
exit_load_from_flash:
return rval;
}
static int qla4_82xx_load_fw(struct scsi_qla_host *ha, uint32_t image_start)
{
u32 rst;
qla4_82xx_wr_32(ha, CRB_CMDPEG_STATE, 0);
if (qla4_82xx_pinit_from_rom(ha, 0) != QLA_SUCCESS) {
printk(KERN_WARNING "%s: Error during CRB Initialization\n",
__func__);
return QLA_ERROR;
}
udelay(500);
/* at this point, QM is in reset. This could be a problem if there are
* incoming d* transition queue messages. QM/PCIE could wedge.
* To get around this, QM is brought out of reset.
*/
rst = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET);
/* unreset qm */
rst &= ~(1 << 28);
qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, rst);
if (qla4_82xx_load_from_flash(ha, image_start)) {
printk("%s: Error trying to load fw from flash!\n", __func__);
return QLA_ERROR;
}
return QLA_SUCCESS;
}
int
qla4_82xx_pci_mem_read_2M(struct scsi_qla_host *ha,
u64 off, void *data, int size)
{
int i, j = 0, k, start, end, loop, sz[2], off0[2];
int shift_amount;
uint32_t temp;
uint64_t off8, val, mem_crb, word[2] = {0, 0};
/*
* If not MN, go check for MS or invalid.
*/
if (off >= QLA8XXX_ADDR_QDR_NET && off <= QLA82XX_P3_ADDR_QDR_NET_MAX)
mem_crb = QLA82XX_CRB_QDR_NET;
else {
mem_crb = QLA82XX_CRB_DDR_NET;
if (qla4_82xx_pci_mem_bound_check(ha, off, size) == 0)
return qla4_82xx_pci_mem_read_direct(ha,
off, data, size);
}
off8 = off & 0xfffffff0;
off0[0] = off & 0xf;
sz[0] = (size < (16 - off0[0])) ? size : (16 - off0[0]);
shift_amount = 4;
loop = ((off0[0] + size - 1) >> shift_amount) + 1;
off0[1] = 0;
sz[1] = size - sz[0];
for (i = 0; i < loop; i++) {
temp = off8 + (i << shift_amount);
qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_ADDR_LO, temp);
temp = 0;
qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_ADDR_HI, temp);
temp = MIU_TA_CTL_ENABLE;
qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_CTRL, temp);
temp = MIU_TA_CTL_START_ENABLE;
qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_CTRL, temp);
for (j = 0; j < MAX_CTL_CHECK; j++) {
temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_CTRL);
if ((temp & MIU_TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
printk_ratelimited(KERN_ERR
"%s: failed to read through agent\n",
__func__);
break;
}
start = off0[i] >> 2;
end = (off0[i] + sz[i] - 1) >> 2;
for (k = start; k <= end; k++) {
temp = qla4_82xx_rd_32(ha,
mem_crb + MIU_TEST_AGT_RDDATA(k));
word[i] |= ((uint64_t)temp << (32 * (k & 1)));
}
}
if (j >= MAX_CTL_CHECK)
return -1;
if ((off0[0] & 7) == 0) {
val = word[0];
} else {
val = ((word[0] >> (off0[0] * 8)) & (~(~0ULL << (sz[0] * 8)))) |
((word[1] & (~(~0ULL << (sz[1] * 8)))) << (sz[0] * 8));
}
switch (size) {
case 1:
*(uint8_t *)data = val;
break;
case 2:
*(uint16_t *)data = val;
break;
case 4:
*(uint32_t *)data = val;
break;
case 8:
*(uint64_t *)data = val;
break;
}
return 0;
}
int
qla4_82xx_pci_mem_write_2M(struct scsi_qla_host *ha,
u64 off, void *data, int size)
{
int i, j, ret = 0, loop, sz[2], off0;
int scale, shift_amount, startword;
uint32_t temp;
uint64_t off8, mem_crb, tmpw, word[2] = {0, 0};
/*
* If not MN, go check for MS or invalid.
*/
if (off >= QLA8XXX_ADDR_QDR_NET && off <= QLA82XX_P3_ADDR_QDR_NET_MAX)
mem_crb = QLA82XX_CRB_QDR_NET;
else {
mem_crb = QLA82XX_CRB_DDR_NET;
if (qla4_82xx_pci_mem_bound_check(ha, off, size) == 0)
return qla4_82xx_pci_mem_write_direct(ha,
off, data, size);
}
off0 = off & 0x7;
sz[0] = (size < (8 - off0)) ? size : (8 - off0);
sz[1] = size - sz[0];
off8 = off & 0xfffffff0;
loop = (((off & 0xf) + size - 1) >> 4) + 1;
shift_amount = 4;
scale = 2;
startword = (off & 0xf)/8;
for (i = 0; i < loop; i++) {
if (qla4_82xx_pci_mem_read_2M(ha, off8 +
(i << shift_amount), &word[i * scale], 8))
return -1;
}
switch (size) {
case 1:
tmpw = *((uint8_t *)data);
break;
case 2:
tmpw = *((uint16_t *)data);
break;
case 4:
tmpw = *((uint32_t *)data);
break;
case 8:
default:
tmpw = *((uint64_t *)data);
break;
}
if (sz[0] == 8)
word[startword] = tmpw;
else {
word[startword] &=
~((~(~0ULL << (sz[0] * 8))) << (off0 * 8));
word[startword] |= tmpw << (off0 * 8);
}
if (sz[1] != 0) {
word[startword+1] &= ~(~0ULL << (sz[1] * 8));
word[startword+1] |= tmpw >> (sz[0] * 8);
}
for (i = 0; i < loop; i++) {
temp = off8 + (i << shift_amount);
qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_ADDR_LO, temp);
temp = 0;
qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_ADDR_HI, temp);
temp = word[i * scale] & 0xffffffff;
qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_WRDATA_LO, temp);
temp = (word[i * scale] >> 32) & 0xffffffff;
qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_WRDATA_HI, temp);
temp = word[i*scale + 1] & 0xffffffff;
qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_WRDATA_UPPER_LO,
temp);
temp = (word[i*scale + 1] >> 32) & 0xffffffff;
qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_WRDATA_UPPER_HI,
temp);
temp = MIU_TA_CTL_WRITE_ENABLE;
qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_CTRL, temp);
temp = MIU_TA_CTL_WRITE_START;
qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_CTRL, temp);
for (j = 0; j < MAX_CTL_CHECK; j++) {
temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_CTRL);
if ((temp & MIU_TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
if (printk_ratelimit())
ql4_printk(KERN_ERR, ha,
"%s: failed to read through agent\n",
__func__);
ret = -1;
break;
}
}
return ret;
}
static int qla4_82xx_cmdpeg_ready(struct scsi_qla_host *ha, int pegtune_val)
{
u32 val = 0;
int retries = 60;
if (!pegtune_val) {
do {
val = qla4_82xx_rd_32(ha, CRB_CMDPEG_STATE);
if ((val == PHAN_INITIALIZE_COMPLETE) ||
(val == PHAN_INITIALIZE_ACK))
return 0;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(500);
} while (--retries);
if (!retries) {
pegtune_val = qla4_82xx_rd_32(ha,
QLA82XX_ROMUSB_GLB_PEGTUNE_DONE);
printk(KERN_WARNING "%s: init failed, "
"pegtune_val = %x\n", __func__, pegtune_val);
return -1;
}
}
return 0;
}
static int qla4_82xx_rcvpeg_ready(struct scsi_qla_host *ha)
{
uint32_t state = 0;
int loops = 0;
/* Window 1 call */
read_lock(&ha->hw_lock);
state = qla4_82xx_rd_32(ha, CRB_RCVPEG_STATE);
read_unlock(&ha->hw_lock);
while ((state != PHAN_PEG_RCV_INITIALIZED) && (loops < 30000)) {
udelay(100);
/* Window 1 call */
read_lock(&ha->hw_lock);
state = qla4_82xx_rd_32(ha, CRB_RCVPEG_STATE);
read_unlock(&ha->hw_lock);
loops++;
}
if (loops >= 30000) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"Receive Peg initialization not complete: 0x%x.\n", state));
return QLA_ERROR;
}
return QLA_SUCCESS;
}
void
qla4_8xxx_set_drv_active(struct scsi_qla_host *ha)
{
uint32_t drv_active;
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
/*
* For ISP8324 and ISP8042, drv_active register has 1 bit per function,
* shift 1 by func_num to set a bit for the function.
* For ISP8022, drv_active has 4 bits per function
*/
if (is_qla8032(ha) || is_qla8042(ha))
drv_active |= (1 << ha->func_num);
else
drv_active |= (1 << (ha->func_num * 4));
ql4_printk(KERN_INFO, ha, "%s(%ld): drv_active: 0x%08x\n",
__func__, ha->host_no, drv_active);
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE, drv_active);
}
void
qla4_8xxx_clear_drv_active(struct scsi_qla_host *ha)
{
uint32_t drv_active;
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
/*
* For ISP8324 and ISP8042, drv_active register has 1 bit per function,
* shift 1 by func_num to set a bit for the function.
* For ISP8022, drv_active has 4 bits per function
*/
if (is_qla8032(ha) || is_qla8042(ha))
drv_active &= ~(1 << (ha->func_num));
else
drv_active &= ~(1 << (ha->func_num * 4));
ql4_printk(KERN_INFO, ha, "%s(%ld): drv_active: 0x%08x\n",
__func__, ha->host_no, drv_active);
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE, drv_active);
}
inline int qla4_8xxx_need_reset(struct scsi_qla_host *ha)
{
uint32_t drv_state, drv_active;
int rval;
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE);
/*
* For ISP8324 and ISP8042, drv_active register has 1 bit per function,
* shift 1 by func_num to set a bit for the function.
* For ISP8022, drv_active has 4 bits per function
*/
if (is_qla8032(ha) || is_qla8042(ha))
rval = drv_state & (1 << ha->func_num);
else
rval = drv_state & (1 << (ha->func_num * 4));
if ((test_bit(AF_EEH_BUSY, &ha->flags)) && drv_active)
rval = 1;
return rval;
}
void qla4_8xxx_set_rst_ready(struct scsi_qla_host *ha)
{
uint32_t drv_state;
drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE);
/*
* For ISP8324 and ISP8042, drv_active register has 1 bit per function,
* shift 1 by func_num to set a bit for the function.
* For ISP8022, drv_active has 4 bits per function
*/
if (is_qla8032(ha) || is_qla8042(ha))
drv_state |= (1 << ha->func_num);
else
drv_state |= (1 << (ha->func_num * 4));
ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state: 0x%08x\n",
__func__, ha->host_no, drv_state);
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, drv_state);
}
void qla4_8xxx_clear_rst_ready(struct scsi_qla_host *ha)
{
uint32_t drv_state;
drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE);
/*
* For ISP8324 and ISP8042, drv_active register has 1 bit per function,
* shift 1 by func_num to set a bit for the function.
* For ISP8022, drv_active has 4 bits per function
*/
if (is_qla8032(ha) || is_qla8042(ha))
drv_state &= ~(1 << ha->func_num);
else
drv_state &= ~(1 << (ha->func_num * 4));
ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state: 0x%08x\n",
__func__, ha->host_no, drv_state);
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, drv_state);
}
static inline void
qla4_8xxx_set_qsnt_ready(struct scsi_qla_host *ha)
{
uint32_t qsnt_state;
qsnt_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE);
/*
* For ISP8324 and ISP8042, drv_active register has 1 bit per function,
* shift 1 by func_num to set a bit for the function.
* For ISP8022, drv_active has 4 bits per function.
*/
if (is_qla8032(ha) || is_qla8042(ha))
qsnt_state |= (1 << ha->func_num);
else
qsnt_state |= (2 << (ha->func_num * 4));
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, qsnt_state);
}
static int
qla4_82xx_start_firmware(struct scsi_qla_host *ha, uint32_t image_start)
{
uint16_t lnk;
/* scrub dma mask expansion register */
qla4_82xx_wr_32(ha, CRB_DMA_SHIFT, 0x55555555);
/* Overwrite stale initialization register values */
qla4_82xx_wr_32(ha, CRB_CMDPEG_STATE, 0);
qla4_82xx_wr_32(ha, CRB_RCVPEG_STATE, 0);
qla4_82xx_wr_32(ha, QLA82XX_PEG_HALT_STATUS1, 0);
qla4_82xx_wr_32(ha, QLA82XX_PEG_HALT_STATUS2, 0);
if (qla4_82xx_load_fw(ha, image_start) != QLA_SUCCESS) {
printk("%s: Error trying to start fw!\n", __func__);
return QLA_ERROR;
}
/* Handshake with the card before we register the devices. */
if (qla4_82xx_cmdpeg_ready(ha, 0) != QLA_SUCCESS) {
printk("%s: Error during card handshake!\n", __func__);
return QLA_ERROR;
}
/* Negotiated Link width */
pcie_capability_read_word(ha->pdev, PCI_EXP_LNKSTA, &lnk);
ha->link_width = (lnk >> 4) & 0x3f;
/* Synchronize with Receive peg */
return qla4_82xx_rcvpeg_ready(ha);
}
int qla4_82xx_try_start_fw(struct scsi_qla_host *ha)
{
int rval;
/*
* FW Load priority:
* 1) Operational firmware residing in flash.
* 2) Fail
*/
ql4_printk(KERN_INFO, ha,
"FW: Retrieving flash offsets from FLT/FDT ...\n");
rval = qla4_8xxx_get_flash_info(ha);
if (rval != QLA_SUCCESS)
return rval;
ql4_printk(KERN_INFO, ha,
"FW: Attempting to load firmware from flash...\n");
rval = qla4_82xx_start_firmware(ha, ha->hw.flt_region_fw);
if (rval != QLA_SUCCESS) {
ql4_printk(KERN_ERR, ha, "FW: Load firmware from flash"
" FAILED...\n");
return rval;
}
return rval;
}
void qla4_82xx_rom_lock_recovery(struct scsi_qla_host *ha)
{
if (qla4_82xx_rom_lock(ha)) {
/* Someone else is holding the lock. */
dev_info(&ha->pdev->dev, "Resetting rom_lock\n");
}
/*
* Either we got the lock, or someone
* else died while holding it.
* In either case, unlock.
*/
qla4_82xx_rom_unlock(ha);
}
static uint32_t ql4_84xx_poll_wait_for_ready(struct scsi_qla_host *ha,
uint32_t addr1, uint32_t mask)
{
unsigned long timeout;
uint32_t rval = QLA_SUCCESS;
uint32_t temp;
timeout = jiffies + msecs_to_jiffies(TIMEOUT_100_MS);
do {
ha->isp_ops->rd_reg_indirect(ha, addr1, &temp);
if ((temp & mask) != 0)
break;
if (time_after_eq(jiffies, timeout)) {
ql4_printk(KERN_INFO, ha, "Error in processing rdmdio entry\n");
return QLA_ERROR;
}
} while (1);
return rval;
}
static uint32_t ql4_84xx_ipmdio_rd_reg(struct scsi_qla_host *ha, uint32_t addr1,
uint32_t addr3, uint32_t mask, uint32_t addr,
uint32_t *data_ptr)
{
int rval = QLA_SUCCESS;
uint32_t temp;
uint32_t data;
rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask);
if (rval)
goto exit_ipmdio_rd_reg;
temp = (0x40000000 | addr);
ha->isp_ops->wr_reg_indirect(ha, addr1, temp);
rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask);
if (rval)
goto exit_ipmdio_rd_reg;
ha->isp_ops->rd_reg_indirect(ha, addr3, &data);
*data_ptr = data;
exit_ipmdio_rd_reg:
return rval;
}
static uint32_t ql4_84xx_poll_wait_ipmdio_bus_idle(struct scsi_qla_host *ha,
uint32_t addr1,
uint32_t addr2,
uint32_t addr3,
uint32_t mask)
{
unsigned long timeout;
uint32_t temp;
uint32_t rval = QLA_SUCCESS;
timeout = jiffies + msecs_to_jiffies(TIMEOUT_100_MS);
do {
ql4_84xx_ipmdio_rd_reg(ha, addr1, addr3, mask, addr2, &temp);
if ((temp & 0x1) != 1)
break;
if (time_after_eq(jiffies, timeout)) {
ql4_printk(KERN_INFO, ha, "Error in processing mdiobus idle\n");
return QLA_ERROR;
}
} while (1);
return rval;
}
static int ql4_84xx_ipmdio_wr_reg(struct scsi_qla_host *ha,
uint32_t addr1, uint32_t addr3,
uint32_t mask, uint32_t addr,
uint32_t value)
{
int rval = QLA_SUCCESS;
rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask);
if (rval)
goto exit_ipmdio_wr_reg;
ha->isp_ops->wr_reg_indirect(ha, addr3, value);
ha->isp_ops->wr_reg_indirect(ha, addr1, addr);
rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask);
if (rval)
goto exit_ipmdio_wr_reg;
exit_ipmdio_wr_reg:
return rval;
}
static void qla4_8xxx_minidump_process_rdcrb(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t r_addr, r_stride, loop_cnt, i, r_value;
struct qla8xxx_minidump_entry_crb *crb_hdr;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
crb_hdr = (struct qla8xxx_minidump_entry_crb *)entry_hdr;
r_addr = crb_hdr->addr;
r_stride = crb_hdr->crb_strd.addr_stride;
loop_cnt = crb_hdr->op_count;
for (i = 0; i < loop_cnt; i++) {
ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value);
*data_ptr++ = cpu_to_le32(r_addr);
*data_ptr++ = cpu_to_le32(r_value);
r_addr += r_stride;
}
*d_ptr = data_ptr;
}
static int qla4_83xx_check_dma_engine_state(struct scsi_qla_host *ha)
{
int rval = QLA_SUCCESS;
uint32_t dma_eng_num = 0, cmd_sts_and_cntrl = 0;
uint64_t dma_base_addr = 0;
struct qla4_8xxx_minidump_template_hdr *tmplt_hdr = NULL;
tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *)
ha->fw_dump_tmplt_hdr;
dma_eng_num =
tmplt_hdr->saved_state_array[QLA83XX_PEX_DMA_ENGINE_INDEX];
dma_base_addr = QLA83XX_PEX_DMA_BASE_ADDRESS +
(dma_eng_num * QLA83XX_PEX_DMA_NUM_OFFSET);
/* Read the pex-dma's command-status-and-control register. */
rval = ha->isp_ops->rd_reg_indirect(ha,
(dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL),
&cmd_sts_and_cntrl);
if (rval)
return QLA_ERROR;
/* Check if requested pex-dma engine is available. */
if (cmd_sts_and_cntrl & BIT_31)
return QLA_SUCCESS;
else
return QLA_ERROR;
}
static int qla4_83xx_start_pex_dma(struct scsi_qla_host *ha,
struct qla4_83xx_minidump_entry_rdmem_pex_dma *m_hdr)
{
int rval = QLA_SUCCESS, wait = 0;
uint32_t dma_eng_num = 0, cmd_sts_and_cntrl = 0;
uint64_t dma_base_addr = 0;
struct qla4_8xxx_minidump_template_hdr *tmplt_hdr = NULL;
tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *)
ha->fw_dump_tmplt_hdr;
dma_eng_num =
tmplt_hdr->saved_state_array[QLA83XX_PEX_DMA_ENGINE_INDEX];
dma_base_addr = QLA83XX_PEX_DMA_BASE_ADDRESS +
(dma_eng_num * QLA83XX_PEX_DMA_NUM_OFFSET);
rval = ha->isp_ops->wr_reg_indirect(ha,
dma_base_addr + QLA83XX_PEX_DMA_CMD_ADDR_LOW,
m_hdr->desc_card_addr);
if (rval)
goto error_exit;
rval = ha->isp_ops->wr_reg_indirect(ha,
dma_base_addr + QLA83XX_PEX_DMA_CMD_ADDR_HIGH, 0);
if (rval)
goto error_exit;
rval = ha->isp_ops->wr_reg_indirect(ha,
dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL,
m_hdr->start_dma_cmd);
if (rval)
goto error_exit;
/* Wait for dma operation to complete. */
for (wait = 0; wait < QLA83XX_PEX_DMA_MAX_WAIT; wait++) {
rval = ha->isp_ops->rd_reg_indirect(ha,
(dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL),
&cmd_sts_and_cntrl);
if (rval)
goto error_exit;
if ((cmd_sts_and_cntrl & BIT_1) == 0)
break;
else
udelay(10);
}
/* Wait a max of 100 ms, otherwise fallback to rdmem entry read */
if (wait >= QLA83XX_PEX_DMA_MAX_WAIT) {
rval = QLA_ERROR;
goto error_exit;
}
error_exit:
return rval;
}
static int qla4_8xxx_minidump_pex_dma_read(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
int rval = QLA_SUCCESS;
struct qla4_83xx_minidump_entry_rdmem_pex_dma *m_hdr = NULL;
uint32_t size, read_size;
uint8_t *data_ptr = (uint8_t *)*d_ptr;
void *rdmem_buffer = NULL;
dma_addr_t rdmem_dma;
struct qla4_83xx_pex_dma_descriptor dma_desc;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
rval = qla4_83xx_check_dma_engine_state(ha);
if (rval != QLA_SUCCESS) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: DMA engine not available. Fallback to rdmem-read.\n",
__func__));
return QLA_ERROR;
}
m_hdr = (struct qla4_83xx_minidump_entry_rdmem_pex_dma *)entry_hdr;
rdmem_buffer = dma_alloc_coherent(&ha->pdev->dev,
QLA83XX_PEX_DMA_READ_SIZE,
&rdmem_dma, GFP_KERNEL);
if (!rdmem_buffer) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Unable to allocate rdmem dma buffer\n",
__func__));
return QLA_ERROR;
}
/* Prepare pex-dma descriptor to be written to MS memory. */
/* dma-desc-cmd layout:
* 0-3: dma-desc-cmd 0-3
* 4-7: pcid function number
* 8-15: dma-desc-cmd 8-15
*/
dma_desc.cmd.dma_desc_cmd = (m_hdr->dma_desc_cmd & 0xff0f);
dma_desc.cmd.dma_desc_cmd |= ((PCI_FUNC(ha->pdev->devfn) & 0xf) << 0x4);
dma_desc.dma_bus_addr = rdmem_dma;
size = 0;
read_size = 0;
/*
* Perform rdmem operation using pex-dma.
* Prepare dma in chunks of QLA83XX_PEX_DMA_READ_SIZE.
*/
while (read_size < m_hdr->read_data_size) {
if (m_hdr->read_data_size - read_size >=
QLA83XX_PEX_DMA_READ_SIZE)
size = QLA83XX_PEX_DMA_READ_SIZE;
else {
size = (m_hdr->read_data_size - read_size);
if (rdmem_buffer)
dma_free_coherent(&ha->pdev->dev,
QLA83XX_PEX_DMA_READ_SIZE,
rdmem_buffer, rdmem_dma);
rdmem_buffer = dma_alloc_coherent(&ha->pdev->dev, size,
&rdmem_dma,
GFP_KERNEL);
if (!rdmem_buffer) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Unable to allocate rdmem dma buffer\n",
__func__));
return QLA_ERROR;
}
dma_desc.dma_bus_addr = rdmem_dma;
}
dma_desc.src_addr = m_hdr->read_addr + read_size;
dma_desc.cmd.read_data_size = size;
/* Prepare: Write pex-dma descriptor to MS memory. */
rval = qla4_8xxx_ms_mem_write_128b(ha,
(uint64_t)m_hdr->desc_card_addr,
(uint32_t *)&dma_desc,
(sizeof(struct qla4_83xx_pex_dma_descriptor)/16));
if (rval != QLA_SUCCESS) {
ql4_printk(KERN_INFO, ha,
"%s: Error writing rdmem-dma-init to MS !!!\n",
__func__);
goto error_exit;
}
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: Dma-desc: Instruct for rdmem dma (size 0x%x).\n",
__func__, size));
/* Execute: Start pex-dma operation. */
rval = qla4_83xx_start_pex_dma(ha, m_hdr);
if (rval != QLA_SUCCESS) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"scsi(%ld): start-pex-dma failed rval=0x%x\n",
ha->host_no, rval));
goto error_exit;
}
memcpy(data_ptr, rdmem_buffer, size);
data_ptr += size;
read_size += size;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s\n", __func__));
*d_ptr = (uint32_t *)data_ptr;
error_exit:
if (rdmem_buffer)
dma_free_coherent(&ha->pdev->dev, size, rdmem_buffer,
rdmem_dma);
return rval;
}
static int qla4_8xxx_minidump_process_l2tag(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t addr, r_addr, c_addr, t_r_addr;
uint32_t i, k, loop_count, t_value, r_cnt, r_value;
unsigned long p_wait, w_time, p_mask;
uint32_t c_value_w, c_value_r;
struct qla8xxx_minidump_entry_cache *cache_hdr;
int rval = QLA_ERROR;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
cache_hdr = (struct qla8xxx_minidump_entry_cache *)entry_hdr;
loop_count = cache_hdr->op_count;
r_addr = cache_hdr->read_addr;
c_addr = cache_hdr->control_addr;
c_value_w = cache_hdr->cache_ctrl.write_value;
t_r_addr = cache_hdr->tag_reg_addr;
t_value = cache_hdr->addr_ctrl.init_tag_value;
r_cnt = cache_hdr->read_ctrl.read_addr_cnt;
p_wait = cache_hdr->cache_ctrl.poll_wait;
p_mask = cache_hdr->cache_ctrl.poll_mask;
for (i = 0; i < loop_count; i++) {
ha->isp_ops->wr_reg_indirect(ha, t_r_addr, t_value);
if (c_value_w)
ha->isp_ops->wr_reg_indirect(ha, c_addr, c_value_w);
if (p_mask) {
w_time = jiffies + p_wait;
do {
ha->isp_ops->rd_reg_indirect(ha, c_addr,
&c_value_r);
if ((c_value_r & p_mask) == 0) {
break;
} else if (time_after_eq(jiffies, w_time)) {
/* capturing dump failed */
return rval;
}
} while (1);
}
addr = r_addr;
for (k = 0; k < r_cnt; k++) {
ha->isp_ops->rd_reg_indirect(ha, addr, &r_value);
*data_ptr++ = cpu_to_le32(r_value);
addr += cache_hdr->read_ctrl.read_addr_stride;
}
t_value += cache_hdr->addr_ctrl.tag_value_stride;
}
*d_ptr = data_ptr;
return QLA_SUCCESS;
}
static int qla4_8xxx_minidump_process_control(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr)
{
struct qla8xxx_minidump_entry_crb *crb_entry;
uint32_t read_value, opcode, poll_time, addr, index, rval = QLA_SUCCESS;
uint32_t crb_addr;
unsigned long wtime;
struct qla4_8xxx_minidump_template_hdr *tmplt_hdr;
int i;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *)
ha->fw_dump_tmplt_hdr;
crb_entry = (struct qla8xxx_minidump_entry_crb *)entry_hdr;
crb_addr = crb_entry->addr;
for (i = 0; i < crb_entry->op_count; i++) {
opcode = crb_entry->crb_ctrl.opcode;
if (opcode & QLA8XXX_DBG_OPCODE_WR) {
ha->isp_ops->wr_reg_indirect(ha, crb_addr,
crb_entry->value_1);
opcode &= ~QLA8XXX_DBG_OPCODE_WR;
}
if (opcode & QLA8XXX_DBG_OPCODE_RW) {
ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value);
ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value);
opcode &= ~QLA8XXX_DBG_OPCODE_RW;
}
if (opcode & QLA8XXX_DBG_OPCODE_AND) {
ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value);
read_value &= crb_entry->value_2;
opcode &= ~QLA8XXX_DBG_OPCODE_AND;
if (opcode & QLA8XXX_DBG_OPCODE_OR) {
read_value |= crb_entry->value_3;
opcode &= ~QLA8XXX_DBG_OPCODE_OR;
}
ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value);
}
if (opcode & QLA8XXX_DBG_OPCODE_OR) {
ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value);
read_value |= crb_entry->value_3;
ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value);
opcode &= ~QLA8XXX_DBG_OPCODE_OR;
}
if (opcode & QLA8XXX_DBG_OPCODE_POLL) {
poll_time = crb_entry->crb_strd.poll_timeout;
wtime = jiffies + poll_time;
ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value);
do {
if ((read_value & crb_entry->value_2) ==
crb_entry->value_1) {
break;
} else if (time_after_eq(jiffies, wtime)) {
/* capturing dump failed */
rval = QLA_ERROR;
break;
} else {
ha->isp_ops->rd_reg_indirect(ha,
crb_addr, &read_value);
}
} while (1);
opcode &= ~QLA8XXX_DBG_OPCODE_POLL;
}
if (opcode & QLA8XXX_DBG_OPCODE_RDSTATE) {
if (crb_entry->crb_strd.state_index_a) {
index = crb_entry->crb_strd.state_index_a;
addr = tmplt_hdr->saved_state_array[index];
} else {
addr = crb_addr;
}
ha->isp_ops->rd_reg_indirect(ha, addr, &read_value);
index = crb_entry->crb_ctrl.state_index_v;
tmplt_hdr->saved_state_array[index] = read_value;
opcode &= ~QLA8XXX_DBG_OPCODE_RDSTATE;
}
if (opcode & QLA8XXX_DBG_OPCODE_WRSTATE) {
if (crb_entry->crb_strd.state_index_a) {
index = crb_entry->crb_strd.state_index_a;
addr = tmplt_hdr->saved_state_array[index];
} else {
addr = crb_addr;
}
if (crb_entry->crb_ctrl.state_index_v) {
index = crb_entry->crb_ctrl.state_index_v;
read_value =
tmplt_hdr->saved_state_array[index];
} else {
read_value = crb_entry->value_1;
}
ha->isp_ops->wr_reg_indirect(ha, addr, read_value);
opcode &= ~QLA8XXX_DBG_OPCODE_WRSTATE;
}
if (opcode & QLA8XXX_DBG_OPCODE_MDSTATE) {
index = crb_entry->crb_ctrl.state_index_v;
read_value = tmplt_hdr->saved_state_array[index];
read_value <<= crb_entry->crb_ctrl.shl;
read_value >>= crb_entry->crb_ctrl.shr;
if (crb_entry->value_2)
read_value &= crb_entry->value_2;
read_value |= crb_entry->value_3;
read_value += crb_entry->value_1;
tmplt_hdr->saved_state_array[index] = read_value;
opcode &= ~QLA8XXX_DBG_OPCODE_MDSTATE;
}
crb_addr += crb_entry->crb_strd.addr_stride;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s\n", __func__));
return rval;
}
static void qla4_8xxx_minidump_process_rdocm(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t r_addr, r_stride, loop_cnt, i, r_value;
struct qla8xxx_minidump_entry_rdocm *ocm_hdr;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
ocm_hdr = (struct qla8xxx_minidump_entry_rdocm *)entry_hdr;
r_addr = ocm_hdr->read_addr;
r_stride = ocm_hdr->read_addr_stride;
loop_cnt = ocm_hdr->op_count;
DEBUG2(ql4_printk(KERN_INFO, ha,
"[%s]: r_addr: 0x%x, r_stride: 0x%x, loop_cnt: 0x%x\n",
__func__, r_addr, r_stride, loop_cnt));
for (i = 0; i < loop_cnt; i++) {
r_value = readl((void __iomem *)(r_addr + ha->nx_pcibase));
*data_ptr++ = cpu_to_le32(r_value);
r_addr += r_stride;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s datacount: 0x%lx\n",
__func__, (long unsigned int) (loop_cnt * sizeof(uint32_t))));
*d_ptr = data_ptr;
}
static void qla4_8xxx_minidump_process_rdmux(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t r_addr, s_stride, s_addr, s_value, loop_cnt, i, r_value;
struct qla8xxx_minidump_entry_mux *mux_hdr;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
mux_hdr = (struct qla8xxx_minidump_entry_mux *)entry_hdr;
r_addr = mux_hdr->read_addr;
s_addr = mux_hdr->select_addr;
s_stride = mux_hdr->select_value_stride;
s_value = mux_hdr->select_value;
loop_cnt = mux_hdr->op_count;
for (i = 0; i < loop_cnt; i++) {
ha->isp_ops->wr_reg_indirect(ha, s_addr, s_value);
ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value);
*data_ptr++ = cpu_to_le32(s_value);
*data_ptr++ = cpu_to_le32(r_value);
s_value += s_stride;
}
*d_ptr = data_ptr;
}
static void qla4_8xxx_minidump_process_l1cache(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t addr, r_addr, c_addr, t_r_addr;
uint32_t i, k, loop_count, t_value, r_cnt, r_value;
uint32_t c_value_w;
struct qla8xxx_minidump_entry_cache *cache_hdr;
uint32_t *data_ptr = *d_ptr;
cache_hdr = (struct qla8xxx_minidump_entry_cache *)entry_hdr;
loop_count = cache_hdr->op_count;
r_addr = cache_hdr->read_addr;
c_addr = cache_hdr->control_addr;
c_value_w = cache_hdr->cache_ctrl.write_value;
t_r_addr = cache_hdr->tag_reg_addr;
t_value = cache_hdr->addr_ctrl.init_tag_value;
r_cnt = cache_hdr->read_ctrl.read_addr_cnt;
for (i = 0; i < loop_count; i++) {
ha->isp_ops->wr_reg_indirect(ha, t_r_addr, t_value);
ha->isp_ops->wr_reg_indirect(ha, c_addr, c_value_w);
addr = r_addr;
for (k = 0; k < r_cnt; k++) {
ha->isp_ops->rd_reg_indirect(ha, addr, &r_value);
*data_ptr++ = cpu_to_le32(r_value);
addr += cache_hdr->read_ctrl.read_addr_stride;
}
t_value += cache_hdr->addr_ctrl.tag_value_stride;
}
*d_ptr = data_ptr;
}
static void qla4_8xxx_minidump_process_queue(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t s_addr, r_addr;
uint32_t r_stride, r_value, r_cnt, qid = 0;
uint32_t i, k, loop_cnt;
struct qla8xxx_minidump_entry_queue *q_hdr;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
q_hdr = (struct qla8xxx_minidump_entry_queue *)entry_hdr;
s_addr = q_hdr->select_addr;
r_cnt = q_hdr->rd_strd.read_addr_cnt;
r_stride = q_hdr->rd_strd.read_addr_stride;
loop_cnt = q_hdr->op_count;
for (i = 0; i < loop_cnt; i++) {
ha->isp_ops->wr_reg_indirect(ha, s_addr, qid);
r_addr = q_hdr->read_addr;
for (k = 0; k < r_cnt; k++) {
ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value);
*data_ptr++ = cpu_to_le32(r_value);
r_addr += r_stride;
}
qid += q_hdr->q_strd.queue_id_stride;
}
*d_ptr = data_ptr;
}
#define MD_DIRECT_ROM_WINDOW 0x42110030
#define MD_DIRECT_ROM_READ_BASE 0x42150000
static void qla4_82xx_minidump_process_rdrom(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t r_addr, r_value;
uint32_t i, loop_cnt;
struct qla8xxx_minidump_entry_rdrom *rom_hdr;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
rom_hdr = (struct qla8xxx_minidump_entry_rdrom *)entry_hdr;
r_addr = rom_hdr->read_addr;
loop_cnt = rom_hdr->read_data_size/sizeof(uint32_t);
DEBUG2(ql4_printk(KERN_INFO, ha,
"[%s]: flash_addr: 0x%x, read_data_size: 0x%x\n",
__func__, r_addr, loop_cnt));
for (i = 0; i < loop_cnt; i++) {
ha->isp_ops->wr_reg_indirect(ha, MD_DIRECT_ROM_WINDOW,
(r_addr & 0xFFFF0000));
ha->isp_ops->rd_reg_indirect(ha,
MD_DIRECT_ROM_READ_BASE + (r_addr & 0x0000FFFF),
&r_value);
*data_ptr++ = cpu_to_le32(r_value);
r_addr += sizeof(uint32_t);
}
*d_ptr = data_ptr;
}
#define MD_MIU_TEST_AGT_CTRL 0x41000090
#define MD_MIU_TEST_AGT_ADDR_LO 0x41000094
#define MD_MIU_TEST_AGT_ADDR_HI 0x41000098
static int __qla4_8xxx_minidump_process_rdmem(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t r_addr, r_value, r_data;
uint32_t i, j, loop_cnt;
struct qla8xxx_minidump_entry_rdmem *m_hdr;
unsigned long flags;
uint32_t *data_ptr = *d_ptr;
DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__));
m_hdr = (struct qla8xxx_minidump_entry_rdmem *)entry_hdr;
r_addr = m_hdr->read_addr;
loop_cnt = m_hdr->read_data_size/16;
DEBUG2(ql4_printk(KERN_INFO, ha,
"[%s]: Read addr: 0x%x, read_data_size: 0x%x\n",
__func__, r_addr, m_hdr->read_data_size));
if (r_addr & 0xf) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"[%s]: Read addr 0x%x not 16 bytes aligned\n",
__func__, r_addr));
return QLA_ERROR;
}
if (m_hdr->read_data_size % 16) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"[%s]: Read data[0x%x] not multiple of 16 bytes\n",
__func__, m_hdr->read_data_size));
return QLA_ERROR;
}
DEBUG2(ql4_printk(KERN_INFO, ha,
"[%s]: rdmem_addr: 0x%x, read_data_size: 0x%x, loop_cnt: 0x%x\n",
__func__, r_addr, m_hdr->read_data_size, loop_cnt));
write_lock_irqsave(&ha->hw_lock, flags);
for (i = 0; i < loop_cnt; i++) {
ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_LO,
r_addr);
r_value = 0;
ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_HI,
r_value);
r_value = MIU_TA_CTL_ENABLE;
ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, r_value);
r_value = MIU_TA_CTL_START_ENABLE;
ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, r_value);
for (j = 0; j < MAX_CTL_CHECK; j++) {
ha->isp_ops->rd_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL,
&r_value);
if ((r_value & MIU_TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
printk_ratelimited(KERN_ERR
"%s: failed to read through agent\n",
__func__);
write_unlock_irqrestore(&ha->hw_lock, flags);
return QLA_SUCCESS;
}
for (j = 0; j < 4; j++) {
ha->isp_ops->rd_reg_indirect(ha,
MD_MIU_TEST_AGT_RDDATA[j],
&r_data);
*data_ptr++ = cpu_to_le32(r_data);
}
r_addr += 16;
}
write_unlock_irqrestore(&ha->hw_lock, flags);
DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s datacount: 0x%x\n",
__func__, (loop_cnt * 16)));
*d_ptr = data_ptr;
return QLA_SUCCESS;
}
static int qla4_8xxx_minidump_process_rdmem(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t *data_ptr = *d_ptr;
int rval = QLA_SUCCESS;
rval = qla4_8xxx_minidump_pex_dma_read(ha, entry_hdr, &data_ptr);
if (rval != QLA_SUCCESS)
rval = __qla4_8xxx_minidump_process_rdmem(ha, entry_hdr,
&data_ptr);
*d_ptr = data_ptr;
return rval;
}
static void qla4_8xxx_mark_entry_skipped(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
int index)
{
entry_hdr->d_ctrl.driver_flags |= QLA8XXX_DBG_SKIPPED_FLAG;
DEBUG2(ql4_printk(KERN_INFO, ha,
"scsi(%ld): Skipping entry[%d]: ETYPE[0x%x]-ELEVEL[0x%x]\n",
ha->host_no, index, entry_hdr->entry_type,
entry_hdr->d_ctrl.entry_capture_mask));
/* If driver encounters a new entry type that it cannot process,
* it should just skip the entry and adjust the total buffer size by
* from subtracting the skipped bytes from it
*/
ha->fw_dump_skip_size += entry_hdr->entry_capture_size;
}
/* ISP83xx functions to process new minidump entries... */
static uint32_t qla83xx_minidump_process_pollrd(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t r_addr, s_addr, s_value, r_value, poll_wait, poll_mask;
uint16_t s_stride, i;
uint32_t *data_ptr = *d_ptr;
uint32_t rval = QLA_SUCCESS;
struct qla83xx_minidump_entry_pollrd *pollrd_hdr;
pollrd_hdr = (struct qla83xx_minidump_entry_pollrd *)entry_hdr;
s_addr = le32_to_cpu(pollrd_hdr->select_addr);
r_addr = le32_to_cpu(pollrd_hdr->read_addr);
s_value = le32_to_cpu(pollrd_hdr->select_value);
s_stride = le32_to_cpu(pollrd_hdr->select_value_stride);
poll_wait = le32_to_cpu(pollrd_hdr->poll_wait);
poll_mask = le32_to_cpu(pollrd_hdr->poll_mask);
for (i = 0; i < le32_to_cpu(pollrd_hdr->op_count); i++) {
ha->isp_ops->wr_reg_indirect(ha, s_addr, s_value);
poll_wait = le32_to_cpu(pollrd_hdr->poll_wait);
while (1) {
ha->isp_ops->rd_reg_indirect(ha, s_addr, &r_value);
if ((r_value & poll_mask) != 0) {
break;
} else {
msleep(1);
if (--poll_wait == 0) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n",
__func__);
rval = QLA_ERROR;
goto exit_process_pollrd;
}
}
}
ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value);
*data_ptr++ = cpu_to_le32(s_value);
*data_ptr++ = cpu_to_le32(r_value);
s_value += s_stride;
}
*d_ptr = data_ptr;
exit_process_pollrd:
return rval;
}
static uint32_t qla4_84xx_minidump_process_rddfe(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
int loop_cnt;
uint32_t addr1, addr2, value, data, temp, wrval;
uint8_t stride, stride2;
uint16_t count;
uint32_t poll, mask, modify_mask;
uint32_t wait_count = 0;
uint32_t *data_ptr = *d_ptr;
struct qla8044_minidump_entry_rddfe *rddfe;
uint32_t rval = QLA_SUCCESS;
rddfe = (struct qla8044_minidump_entry_rddfe *)entry_hdr;
addr1 = le32_to_cpu(rddfe->addr_1);
value = le32_to_cpu(rddfe->value);
stride = le32_to_cpu(rddfe->stride);
stride2 = le32_to_cpu(rddfe->stride2);
count = le32_to_cpu(rddfe->count);
poll = le32_to_cpu(rddfe->poll);
mask = le32_to_cpu(rddfe->mask);
modify_mask = le32_to_cpu(rddfe->modify_mask);
addr2 = addr1 + stride;
for (loop_cnt = 0x0; loop_cnt < count; loop_cnt++) {
ha->isp_ops->wr_reg_indirect(ha, addr1, (0x40000000 | value));
wait_count = 0;
while (wait_count < poll) {
ha->isp_ops->rd_reg_indirect(ha, addr1, &temp);
if ((temp & mask) != 0)
break;
wait_count++;
}
if (wait_count == poll) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__);
rval = QLA_ERROR;
goto exit_process_rddfe;
} else {
ha->isp_ops->rd_reg_indirect(ha, addr2, &temp);
temp = temp & modify_mask;
temp = (temp | ((loop_cnt << 16) | loop_cnt));
wrval = ((temp << 16) | temp);
ha->isp_ops->wr_reg_indirect(ha, addr2, wrval);
ha->isp_ops->wr_reg_indirect(ha, addr1, value);
wait_count = 0;
while (wait_count < poll) {
ha->isp_ops->rd_reg_indirect(ha, addr1, &temp);
if ((temp & mask) != 0)
break;
wait_count++;
}
if (wait_count == poll) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n",
__func__);
rval = QLA_ERROR;
goto exit_process_rddfe;
}
ha->isp_ops->wr_reg_indirect(ha, addr1,
((0x40000000 | value) +
stride2));
wait_count = 0;
while (wait_count < poll) {
ha->isp_ops->rd_reg_indirect(ha, addr1, &temp);
if ((temp & mask) != 0)
break;
wait_count++;
}
if (wait_count == poll) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n",
__func__);
rval = QLA_ERROR;
goto exit_process_rddfe;
}
ha->isp_ops->rd_reg_indirect(ha, addr2, &data);
*data_ptr++ = cpu_to_le32(wrval);
*data_ptr++ = cpu_to_le32(data);
}
}
*d_ptr = data_ptr;
exit_process_rddfe:
return rval;
}
static uint32_t qla4_84xx_minidump_process_rdmdio(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
int rval = QLA_SUCCESS;
uint32_t addr1, addr2, value1, value2, data, selval;
uint8_t stride1, stride2;
uint32_t addr3, addr4, addr5, addr6, addr7;
uint16_t count, loop_cnt;
uint32_t mask;
uint32_t *data_ptr = *d_ptr;
struct qla8044_minidump_entry_rdmdio *rdmdio;
rdmdio = (struct qla8044_minidump_entry_rdmdio *)entry_hdr;
addr1 = le32_to_cpu(rdmdio->addr_1);
addr2 = le32_to_cpu(rdmdio->addr_2);
value1 = le32_to_cpu(rdmdio->value_1);
stride1 = le32_to_cpu(rdmdio->stride_1);
stride2 = le32_to_cpu(rdmdio->stride_2);
count = le32_to_cpu(rdmdio->count);
mask = le32_to_cpu(rdmdio->mask);
value2 = le32_to_cpu(rdmdio->value_2);
addr3 = addr1 + stride1;
for (loop_cnt = 0; loop_cnt < count; loop_cnt++) {
rval = ql4_84xx_poll_wait_ipmdio_bus_idle(ha, addr1, addr2,
addr3, mask);
if (rval)
goto exit_process_rdmdio;
addr4 = addr2 - stride1;
rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr4,
value2);
if (rval)
goto exit_process_rdmdio;
addr5 = addr2 - (2 * stride1);
rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr5,
value1);
if (rval)
goto exit_process_rdmdio;
addr6 = addr2 - (3 * stride1);
rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask,
addr6, 0x2);
if (rval)
goto exit_process_rdmdio;
rval = ql4_84xx_poll_wait_ipmdio_bus_idle(ha, addr1, addr2,
addr3, mask);
if (rval)
goto exit_process_rdmdio;
addr7 = addr2 - (4 * stride1);
rval = ql4_84xx_ipmdio_rd_reg(ha, addr1, addr3,
mask, addr7, &data);
if (rval)
goto exit_process_rdmdio;
selval = (value2 << 18) | (value1 << 2) | 2;
stride2 = le32_to_cpu(rdmdio->stride_2);
*data_ptr++ = cpu_to_le32(selval);
*data_ptr++ = cpu_to_le32(data);
value1 = value1 + stride2;
*d_ptr = data_ptr;
}
exit_process_rdmdio:
return rval;
}
static uint32_t qla4_84xx_minidump_process_pollwr(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t addr1, addr2, value1, value2, poll, r_value;
struct qla8044_minidump_entry_pollwr *pollwr_hdr;
uint32_t wait_count = 0;
uint32_t rval = QLA_SUCCESS;
pollwr_hdr = (struct qla8044_minidump_entry_pollwr *)entry_hdr;
addr1 = le32_to_cpu(pollwr_hdr->addr_1);
addr2 = le32_to_cpu(pollwr_hdr->addr_2);
value1 = le32_to_cpu(pollwr_hdr->value_1);
value2 = le32_to_cpu(pollwr_hdr->value_2);
poll = le32_to_cpu(pollwr_hdr->poll);
while (wait_count < poll) {
ha->isp_ops->rd_reg_indirect(ha, addr1, &r_value);
if ((r_value & poll) != 0)
break;
wait_count++;
}
if (wait_count == poll) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__);
rval = QLA_ERROR;
goto exit_process_pollwr;
}
ha->isp_ops->wr_reg_indirect(ha, addr2, value2);
ha->isp_ops->wr_reg_indirect(ha, addr1, value1);
wait_count = 0;
while (wait_count < poll) {
ha->isp_ops->rd_reg_indirect(ha, addr1, &r_value);
if ((r_value & poll) != 0)
break;
wait_count++;
}
exit_process_pollwr:
return rval;
}
static void qla83xx_minidump_process_rdmux2(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t sel_val1, sel_val2, t_sel_val, data, i;
uint32_t sel_addr1, sel_addr2, sel_val_mask, read_addr;
struct qla83xx_minidump_entry_rdmux2 *rdmux2_hdr;
uint32_t *data_ptr = *d_ptr;
rdmux2_hdr = (struct qla83xx_minidump_entry_rdmux2 *)entry_hdr;
sel_val1 = le32_to_cpu(rdmux2_hdr->select_value_1);
sel_val2 = le32_to_cpu(rdmux2_hdr->select_value_2);
sel_addr1 = le32_to_cpu(rdmux2_hdr->select_addr_1);
sel_addr2 = le32_to_cpu(rdmux2_hdr->select_addr_2);
sel_val_mask = le32_to_cpu(rdmux2_hdr->select_value_mask);
read_addr = le32_to_cpu(rdmux2_hdr->read_addr);
for (i = 0; i < rdmux2_hdr->op_count; i++) {
ha->isp_ops->wr_reg_indirect(ha, sel_addr1, sel_val1);
t_sel_val = sel_val1 & sel_val_mask;
*data_ptr++ = cpu_to_le32(t_sel_val);
ha->isp_ops->wr_reg_indirect(ha, sel_addr2, t_sel_val);
ha->isp_ops->rd_reg_indirect(ha, read_addr, &data);
*data_ptr++ = cpu_to_le32(data);
ha->isp_ops->wr_reg_indirect(ha, sel_addr1, sel_val2);
t_sel_val = sel_val2 & sel_val_mask;
*data_ptr++ = cpu_to_le32(t_sel_val);
ha->isp_ops->wr_reg_indirect(ha, sel_addr2, t_sel_val);
ha->isp_ops->rd_reg_indirect(ha, read_addr, &data);
*data_ptr++ = cpu_to_le32(data);
sel_val1 += rdmux2_hdr->select_value_stride;
sel_val2 += rdmux2_hdr->select_value_stride;
}
*d_ptr = data_ptr;
}
static uint32_t qla83xx_minidump_process_pollrdmwr(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t poll_wait, poll_mask, r_value, data;
uint32_t addr_1, addr_2, value_1, value_2;
uint32_t *data_ptr = *d_ptr;
uint32_t rval = QLA_SUCCESS;
struct qla83xx_minidump_entry_pollrdmwr *poll_hdr;
poll_hdr = (struct qla83xx_minidump_entry_pollrdmwr *)entry_hdr;
addr_1 = le32_to_cpu(poll_hdr->addr_1);
addr_2 = le32_to_cpu(poll_hdr->addr_2);
value_1 = le32_to_cpu(poll_hdr->value_1);
value_2 = le32_to_cpu(poll_hdr->value_2);
poll_mask = le32_to_cpu(poll_hdr->poll_mask);
ha->isp_ops->wr_reg_indirect(ha, addr_1, value_1);
poll_wait = le32_to_cpu(poll_hdr->poll_wait);
while (1) {
ha->isp_ops->rd_reg_indirect(ha, addr_1, &r_value);
if ((r_value & poll_mask) != 0) {
break;
} else {
msleep(1);
if (--poll_wait == 0) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT_1\n",
__func__);
rval = QLA_ERROR;
goto exit_process_pollrdmwr;
}
}
}
ha->isp_ops->rd_reg_indirect(ha, addr_2, &data);
data &= le32_to_cpu(poll_hdr->modify_mask);
ha->isp_ops->wr_reg_indirect(ha, addr_2, data);
ha->isp_ops->wr_reg_indirect(ha, addr_1, value_2);
poll_wait = le32_to_cpu(poll_hdr->poll_wait);
while (1) {
ha->isp_ops->rd_reg_indirect(ha, addr_1, &r_value);
if ((r_value & poll_mask) != 0) {
break;
} else {
msleep(1);
if (--poll_wait == 0) {
ql4_printk(KERN_ERR, ha, "%s: TIMEOUT_2\n",
__func__);
rval = QLA_ERROR;
goto exit_process_pollrdmwr;
}
}
}
*data_ptr++ = cpu_to_le32(addr_2);
*data_ptr++ = cpu_to_le32(data);
*d_ptr = data_ptr;
exit_process_pollrdmwr:
return rval;
}
static uint32_t qla4_83xx_minidump_process_rdrom(struct scsi_qla_host *ha,
struct qla8xxx_minidump_entry_hdr *entry_hdr,
uint32_t **d_ptr)
{
uint32_t fl_addr, u32_count, rval;
struct qla8xxx_minidump_entry_rdrom *rom_hdr;
uint32_t *data_ptr = *d_ptr;
rom_hdr = (struct qla8xxx_minidump_entry_rdrom *)entry_hdr;
fl_addr = le32_to_cpu(rom_hdr->read_addr);
u32_count = le32_to_cpu(rom_hdr->read_data_size)/sizeof(uint32_t);
DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: fl_addr: 0x%x, count: 0x%x\n",
__func__, fl_addr, u32_count));
rval = qla4_83xx_lockless_flash_read_u32(ha, fl_addr,
(u8 *)(data_ptr), u32_count);
if (rval == QLA_ERROR) {
ql4_printk(KERN_ERR, ha, "%s: Flash Read Error,Count=%d\n",
__func__, u32_count);
goto exit_process_rdrom;
}
data_ptr += u32_count;
*d_ptr = data_ptr;
exit_process_rdrom:
return rval;
}
/**
* qla4_8xxx_collect_md_data - Retrieve firmware minidump data.
* @ha: pointer to adapter structure
**/
static int qla4_8xxx_collect_md_data(struct scsi_qla_host *ha)
{
int num_entry_hdr = 0;
struct qla8xxx_minidump_entry_hdr *entry_hdr;
struct qla4_8xxx_minidump_template_hdr *tmplt_hdr;
uint32_t *data_ptr;
uint32_t data_collected = 0;
int i, rval = QLA_ERROR;
uint64_t now;
uint32_t timestamp;
ha->fw_dump_skip_size = 0;
if (!ha->fw_dump) {
ql4_printk(KERN_INFO, ha, "%s(%ld) No buffer to dump\n",
__func__, ha->host_no);
return rval;
}
tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *)
ha->fw_dump_tmplt_hdr;
data_ptr = (uint32_t *)((uint8_t *)ha->fw_dump +
ha->fw_dump_tmplt_size);
data_collected += ha->fw_dump_tmplt_size;
num_entry_hdr = tmplt_hdr->num_of_entries;
ql4_printk(KERN_INFO, ha, "[%s]: starting data ptr: %p\n",
__func__, data_ptr);
ql4_printk(KERN_INFO, ha,
"[%s]: no of entry headers in Template: 0x%x\n",
__func__, num_entry_hdr);
ql4_printk(KERN_INFO, ha, "[%s]: Capture Mask obtained: 0x%x\n",
__func__, ha->fw_dump_capture_mask);
ql4_printk(KERN_INFO, ha, "[%s]: Total_data_size 0x%x, %d obtained\n",
__func__, ha->fw_dump_size, ha->fw_dump_size);
/* Update current timestamp before taking dump */
now = get_jiffies_64();
timestamp = (u32)(jiffies_to_msecs(now) / 1000);
tmplt_hdr->driver_timestamp = timestamp;
entry_hdr = (struct qla8xxx_minidump_entry_hdr *)
(((uint8_t *)ha->fw_dump_tmplt_hdr) +
tmplt_hdr->first_entry_offset);
if (is_qla8032(ha) || is_qla8042(ha))
tmplt_hdr->saved_state_array[QLA83XX_SS_OCM_WNDREG_INDEX] =
tmplt_hdr->ocm_window_reg[ha->func_num];
/* Walk through the entry headers - validate/perform required action */
for (i = 0; i < num_entry_hdr; i++) {
if (data_collected > ha->fw_dump_size) {
ql4_printk(KERN_INFO, ha,
"Data collected: [0x%x], Total Dump size: [0x%x]\n",
data_collected, ha->fw_dump_size);
return rval;
}
if (!(entry_hdr->d_ctrl.entry_capture_mask &
ha->fw_dump_capture_mask)) {
entry_hdr->d_ctrl.driver_flags |=
QLA8XXX_DBG_SKIPPED_FLAG;
goto skip_nxt_entry;
}
DEBUG2(ql4_printk(KERN_INFO, ha,
"Data collected: [0x%x], Dump size left:[0x%x]\n",
data_collected,
(ha->fw_dump_size - data_collected)));
/* Decode the entry type and take required action to capture
* debug data
*/
switch (entry_hdr->entry_type) {
case QLA8XXX_RDEND:
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
case QLA8XXX_CNTRL:
rval = qla4_8xxx_minidump_process_control(ha,
entry_hdr);
if (rval != QLA_SUCCESS) {
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
goto md_failed;
}
break;
case QLA8XXX_RDCRB:
qla4_8xxx_minidump_process_rdcrb(ha, entry_hdr,
&data_ptr);
break;
case QLA8XXX_RDMEM:
rval = qla4_8xxx_minidump_process_rdmem(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS) {
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
goto md_failed;
}
break;
case QLA8XXX_BOARD:
case QLA8XXX_RDROM:
if (is_qla8022(ha)) {
qla4_82xx_minidump_process_rdrom(ha, entry_hdr,
&data_ptr);
} else if (is_qla8032(ha) || is_qla8042(ha)) {
rval = qla4_83xx_minidump_process_rdrom(ha,
entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS)
qla4_8xxx_mark_entry_skipped(ha,
entry_hdr,
i);
}
break;
case QLA8XXX_L2DTG:
case QLA8XXX_L2ITG:
case QLA8XXX_L2DAT:
case QLA8XXX_L2INS:
rval = qla4_8xxx_minidump_process_l2tag(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS) {
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
goto md_failed;
}
break;
case QLA8XXX_L1DTG:
case QLA8XXX_L1ITG:
case QLA8XXX_L1DAT:
case QLA8XXX_L1INS:
qla4_8xxx_minidump_process_l1cache(ha, entry_hdr,
&data_ptr);
break;
case QLA8XXX_RDOCM:
qla4_8xxx_minidump_process_rdocm(ha, entry_hdr,
&data_ptr);
break;
case QLA8XXX_RDMUX:
qla4_8xxx_minidump_process_rdmux(ha, entry_hdr,
&data_ptr);
break;
case QLA8XXX_QUEUE:
qla4_8xxx_minidump_process_queue(ha, entry_hdr,
&data_ptr);
break;
case QLA83XX_POLLRD:
if (is_qla8022(ha)) {
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
}
rval = qla83xx_minidump_process_pollrd(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS)
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
case QLA83XX_RDMUX2:
if (is_qla8022(ha)) {
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
}
qla83xx_minidump_process_rdmux2(ha, entry_hdr,
&data_ptr);
break;
case QLA83XX_POLLRDMWR:
if (is_qla8022(ha)) {
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
}
rval = qla83xx_minidump_process_pollrdmwr(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS)
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
case QLA8044_RDDFE:
rval = qla4_84xx_minidump_process_rddfe(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS)
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
case QLA8044_RDMDIO:
rval = qla4_84xx_minidump_process_rdmdio(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS)
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
case QLA8044_POLLWR:
rval = qla4_84xx_minidump_process_pollwr(ha, entry_hdr,
&data_ptr);
if (rval != QLA_SUCCESS)
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
case QLA8XXX_RDNOP:
default:
qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i);
break;
}
data_collected = (uint8_t *)data_ptr - (uint8_t *)ha->fw_dump;
skip_nxt_entry:
/* next entry in the template */
entry_hdr = (struct qla8xxx_minidump_entry_hdr *)
(((uint8_t *)entry_hdr) +
entry_hdr->entry_size);
}
if ((data_collected + ha->fw_dump_skip_size) != ha->fw_dump_size) {
ql4_printk(KERN_INFO, ha,
"Dump data mismatch: Data collected: [0x%x], total_data_size:[0x%x]\n",
data_collected, ha->fw_dump_size);
rval = QLA_ERROR;
goto md_failed;
}
DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s Last entry: 0x%x\n",
__func__, i));
md_failed:
return rval;
}
/**
* qla4_8xxx_uevent_emit - Send uevent when the firmware dump is ready.
* @ha: pointer to adapter structure
* @code: uevent code to act upon
**/
static void qla4_8xxx_uevent_emit(struct scsi_qla_host *ha, u32 code)
{
char event_string[40];
char *envp[] = { event_string, NULL };
switch (code) {
case QL4_UEVENT_CODE_FW_DUMP:
snprintf(event_string, sizeof(event_string), "FW_DUMP=%lu",
ha->host_no);
break;
default:
/*do nothing*/
break;
}
kobject_uevent_env(&(&ha->pdev->dev)->kobj, KOBJ_CHANGE, envp);
}
void qla4_8xxx_get_minidump(struct scsi_qla_host *ha)
{
if (ql4xenablemd && test_bit(AF_FW_RECOVERY, &ha->flags) &&
!test_bit(AF_82XX_FW_DUMPED, &ha->flags)) {
if (!qla4_8xxx_collect_md_data(ha)) {
qla4_8xxx_uevent_emit(ha, QL4_UEVENT_CODE_FW_DUMP);
set_bit(AF_82XX_FW_DUMPED, &ha->flags);
} else {
ql4_printk(KERN_INFO, ha, "%s: Unable to collect minidump\n",
__func__);
}
}
}
/**
* qla4_8xxx_device_bootstrap - Initialize device, set DEV_READY, start fw
* @ha: pointer to adapter structure
*
* Note: IDC lock must be held upon entry
**/
int qla4_8xxx_device_bootstrap(struct scsi_qla_host *ha)
{
int rval = QLA_ERROR;
int i;
uint32_t old_count, count;
int need_reset = 0;
need_reset = ha->isp_ops->need_reset(ha);
if (need_reset) {
/* We are trying to perform a recovery here. */
if (test_bit(AF_FW_RECOVERY, &ha->flags))
ha->isp_ops->rom_lock_recovery(ha);
} else {
old_count = qla4_8xxx_rd_direct(ha, QLA8XXX_PEG_ALIVE_COUNTER);
for (i = 0; i < 10; i++) {
msleep(200);
count = qla4_8xxx_rd_direct(ha,
QLA8XXX_PEG_ALIVE_COUNTER);
if (count != old_count) {
rval = QLA_SUCCESS;
goto dev_ready;
}
}
ha->isp_ops->rom_lock_recovery(ha);
}
/* set to DEV_INITIALIZING */
ql4_printk(KERN_INFO, ha, "HW State: INITIALIZING\n");
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE,
QLA8XXX_DEV_INITIALIZING);
ha->isp_ops->idc_unlock(ha);
if (is_qla8022(ha))
qla4_8xxx_get_minidump(ha);
rval = ha->isp_ops->restart_firmware(ha);
ha->isp_ops->idc_lock(ha);
if (rval != QLA_SUCCESS) {
ql4_printk(KERN_INFO, ha, "HW State: FAILED\n");
qla4_8xxx_clear_drv_active(ha);
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE,
QLA8XXX_DEV_FAILED);
return rval;
}
dev_ready:
ql4_printk(KERN_INFO, ha, "HW State: READY\n");
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, QLA8XXX_DEV_READY);
return rval;
}
/**
* qla4_82xx_need_reset_handler - Code to start reset sequence
* @ha: pointer to adapter structure
*
* Note: IDC lock must be held upon entry
**/
static void
qla4_82xx_need_reset_handler(struct scsi_qla_host *ha)
{
uint32_t dev_state, drv_state, drv_active;
uint32_t active_mask = 0xFFFFFFFF;
unsigned long reset_timeout;
ql4_printk(KERN_INFO, ha,
"Performing ISP error recovery\n");
if (test_and_clear_bit(AF_ONLINE, &ha->flags)) {
qla4_82xx_idc_unlock(ha);
ha->isp_ops->disable_intrs(ha);
qla4_82xx_idc_lock(ha);
}
if (!test_bit(AF_8XXX_RST_OWNER, &ha->flags)) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s(%ld): reset acknowledged\n",
__func__, ha->host_no));
qla4_8xxx_set_rst_ready(ha);
} else {
active_mask = (~(1 << (ha->func_num * 4)));
}
/* wait for 10 seconds for reset ack from all functions */
reset_timeout = jiffies + (ha->nx_reset_timeout * HZ);
drv_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_STATE);
drv_active = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_ACTIVE);
ql4_printk(KERN_INFO, ha,
"%s(%ld): drv_state = 0x%x, drv_active = 0x%x\n",
__func__, ha->host_no, drv_state, drv_active);
while (drv_state != (drv_active & active_mask)) {
if (time_after_eq(jiffies, reset_timeout)) {
ql4_printk(KERN_INFO, ha,
"%s: RESET TIMEOUT! drv_state: 0x%08x, drv_active: 0x%08x\n",
DRIVER_NAME, drv_state, drv_active);
break;
}
/*
* When reset_owner times out, check which functions
* acked/did not ack
*/
if (test_bit(AF_8XXX_RST_OWNER, &ha->flags)) {
ql4_printk(KERN_INFO, ha,
"%s(%ld): drv_state = 0x%x, drv_active = 0x%x\n",
__func__, ha->host_no, drv_state,
drv_active);
}
qla4_82xx_idc_unlock(ha);
msleep(1000);
qla4_82xx_idc_lock(ha);
drv_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_STATE);
drv_active = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_ACTIVE);
}
/* Clear RESET OWNER as we are not going to use it any further */
clear_bit(AF_8XXX_RST_OWNER, &ha->flags);
dev_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DEV_STATE);
ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", dev_state,
dev_state < MAX_STATES ? qdev_state[dev_state] : "Unknown");
/* Force to DEV_COLD unless someone else is starting a reset */
if (dev_state != QLA8XXX_DEV_INITIALIZING) {
ql4_printk(KERN_INFO, ha, "HW State: COLD/RE-INIT\n");
qla4_82xx_wr_32(ha, QLA82XX_CRB_DEV_STATE, QLA8XXX_DEV_COLD);
qla4_8xxx_set_rst_ready(ha);
}
}
/**
* qla4_8xxx_need_qsnt_handler - Code to start qsnt
* @ha: pointer to adapter structure
**/
void
qla4_8xxx_need_qsnt_handler(struct scsi_qla_host *ha)
{
ha->isp_ops->idc_lock(ha);
qla4_8xxx_set_qsnt_ready(ha);
ha->isp_ops->idc_unlock(ha);
}
static void qla4_82xx_set_idc_ver(struct scsi_qla_host *ha)
{
int idc_ver;
uint32_t drv_active;
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
if (drv_active == (1 << (ha->func_num * 4))) {
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION,
QLA82XX_IDC_VERSION);
ql4_printk(KERN_INFO, ha,
"%s: IDC version updated to %d\n", __func__,
QLA82XX_IDC_VERSION);
} else {
idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION);
if (QLA82XX_IDC_VERSION != idc_ver) {
ql4_printk(KERN_INFO, ha,
"%s: qla4xxx driver IDC version %d is not compatible with IDC version %d of other drivers!\n",
__func__, QLA82XX_IDC_VERSION, idc_ver);
}
}
}
static int qla4_83xx_set_idc_ver(struct scsi_qla_host *ha)
{
int idc_ver;
uint32_t drv_active;
int rval = QLA_SUCCESS;
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
if (drv_active == (1 << ha->func_num)) {
idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION);
idc_ver &= (~0xFF);
idc_ver |= QLA83XX_IDC_VER_MAJ_VALUE;
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION, idc_ver);
ql4_printk(KERN_INFO, ha,
"%s: IDC version updated to %d\n", __func__,
idc_ver);
} else {
idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION);
idc_ver &= 0xFF;
if (QLA83XX_IDC_VER_MAJ_VALUE != idc_ver) {
ql4_printk(KERN_INFO, ha,
"%s: qla4xxx driver IDC version %d is not compatible with IDC version %d of other drivers!\n",
__func__, QLA83XX_IDC_VER_MAJ_VALUE,
idc_ver);
rval = QLA_ERROR;
goto exit_set_idc_ver;
}
}
/* Update IDC_MINOR_VERSION */
idc_ver = qla4_83xx_rd_reg(ha, QLA83XX_CRB_IDC_VER_MINOR);
idc_ver &= ~(0x03 << (ha->func_num * 2));
idc_ver |= (QLA83XX_IDC_VER_MIN_VALUE << (ha->func_num * 2));
qla4_83xx_wr_reg(ha, QLA83XX_CRB_IDC_VER_MINOR, idc_ver);
exit_set_idc_ver:
return rval;
}
int qla4_8xxx_update_idc_reg(struct scsi_qla_host *ha)
{
uint32_t drv_active;
int rval = QLA_SUCCESS;
if (test_bit(AF_INIT_DONE, &ha->flags))
goto exit_update_idc_reg;
ha->isp_ops->idc_lock(ha);
qla4_8xxx_set_drv_active(ha);
/*
* If we are the first driver to load and
* ql4xdontresethba is not set, clear IDC_CTRL BIT0.
*/
if (is_qla8032(ha) || is_qla8042(ha)) {
drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE);
if ((drv_active == (1 << ha->func_num)) && !ql4xdontresethba)
qla4_83xx_clear_idc_dontreset(ha);
}
if (is_qla8022(ha)) {
qla4_82xx_set_idc_ver(ha);
} else if (is_qla8032(ha) || is_qla8042(ha)) {
rval = qla4_83xx_set_idc_ver(ha);
if (rval == QLA_ERROR)
qla4_8xxx_clear_drv_active(ha);
}
ha->isp_ops->idc_unlock(ha);
exit_update_idc_reg:
return rval;
}
/**
* qla4_8xxx_device_state_handler - Adapter state machine
* @ha: pointer to host adapter structure.
*
* Note: IDC lock must be UNLOCKED upon entry
**/
int qla4_8xxx_device_state_handler(struct scsi_qla_host *ha)
{
uint32_t dev_state;
int rval = QLA_SUCCESS;
unsigned long dev_init_timeout;
rval = qla4_8xxx_update_idc_reg(ha);
if (rval == QLA_ERROR)
goto exit_state_handler;
dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE);
DEBUG2(ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n",
dev_state, dev_state < MAX_STATES ?
qdev_state[dev_state] : "Unknown"));
/* wait for 30 seconds for device to go ready */
dev_init_timeout = jiffies + (ha->nx_dev_init_timeout * HZ);
ha->isp_ops->idc_lock(ha);
while (1) {
if (time_after_eq(jiffies, dev_init_timeout)) {
ql4_printk(KERN_WARNING, ha,
"%s: Device Init Failed 0x%x = %s\n",
DRIVER_NAME,
dev_state, dev_state < MAX_STATES ?
qdev_state[dev_state] : "Unknown");
qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE,
QLA8XXX_DEV_FAILED);
}
dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE);
ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n",
dev_state, dev_state < MAX_STATES ?
qdev_state[dev_state] : "Unknown");
/* NOTE: Make sure idc unlocked upon exit of switch statement */
switch (dev_state) {
case QLA8XXX_DEV_READY:
goto exit;
case QLA8XXX_DEV_COLD:
rval = qla4_8xxx_device_bootstrap(ha);
goto exit;
case QLA8XXX_DEV_INITIALIZING:
ha->isp_ops->idc_unlock(ha);
msleep(1000);
ha->isp_ops->idc_lock(ha);
break;
case QLA8XXX_DEV_NEED_RESET:
/*
* For ISP8324 and ISP8042, if NEED_RESET is set by any
* driver, it should be honored, irrespective of
* IDC_CTRL DONTRESET_BIT0
*/
if (is_qla8032(ha) || is_qla8042(ha)) {
qla4_83xx_need_reset_handler(ha);
} else if (is_qla8022(ha)) {
if (!ql4xdontresethba) {
qla4_82xx_need_reset_handler(ha);
/* Update timeout value after need
* reset handler */
dev_init_timeout = jiffies +
(ha->nx_dev_init_timeout * HZ);
} else {
ha->isp_ops->idc_unlock(ha);
msleep(1000);
ha->isp_ops->idc_lock(ha);
}
}
break;
case QLA8XXX_DEV_NEED_QUIESCENT:
/* idc locked/unlocked in handler */
qla4_8xxx_need_qsnt_handler(ha);
break;
case QLA8XXX_DEV_QUIESCENT:
ha->isp_ops->idc_unlock(ha);
msleep(1000);
ha->isp_ops->idc_lock(ha);
break;
case QLA8XXX_DEV_FAILED:
ha->isp_ops->idc_unlock(ha);
qla4xxx_dead_adapter_cleanup(ha);
rval = QLA_ERROR;
ha->isp_ops->idc_lock(ha);
goto exit;
default:
ha->isp_ops->idc_unlock(ha);
qla4xxx_dead_adapter_cleanup(ha);
rval = QLA_ERROR;
ha->isp_ops->idc_lock(ha);
goto exit;
}
}
exit:
ha->isp_ops->idc_unlock(ha);
exit_state_handler:
return rval;
}
int qla4_8xxx_load_risc(struct scsi_qla_host *ha)
{
int retval;
/* clear the interrupt */
if (is_qla8032(ha) || is_qla8042(ha)) {
writel(0, &ha->qla4_83xx_reg->risc_intr);
readl(&ha->qla4_83xx_reg->risc_intr);
} else if (is_qla8022(ha)) {
writel(0, &ha->qla4_82xx_reg->host_int);
readl(&ha->qla4_82xx_reg->host_int);
}
retval = qla4_8xxx_device_state_handler(ha);
/* Initialize request and response queues. */
if (retval == QLA_SUCCESS)
qla4xxx_init_rings(ha);
if (retval == QLA_SUCCESS && !test_bit(AF_IRQ_ATTACHED, &ha->flags))
retval = qla4xxx_request_irqs(ha);
return retval;
}
/*****************************************************************************/
/* Flash Manipulation Routines */
/*****************************************************************************/
#define OPTROM_BURST_SIZE 0x1000
#define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
#define FARX_DATA_FLAG BIT_31
#define FARX_ACCESS_FLASH_CONF 0x7FFD0000
#define FARX_ACCESS_FLASH_DATA 0x7FF00000
static inline uint32_t
flash_conf_addr(struct ql82xx_hw_data *hw, uint32_t faddr)
{
return hw->flash_conf_off | faddr;
}
static uint32_t *
qla4_82xx_read_flash_data(struct scsi_qla_host *ha, uint32_t *dwptr,
uint32_t faddr, uint32_t length)
{
uint32_t i;
uint32_t val;
int loops = 0;
while ((qla4_82xx_rom_lock(ha) != 0) && (loops < 50000)) {
udelay(100);
cond_resched();
loops++;
}
if (loops >= 50000) {
ql4_printk(KERN_WARNING, ha, "ROM lock failed\n");
return dwptr;
}
/* Dword reads to flash. */
for (i = 0; i < length/4; i++, faddr += 4) {
if (qla4_82xx_do_rom_fast_read(ha, faddr, &val)) {
ql4_printk(KERN_WARNING, ha,
"Do ROM fast read failed\n");
goto done_read;
}
dwptr[i] = cpu_to_le32(val);
}
done_read:
qla4_82xx_rom_unlock(ha);
return dwptr;
}
/*
* Address and length are byte address
*/
static uint8_t *
qla4_82xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
qla4_82xx_read_flash_data(ha, (uint32_t *)buf, offset, length);
return buf;
}
static int
qla4_8xxx_find_flt_start(struct scsi_qla_host *ha, uint32_t *start)
{
const char *loc, *locations[] = { "DEF", "PCI" };
/*
* FLT-location structure resides after the last PCI region.
*/
/* Begin with sane defaults. */
loc = locations[0];
*start = FA_FLASH_LAYOUT_ADDR_82;
DEBUG2(ql4_printk(KERN_INFO, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
return QLA_SUCCESS;
}
static void
qla4_8xxx_get_flt_info(struct scsi_qla_host *ha, uint32_t flt_addr)
{
const char *loc, *locations[] = { "DEF", "FLT" };
uint16_t *wptr;
uint16_t cnt, chksum;
uint32_t start, status;
struct qla_flt_header *flt;
struct qla_flt_region *region;
struct ql82xx_hw_data *hw = &ha->hw;
hw->flt_region_flt = flt_addr;
wptr = (uint16_t *)ha->request_ring;
flt = (struct qla_flt_header *)ha->request_ring;
region = (struct qla_flt_region *)&flt[1];
if (is_qla8022(ha)) {
qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring,
flt_addr << 2, OPTROM_BURST_SIZE);
} else if (is_qla8032(ha) || is_qla8042(ha)) {
status = qla4_83xx_flash_read_u32(ha, flt_addr << 2,
(uint8_t *)ha->request_ring,
0x400);
if (status != QLA_SUCCESS)
goto no_flash_data;
}
if (*wptr == cpu_to_le16(0xffff))
goto no_flash_data;
if (flt->version != cpu_to_le16(1)) {
DEBUG2(ql4_printk(KERN_INFO, ha, "Unsupported FLT detected: "
"version=0x%x length=0x%x checksum=0x%x.\n",
le16_to_cpu(flt->version), le16_to_cpu(flt->length),
le16_to_cpu(flt->checksum)));
goto no_flash_data;
}
cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
for (chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(ql4_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
"version=0x%x length=0x%x checksum=0x%x.\n",
le16_to_cpu(flt->version), le16_to_cpu(flt->length),
chksum));
goto no_flash_data;
}
loc = locations[1];
cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
for ( ; cnt; cnt--, region++) {
/* Store addresses as DWORD offsets. */
start = le32_to_cpu(region->start) >> 2;
DEBUG3(ql4_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
"end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
switch (le32_to_cpu(region->code) & 0xff) {
case FLT_REG_FDT:
hw->flt_region_fdt = start;
break;
case FLT_REG_BOOT_CODE_82:
hw->flt_region_boot = start;
break;
case FLT_REG_FW_82:
case FLT_REG_FW_82_1:
hw->flt_region_fw = start;
break;
case FLT_REG_BOOTLOAD_82:
hw->flt_region_bootload = start;
break;
case FLT_REG_ISCSI_PARAM:
hw->flt_iscsi_param = start;
break;
case FLT_REG_ISCSI_CHAP:
hw->flt_region_chap = start;
hw->flt_chap_size = le32_to_cpu(region->size);
break;
case FLT_REG_ISCSI_DDB:
hw->flt_region_ddb = start;
hw->flt_ddb_size = le32_to_cpu(region->size);
break;
}
}
goto done;
no_flash_data:
/* Use hardcoded defaults. */
loc = locations[0];
hw->flt_region_fdt = FA_FLASH_DESCR_ADDR_82;
hw->flt_region_boot = FA_BOOT_CODE_ADDR_82;
hw->flt_region_bootload = FA_BOOT_LOAD_ADDR_82;
hw->flt_region_fw = FA_RISC_CODE_ADDR_82;
hw->flt_region_chap = FA_FLASH_ISCSI_CHAP >> 2;
hw->flt_chap_size = FA_FLASH_CHAP_SIZE;
hw->flt_region_ddb = FA_FLASH_ISCSI_DDB >> 2;
hw->flt_ddb_size = FA_FLASH_DDB_SIZE;
done:
DEBUG2(ql4_printk(KERN_INFO, ha,
"FLT[%s]: flt=0x%x fdt=0x%x boot=0x%x bootload=0x%x fw=0x%x chap=0x%x chap_size=0x%x ddb=0x%x ddb_size=0x%x\n",
loc, hw->flt_region_flt, hw->flt_region_fdt,
hw->flt_region_boot, hw->flt_region_bootload,
hw->flt_region_fw, hw->flt_region_chap,
hw->flt_chap_size, hw->flt_region_ddb,
hw->flt_ddb_size));
}
static void
qla4_82xx_get_fdt_info(struct scsi_qla_host *ha)
{
#define FLASH_BLK_SIZE_4K 0x1000
#define FLASH_BLK_SIZE_32K 0x8000
#define FLASH_BLK_SIZE_64K 0x10000
const char *loc, *locations[] = { "MID", "FDT" };
uint16_t cnt, chksum;
uint16_t *wptr;
struct qla_fdt_layout *fdt;
uint16_t mid = 0;
uint16_t fid = 0;
struct ql82xx_hw_data *hw = &ha->hw;
hw->flash_conf_off = FARX_ACCESS_FLASH_CONF;
hw->flash_data_off = FARX_ACCESS_FLASH_DATA;
wptr = (uint16_t *)ha->request_ring;
fdt = (struct qla_fdt_layout *)ha->request_ring;
qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring,
hw->flt_region_fdt << 2, OPTROM_BURST_SIZE);
if (*wptr == cpu_to_le16(0xffff))
goto no_flash_data;
if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
fdt->sig[3] != 'D')
goto no_flash_data;
for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
cnt++)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(ql4_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
"checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
le16_to_cpu(fdt->version)));
goto no_flash_data;
}
loc = locations[1];
mid = le16_to_cpu(fdt->man_id);
fid = le16_to_cpu(fdt->id);
hw->fdt_wrt_disable = fdt->wrt_disable_bits;
hw->fdt_erase_cmd = flash_conf_addr(hw, 0x0300 | fdt->erase_cmd);
hw->fdt_block_size = le32_to_cpu(fdt->block_size);
if (fdt->unprotect_sec_cmd) {
hw->fdt_unprotect_sec_cmd = flash_conf_addr(hw, 0x0300 |
fdt->unprotect_sec_cmd);
hw->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
flash_conf_addr(hw, 0x0300 | fdt->protect_sec_cmd) :
flash_conf_addr(hw, 0x0336);
}
goto done;
no_flash_data:
loc = locations[0];
hw->fdt_block_size = FLASH_BLK_SIZE_64K;
done:
DEBUG2(ql4_printk(KERN_INFO, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
"pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
hw->fdt_erase_cmd, hw->fdt_protect_sec_cmd,
hw->fdt_unprotect_sec_cmd, hw->fdt_wrt_disable,
hw->fdt_block_size));
}
static void
qla4_82xx_get_idc_param(struct scsi_qla_host *ha)
{
#define QLA82XX_IDC_PARAM_ADDR 0x003e885c
uint32_t *wptr;
if (!is_qla8022(ha))
return;
wptr = (uint32_t *)ha->request_ring;
qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring,
QLA82XX_IDC_PARAM_ADDR , 8);
if (*wptr == cpu_to_le32(0xffffffff)) {
ha->nx_dev_init_timeout = ROM_DEV_INIT_TIMEOUT;
ha->nx_reset_timeout = ROM_DRV_RESET_ACK_TIMEOUT;
} else {
ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
ha->nx_reset_timeout = le32_to_cpu(*wptr);
}
DEBUG2(ql4_printk(KERN_DEBUG, ha,
"ha->nx_dev_init_timeout = %d\n", ha->nx_dev_init_timeout));
DEBUG2(ql4_printk(KERN_DEBUG, ha,
"ha->nx_reset_timeout = %d\n", ha->nx_reset_timeout));
return;
}
void qla4_82xx_queue_mbox_cmd(struct scsi_qla_host *ha, uint32_t *mbx_cmd,
int in_count)
{
int i;
/* Load all mailbox registers, except mailbox 0. */
for (i = 1; i < in_count; i++)
writel(mbx_cmd[i], &ha->qla4_82xx_reg->mailbox_in[i]);
/* Wakeup firmware */
writel(mbx_cmd[0], &ha->qla4_82xx_reg->mailbox_in[0]);
readl(&ha->qla4_82xx_reg->mailbox_in[0]);
writel(HINT_MBX_INT_PENDING, &ha->qla4_82xx_reg->hint);
readl(&ha->qla4_82xx_reg->hint);
}
void qla4_82xx_process_mbox_intr(struct scsi_qla_host *ha, int out_count)
{
int intr_status;
intr_status = readl(&ha->qla4_82xx_reg->host_int);
if (intr_status & ISRX_82XX_RISC_INT) {
ha->mbox_status_count = out_count;
intr_status = readl(&ha->qla4_82xx_reg->host_status);
ha->isp_ops->interrupt_service_routine(ha, intr_status);
if (test_bit(AF_INTERRUPTS_ON, &ha->flags) &&
(!ha->pdev->msi_enabled && !ha->pdev->msix_enabled))
qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg,
0xfbff);
}
}
int
qla4_8xxx_get_flash_info(struct scsi_qla_host *ha)
{
int ret;
uint32_t flt_addr;
ret = qla4_8xxx_find_flt_start(ha, &flt_addr);
if (ret != QLA_SUCCESS)
return ret;
qla4_8xxx_get_flt_info(ha, flt_addr);
if (is_qla8022(ha)) {
qla4_82xx_get_fdt_info(ha);
qla4_82xx_get_idc_param(ha);
} else if (is_qla8032(ha) || is_qla8042(ha)) {
qla4_83xx_get_idc_param(ha);
}
return QLA_SUCCESS;
}
/**
* qla4_8xxx_stop_firmware - stops firmware on specified adapter instance
* @ha: pointer to host adapter structure.
*
* Remarks:
* For iSCSI, throws away all I/O and AENs into bit bucket, so they will
* not be available after successful return. Driver must cleanup potential
* outstanding I/O's after calling this funcion.
**/
int
qla4_8xxx_stop_firmware(struct scsi_qla_host *ha)
{
int status;
uint32_t mbox_cmd[MBOX_REG_COUNT];
uint32_t mbox_sts[MBOX_REG_COUNT];
memset(&mbox_cmd, 0, sizeof(mbox_cmd));
memset(&mbox_sts, 0, sizeof(mbox_sts));
mbox_cmd[0] = MBOX_CMD_STOP_FW;
status = qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1,
&mbox_cmd[0], &mbox_sts[0]);
DEBUG2(printk("scsi%ld: %s: status = %d\n", ha->host_no,
__func__, status));
return status;
}
/**
* qla4_82xx_isp_reset - Resets ISP and aborts all outstanding commands.
* @ha: pointer to host adapter structure.
**/
int
qla4_82xx_isp_reset(struct scsi_qla_host *ha)
{
int rval;
uint32_t dev_state;
qla4_82xx_idc_lock(ha);
dev_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DEV_STATE);
if (dev_state == QLA8XXX_DEV_READY) {
ql4_printk(KERN_INFO, ha, "HW State: NEED RESET\n");
qla4_82xx_wr_32(ha, QLA82XX_CRB_DEV_STATE,
QLA8XXX_DEV_NEED_RESET);
set_bit(AF_8XXX_RST_OWNER, &ha->flags);
} else
ql4_printk(KERN_INFO, ha, "HW State: DEVICE INITIALIZING\n");
qla4_82xx_idc_unlock(ha);
rval = qla4_8xxx_device_state_handler(ha);
qla4_82xx_idc_lock(ha);
qla4_8xxx_clear_rst_ready(ha);
qla4_82xx_idc_unlock(ha);
if (rval == QLA_SUCCESS) {
ql4_printk(KERN_INFO, ha, "Clearing AF_RECOVERY in qla4_82xx_isp_reset\n");
clear_bit(AF_FW_RECOVERY, &ha->flags);
}
return rval;
}
/**
* qla4_8xxx_get_sys_info - get adapter MAC address(es) and serial number
* @ha: pointer to host adapter structure.
*
**/
int qla4_8xxx_get_sys_info(struct scsi_qla_host *ha)
{
uint32_t mbox_cmd[MBOX_REG_COUNT];
uint32_t mbox_sts[MBOX_REG_COUNT];
struct mbx_sys_info *sys_info;
dma_addr_t sys_info_dma;
int status = QLA_ERROR;
sys_info = dma_alloc_coherent(&ha->pdev->dev, sizeof(*sys_info),
&sys_info_dma, GFP_KERNEL);
if (sys_info == NULL) {
DEBUG2(printk("scsi%ld: %s: Unable to allocate dma buffer.\n",
ha->host_no, __func__));
return status;
}
memset(&mbox_cmd, 0, sizeof(mbox_cmd));
memset(&mbox_sts, 0, sizeof(mbox_sts));
mbox_cmd[0] = MBOX_CMD_GET_SYS_INFO;
mbox_cmd[1] = LSDW(sys_info_dma);
mbox_cmd[2] = MSDW(sys_info_dma);
mbox_cmd[4] = sizeof(*sys_info);
if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 6, &mbox_cmd[0],
&mbox_sts[0]) != QLA_SUCCESS) {
DEBUG2(printk("scsi%ld: %s: GET_SYS_INFO failed\n",
ha->host_no, __func__));
goto exit_validate_mac82;
}
/* Make sure we receive the minimum required data to cache internally */
if (((is_qla8032(ha) || is_qla8042(ha)) ? mbox_sts[3] : mbox_sts[4]) <
offsetof(struct mbx_sys_info, reserved)) {
DEBUG2(printk("scsi%ld: %s: GET_SYS_INFO data receive"
" error (%x)\n", ha->host_no, __func__, mbox_sts[4]));
goto exit_validate_mac82;
}
/* Save M.A.C. address & serial_number */
ha->port_num = sys_info->port_num;
memcpy(ha->my_mac, &sys_info->mac_addr[0],
min(sizeof(ha->my_mac), sizeof(sys_info->mac_addr)));
memcpy(ha->serial_number, &sys_info->serial_number,
min(sizeof(ha->serial_number), sizeof(sys_info->serial_number)));
memcpy(ha->model_name, &sys_info->board_id_str,
min(sizeof(ha->model_name), sizeof(sys_info->board_id_str)));
ha->phy_port_cnt = sys_info->phys_port_cnt;
ha->phy_port_num = sys_info->port_num;
ha->iscsi_pci_func_cnt = sys_info->iscsi_pci_func_cnt;
DEBUG2(printk("scsi%ld: %s: mac %pM serial %s\n",
ha->host_no, __func__, ha->my_mac, ha->serial_number));
status = QLA_SUCCESS;
exit_validate_mac82:
dma_free_coherent(&ha->pdev->dev, sizeof(*sys_info), sys_info,
sys_info_dma);
return status;
}
/* Interrupt handling helpers. */
int qla4_8xxx_intr_enable(struct scsi_qla_host *ha)
{
uint32_t mbox_cmd[MBOX_REG_COUNT];
uint32_t mbox_sts[MBOX_REG_COUNT];
DEBUG2(ql4_printk(KERN_INFO, ha, "%s\n", __func__));
memset(&mbox_cmd, 0, sizeof(mbox_cmd));
memset(&mbox_sts, 0, sizeof(mbox_sts));
mbox_cmd[0] = MBOX_CMD_ENABLE_INTRS;
mbox_cmd[1] = INTR_ENABLE;
if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0],
&mbox_sts[0]) != QLA_SUCCESS) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: MBOX_CMD_ENABLE_INTRS failed (0x%04x)\n",
__func__, mbox_sts[0]));
return QLA_ERROR;
}
return QLA_SUCCESS;
}
int qla4_8xxx_intr_disable(struct scsi_qla_host *ha)
{
uint32_t mbox_cmd[MBOX_REG_COUNT];
uint32_t mbox_sts[MBOX_REG_COUNT];
DEBUG2(ql4_printk(KERN_INFO, ha, "%s\n", __func__));
memset(&mbox_cmd, 0, sizeof(mbox_cmd));
memset(&mbox_sts, 0, sizeof(mbox_sts));
mbox_cmd[0] = MBOX_CMD_ENABLE_INTRS;
mbox_cmd[1] = INTR_DISABLE;
if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0],
&mbox_sts[0]) != QLA_SUCCESS) {
DEBUG2(ql4_printk(KERN_INFO, ha,
"%s: MBOX_CMD_ENABLE_INTRS failed (0x%04x)\n",
__func__, mbox_sts[0]));
return QLA_ERROR;
}
return QLA_SUCCESS;
}
void
qla4_82xx_enable_intrs(struct scsi_qla_host *ha)
{
qla4_8xxx_intr_enable(ha);
spin_lock_irq(&ha->hardware_lock);
/* BIT 10 - reset */
qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0xfbff);
spin_unlock_irq(&ha->hardware_lock);
set_bit(AF_INTERRUPTS_ON, &ha->flags);
}
void
qla4_82xx_disable_intrs(struct scsi_qla_host *ha)
{
if (test_and_clear_bit(AF_INTERRUPTS_ON, &ha->flags))
qla4_8xxx_intr_disable(ha);
spin_lock_irq(&ha->hardware_lock);
/* BIT 10 - set */
qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0x0400);
spin_unlock_irq(&ha->hardware_lock);
}
int
qla4_8xxx_enable_msix(struct scsi_qla_host *ha)
{
int ret;
ret = pci_alloc_irq_vectors(ha->pdev, QLA_MSIX_ENTRIES,
QLA_MSIX_ENTRIES, PCI_IRQ_MSIX);
if (ret < 0) {
ql4_printk(KERN_WARNING, ha,
"MSI-X: Failed to enable support -- %d/%d\n",
QLA_MSIX_ENTRIES, ret);
return ret;
}
ret = request_irq(pci_irq_vector(ha->pdev, 0),
qla4_8xxx_default_intr_handler, 0, "qla4xxx (default)",
ha);
if (ret)
goto out_free_vectors;
ret = request_irq(pci_irq_vector(ha->pdev, 1),
qla4_8xxx_msix_rsp_q, 0, "qla4xxx (rsp_q)", ha);
if (ret)
goto out_free_default_irq;
return 0;
out_free_default_irq:
free_irq(pci_irq_vector(ha->pdev, 0), ha);
out_free_vectors:
pci_free_irq_vectors(ha->pdev);
return ret;
}
int qla4_8xxx_check_init_adapter_retry(struct scsi_qla_host *ha)
{
int status = QLA_SUCCESS;
/* Dont retry adapter initialization if IRQ allocation failed */
if (!test_bit(AF_IRQ_ATTACHED, &ha->flags)) {
ql4_printk(KERN_WARNING, ha, "%s: Skipping retry of adapter initialization as IRQs are not attached\n",
__func__);
status = QLA_ERROR;
goto exit_init_adapter_failure;
}
/* Since interrupts are registered in start_firmware for
* 8xxx, release them here if initialize_adapter fails
* and retry adapter initialization */
qla4xxx_free_irqs(ha);
exit_init_adapter_failure:
return status;
}