mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
354a3399dc
If a file is linked, f2fs loose its parent inode number so that fsync calls for the linked file should do checkpoint all the time. But, if we can recover its parent inode number after the checkpoint, we can adjust roll-forward mechanism for the further fsync calls, which is able to improve the fsync performance significatly. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
350 lines
9.9 KiB
C
350 lines
9.9 KiB
C
/*
|
|
* fs/f2fs/node.h
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
/* start node id of a node block dedicated to the given node id */
|
|
#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
|
|
|
|
/* node block offset on the NAT area dedicated to the given start node id */
|
|
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
|
|
|
|
/* # of pages to perform readahead before building free nids */
|
|
#define FREE_NID_PAGES 4
|
|
|
|
/* maximum # of free node ids to produce during build_free_nids */
|
|
#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
|
|
|
|
/* maximum readahead size for node during getting data blocks */
|
|
#define MAX_RA_NODE 128
|
|
|
|
/* maximum cached nat entries to manage memory footprint */
|
|
#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
|
|
|
|
/* vector size for gang look-up from nat cache that consists of radix tree */
|
|
#define NATVEC_SIZE 64
|
|
|
|
/* return value for read_node_page */
|
|
#define LOCKED_PAGE 1
|
|
|
|
/*
|
|
* For node information
|
|
*/
|
|
struct node_info {
|
|
nid_t nid; /* node id */
|
|
nid_t ino; /* inode number of the node's owner */
|
|
block_t blk_addr; /* block address of the node */
|
|
unsigned char version; /* version of the node */
|
|
};
|
|
|
|
struct nat_entry {
|
|
struct list_head list; /* for clean or dirty nat list */
|
|
bool checkpointed; /* whether it is checkpointed or not */
|
|
struct node_info ni; /* in-memory node information */
|
|
};
|
|
|
|
#define nat_get_nid(nat) (nat->ni.nid)
|
|
#define nat_set_nid(nat, n) (nat->ni.nid = n)
|
|
#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
|
|
#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
|
|
#define nat_get_ino(nat) (nat->ni.ino)
|
|
#define nat_set_ino(nat, i) (nat->ni.ino = i)
|
|
#define nat_get_version(nat) (nat->ni.version)
|
|
#define nat_set_version(nat, v) (nat->ni.version = v)
|
|
|
|
#define __set_nat_cache_dirty(nm_i, ne) \
|
|
list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
|
|
#define __clear_nat_cache_dirty(nm_i, ne) \
|
|
list_move_tail(&ne->list, &nm_i->nat_entries);
|
|
#define inc_node_version(version) (++version)
|
|
|
|
static inline void node_info_from_raw_nat(struct node_info *ni,
|
|
struct f2fs_nat_entry *raw_ne)
|
|
{
|
|
ni->ino = le32_to_cpu(raw_ne->ino);
|
|
ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
|
|
ni->version = raw_ne->version;
|
|
}
|
|
|
|
/*
|
|
* For free nid mangement
|
|
*/
|
|
enum nid_state {
|
|
NID_NEW, /* newly added to free nid list */
|
|
NID_ALLOC /* it is allocated */
|
|
};
|
|
|
|
struct free_nid {
|
|
struct list_head list; /* for free node id list */
|
|
nid_t nid; /* node id */
|
|
int state; /* in use or not: NID_NEW or NID_ALLOC */
|
|
};
|
|
|
|
static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *fnid;
|
|
|
|
if (nm_i->fcnt <= 0)
|
|
return -1;
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
|
|
*nid = fnid->nid;
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* inline functions
|
|
*/
|
|
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
|
|
}
|
|
|
|
static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
pgoff_t block_off;
|
|
pgoff_t block_addr;
|
|
int seg_off;
|
|
|
|
block_off = NAT_BLOCK_OFFSET(start);
|
|
seg_off = block_off >> sbi->log_blocks_per_seg;
|
|
|
|
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
|
|
(seg_off << sbi->log_blocks_per_seg << 1) +
|
|
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
|
|
|
|
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
|
block_addr += sbi->blocks_per_seg;
|
|
|
|
return block_addr;
|
|
}
|
|
|
|
static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
|
|
pgoff_t block_addr)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
block_addr -= nm_i->nat_blkaddr;
|
|
if ((block_addr >> sbi->log_blocks_per_seg) % 2)
|
|
block_addr -= sbi->blocks_per_seg;
|
|
else
|
|
block_addr += sbi->blocks_per_seg;
|
|
|
|
return block_addr + nm_i->nat_blkaddr;
|
|
}
|
|
|
|
static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
|
|
{
|
|
unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
|
|
|
|
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
|
f2fs_clear_bit(block_off, nm_i->nat_bitmap);
|
|
else
|
|
f2fs_set_bit(block_off, nm_i->nat_bitmap);
|
|
}
|
|
|
|
static inline void fill_node_footer(struct page *page, nid_t nid,
|
|
nid_t ino, unsigned int ofs, bool reset)
|
|
{
|
|
void *kaddr = page_address(page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
if (reset)
|
|
memset(rn, 0, sizeof(*rn));
|
|
rn->footer.nid = cpu_to_le32(nid);
|
|
rn->footer.ino = cpu_to_le32(ino);
|
|
rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
|
|
}
|
|
|
|
static inline void copy_node_footer(struct page *dst, struct page *src)
|
|
{
|
|
void *src_addr = page_address(src);
|
|
void *dst_addr = page_address(dst);
|
|
struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
|
|
struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
|
|
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
|
|
}
|
|
|
|
static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
void *kaddr = page_address(page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
rn->footer.cp_ver = ckpt->checkpoint_ver;
|
|
rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
|
|
}
|
|
|
|
static inline nid_t ino_of_node(struct page *node_page)
|
|
{
|
|
void *kaddr = page_address(node_page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
return le32_to_cpu(rn->footer.ino);
|
|
}
|
|
|
|
static inline nid_t nid_of_node(struct page *node_page)
|
|
{
|
|
void *kaddr = page_address(node_page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
return le32_to_cpu(rn->footer.nid);
|
|
}
|
|
|
|
static inline unsigned int ofs_of_node(struct page *node_page)
|
|
{
|
|
void *kaddr = page_address(node_page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
unsigned flag = le32_to_cpu(rn->footer.flag);
|
|
return flag >> OFFSET_BIT_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long long cpver_of_node(struct page *node_page)
|
|
{
|
|
void *kaddr = page_address(node_page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
return le64_to_cpu(rn->footer.cp_ver);
|
|
}
|
|
|
|
static inline block_t next_blkaddr_of_node(struct page *node_page)
|
|
{
|
|
void *kaddr = page_address(node_page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
return le32_to_cpu(rn->footer.next_blkaddr);
|
|
}
|
|
|
|
/*
|
|
* f2fs assigns the following node offsets described as (num).
|
|
* N = NIDS_PER_BLOCK
|
|
*
|
|
* Inode block (0)
|
|
* |- direct node (1)
|
|
* |- direct node (2)
|
|
* |- indirect node (3)
|
|
* | `- direct node (4 => 4 + N - 1)
|
|
* |- indirect node (4 + N)
|
|
* | `- direct node (5 + N => 5 + 2N - 1)
|
|
* `- double indirect node (5 + 2N)
|
|
* `- indirect node (6 + 2N)
|
|
* `- direct node (x(N + 1))
|
|
*/
|
|
static inline bool IS_DNODE(struct page *node_page)
|
|
{
|
|
unsigned int ofs = ofs_of_node(node_page);
|
|
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
|
|
ofs == 5 + 2 * NIDS_PER_BLOCK)
|
|
return false;
|
|
if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
|
|
ofs -= 6 + 2 * NIDS_PER_BLOCK;
|
|
if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
|
|
{
|
|
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
|
|
|
|
wait_on_page_writeback(p);
|
|
|
|
if (i)
|
|
rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
|
|
else
|
|
rn->in.nid[off] = cpu_to_le32(nid);
|
|
set_page_dirty(p);
|
|
}
|
|
|
|
static inline nid_t get_nid(struct page *p, int off, bool i)
|
|
{
|
|
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
|
|
if (i)
|
|
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
|
|
return le32_to_cpu(rn->in.nid[off]);
|
|
}
|
|
|
|
/*
|
|
* Coldness identification:
|
|
* - Mark cold files in f2fs_inode_info
|
|
* - Mark cold node blocks in their node footer
|
|
* - Mark cold data pages in page cache
|
|
*/
|
|
static inline int is_file(struct inode *inode, int type)
|
|
{
|
|
return F2FS_I(inode)->i_advise & type;
|
|
}
|
|
|
|
static inline void set_file(struct inode *inode, int type)
|
|
{
|
|
F2FS_I(inode)->i_advise |= type;
|
|
}
|
|
|
|
static inline void clear_file(struct inode *inode, int type)
|
|
{
|
|
F2FS_I(inode)->i_advise &= ~type;
|
|
}
|
|
|
|
#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
|
|
#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
|
|
#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
|
|
#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
|
|
#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
|
|
#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
|
|
|
|
static inline int is_cold_data(struct page *page)
|
|
{
|
|
return PageChecked(page);
|
|
}
|
|
|
|
static inline void set_cold_data(struct page *page)
|
|
{
|
|
SetPageChecked(page);
|
|
}
|
|
|
|
static inline void clear_cold_data(struct page *page)
|
|
{
|
|
ClearPageChecked(page);
|
|
}
|
|
|
|
static inline int is_node(struct page *page, int type)
|
|
{
|
|
void *kaddr = page_address(page);
|
|
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
|
return le32_to_cpu(rn->footer.flag) & (1 << type);
|
|
}
|
|
|
|
#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
|
|
#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
|
|
#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
|
|
|
|
static inline void set_cold_node(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
|
|
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
flag &= ~(0x1 << COLD_BIT_SHIFT);
|
|
else
|
|
flag |= (0x1 << COLD_BIT_SHIFT);
|
|
rn->footer.flag = cpu_to_le32(flag);
|
|
}
|
|
|
|
static inline void set_mark(struct page *page, int mark, int type)
|
|
{
|
|
struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
|
|
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
|
if (mark)
|
|
flag |= (0x1 << type);
|
|
else
|
|
flag &= ~(0x1 << type);
|
|
rn->footer.flag = cpu_to_le32(flag);
|
|
}
|
|
#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
|
|
#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
|