mirror of
https://github.com/torvalds/linux.git
synced 2025-01-01 15:51:46 +00:00
64a7b0e081
Merge series from Andy Shevchenko <andriy.shevchenko@linux.intel.com>: Various cleanups and refactorings of the SPI header and core parts united in a single series. It also touches drivers under SPI subsystem folder on the pure renaming purposes of some constants. No functional change intended.
1721 lines
44 KiB
C
1721 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Driver for Atmel AT32 and AT91 SPI Controllers
|
|
*
|
|
* Copyright (C) 2006 Atmel Corporation
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <trace/events/spi.h>
|
|
|
|
/* SPI register offsets */
|
|
#define SPI_CR 0x0000
|
|
#define SPI_MR 0x0004
|
|
#define SPI_RDR 0x0008
|
|
#define SPI_TDR 0x000c
|
|
#define SPI_SR 0x0010
|
|
#define SPI_IER 0x0014
|
|
#define SPI_IDR 0x0018
|
|
#define SPI_IMR 0x001c
|
|
#define SPI_CSR0 0x0030
|
|
#define SPI_CSR1 0x0034
|
|
#define SPI_CSR2 0x0038
|
|
#define SPI_CSR3 0x003c
|
|
#define SPI_FMR 0x0040
|
|
#define SPI_FLR 0x0044
|
|
#define SPI_VERSION 0x00fc
|
|
#define SPI_RPR 0x0100
|
|
#define SPI_RCR 0x0104
|
|
#define SPI_TPR 0x0108
|
|
#define SPI_TCR 0x010c
|
|
#define SPI_RNPR 0x0110
|
|
#define SPI_RNCR 0x0114
|
|
#define SPI_TNPR 0x0118
|
|
#define SPI_TNCR 0x011c
|
|
#define SPI_PTCR 0x0120
|
|
#define SPI_PTSR 0x0124
|
|
|
|
/* Bitfields in CR */
|
|
#define SPI_SPIEN_OFFSET 0
|
|
#define SPI_SPIEN_SIZE 1
|
|
#define SPI_SPIDIS_OFFSET 1
|
|
#define SPI_SPIDIS_SIZE 1
|
|
#define SPI_SWRST_OFFSET 7
|
|
#define SPI_SWRST_SIZE 1
|
|
#define SPI_LASTXFER_OFFSET 24
|
|
#define SPI_LASTXFER_SIZE 1
|
|
#define SPI_TXFCLR_OFFSET 16
|
|
#define SPI_TXFCLR_SIZE 1
|
|
#define SPI_RXFCLR_OFFSET 17
|
|
#define SPI_RXFCLR_SIZE 1
|
|
#define SPI_FIFOEN_OFFSET 30
|
|
#define SPI_FIFOEN_SIZE 1
|
|
#define SPI_FIFODIS_OFFSET 31
|
|
#define SPI_FIFODIS_SIZE 1
|
|
|
|
/* Bitfields in MR */
|
|
#define SPI_MSTR_OFFSET 0
|
|
#define SPI_MSTR_SIZE 1
|
|
#define SPI_PS_OFFSET 1
|
|
#define SPI_PS_SIZE 1
|
|
#define SPI_PCSDEC_OFFSET 2
|
|
#define SPI_PCSDEC_SIZE 1
|
|
#define SPI_FDIV_OFFSET 3
|
|
#define SPI_FDIV_SIZE 1
|
|
#define SPI_MODFDIS_OFFSET 4
|
|
#define SPI_MODFDIS_SIZE 1
|
|
#define SPI_WDRBT_OFFSET 5
|
|
#define SPI_WDRBT_SIZE 1
|
|
#define SPI_LLB_OFFSET 7
|
|
#define SPI_LLB_SIZE 1
|
|
#define SPI_PCS_OFFSET 16
|
|
#define SPI_PCS_SIZE 4
|
|
#define SPI_DLYBCS_OFFSET 24
|
|
#define SPI_DLYBCS_SIZE 8
|
|
|
|
/* Bitfields in RDR */
|
|
#define SPI_RD_OFFSET 0
|
|
#define SPI_RD_SIZE 16
|
|
|
|
/* Bitfields in TDR */
|
|
#define SPI_TD_OFFSET 0
|
|
#define SPI_TD_SIZE 16
|
|
|
|
/* Bitfields in SR */
|
|
#define SPI_RDRF_OFFSET 0
|
|
#define SPI_RDRF_SIZE 1
|
|
#define SPI_TDRE_OFFSET 1
|
|
#define SPI_TDRE_SIZE 1
|
|
#define SPI_MODF_OFFSET 2
|
|
#define SPI_MODF_SIZE 1
|
|
#define SPI_OVRES_OFFSET 3
|
|
#define SPI_OVRES_SIZE 1
|
|
#define SPI_ENDRX_OFFSET 4
|
|
#define SPI_ENDRX_SIZE 1
|
|
#define SPI_ENDTX_OFFSET 5
|
|
#define SPI_ENDTX_SIZE 1
|
|
#define SPI_RXBUFF_OFFSET 6
|
|
#define SPI_RXBUFF_SIZE 1
|
|
#define SPI_TXBUFE_OFFSET 7
|
|
#define SPI_TXBUFE_SIZE 1
|
|
#define SPI_NSSR_OFFSET 8
|
|
#define SPI_NSSR_SIZE 1
|
|
#define SPI_TXEMPTY_OFFSET 9
|
|
#define SPI_TXEMPTY_SIZE 1
|
|
#define SPI_SPIENS_OFFSET 16
|
|
#define SPI_SPIENS_SIZE 1
|
|
#define SPI_TXFEF_OFFSET 24
|
|
#define SPI_TXFEF_SIZE 1
|
|
#define SPI_TXFFF_OFFSET 25
|
|
#define SPI_TXFFF_SIZE 1
|
|
#define SPI_TXFTHF_OFFSET 26
|
|
#define SPI_TXFTHF_SIZE 1
|
|
#define SPI_RXFEF_OFFSET 27
|
|
#define SPI_RXFEF_SIZE 1
|
|
#define SPI_RXFFF_OFFSET 28
|
|
#define SPI_RXFFF_SIZE 1
|
|
#define SPI_RXFTHF_OFFSET 29
|
|
#define SPI_RXFTHF_SIZE 1
|
|
#define SPI_TXFPTEF_OFFSET 30
|
|
#define SPI_TXFPTEF_SIZE 1
|
|
#define SPI_RXFPTEF_OFFSET 31
|
|
#define SPI_RXFPTEF_SIZE 1
|
|
|
|
/* Bitfields in CSR0 */
|
|
#define SPI_CPOL_OFFSET 0
|
|
#define SPI_CPOL_SIZE 1
|
|
#define SPI_NCPHA_OFFSET 1
|
|
#define SPI_NCPHA_SIZE 1
|
|
#define SPI_CSAAT_OFFSET 3
|
|
#define SPI_CSAAT_SIZE 1
|
|
#define SPI_BITS_OFFSET 4
|
|
#define SPI_BITS_SIZE 4
|
|
#define SPI_SCBR_OFFSET 8
|
|
#define SPI_SCBR_SIZE 8
|
|
#define SPI_DLYBS_OFFSET 16
|
|
#define SPI_DLYBS_SIZE 8
|
|
#define SPI_DLYBCT_OFFSET 24
|
|
#define SPI_DLYBCT_SIZE 8
|
|
|
|
/* Bitfields in RCR */
|
|
#define SPI_RXCTR_OFFSET 0
|
|
#define SPI_RXCTR_SIZE 16
|
|
|
|
/* Bitfields in TCR */
|
|
#define SPI_TXCTR_OFFSET 0
|
|
#define SPI_TXCTR_SIZE 16
|
|
|
|
/* Bitfields in RNCR */
|
|
#define SPI_RXNCR_OFFSET 0
|
|
#define SPI_RXNCR_SIZE 16
|
|
|
|
/* Bitfields in TNCR */
|
|
#define SPI_TXNCR_OFFSET 0
|
|
#define SPI_TXNCR_SIZE 16
|
|
|
|
/* Bitfields in PTCR */
|
|
#define SPI_RXTEN_OFFSET 0
|
|
#define SPI_RXTEN_SIZE 1
|
|
#define SPI_RXTDIS_OFFSET 1
|
|
#define SPI_RXTDIS_SIZE 1
|
|
#define SPI_TXTEN_OFFSET 8
|
|
#define SPI_TXTEN_SIZE 1
|
|
#define SPI_TXTDIS_OFFSET 9
|
|
#define SPI_TXTDIS_SIZE 1
|
|
|
|
/* Bitfields in FMR */
|
|
#define SPI_TXRDYM_OFFSET 0
|
|
#define SPI_TXRDYM_SIZE 2
|
|
#define SPI_RXRDYM_OFFSET 4
|
|
#define SPI_RXRDYM_SIZE 2
|
|
#define SPI_TXFTHRES_OFFSET 16
|
|
#define SPI_TXFTHRES_SIZE 6
|
|
#define SPI_RXFTHRES_OFFSET 24
|
|
#define SPI_RXFTHRES_SIZE 6
|
|
|
|
/* Bitfields in FLR */
|
|
#define SPI_TXFL_OFFSET 0
|
|
#define SPI_TXFL_SIZE 6
|
|
#define SPI_RXFL_OFFSET 16
|
|
#define SPI_RXFL_SIZE 6
|
|
|
|
/* Constants for BITS */
|
|
#define SPI_BITS_8_BPT 0
|
|
#define SPI_BITS_9_BPT 1
|
|
#define SPI_BITS_10_BPT 2
|
|
#define SPI_BITS_11_BPT 3
|
|
#define SPI_BITS_12_BPT 4
|
|
#define SPI_BITS_13_BPT 5
|
|
#define SPI_BITS_14_BPT 6
|
|
#define SPI_BITS_15_BPT 7
|
|
#define SPI_BITS_16_BPT 8
|
|
#define SPI_ONE_DATA 0
|
|
#define SPI_TWO_DATA 1
|
|
#define SPI_FOUR_DATA 2
|
|
|
|
/* Bit manipulation macros */
|
|
#define SPI_BIT(name) \
|
|
(1 << SPI_##name##_OFFSET)
|
|
#define SPI_BF(name, value) \
|
|
(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
|
|
#define SPI_BFEXT(name, value) \
|
|
(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
|
|
#define SPI_BFINS(name, value, old) \
|
|
(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
|
|
| SPI_BF(name, value))
|
|
|
|
/* Register access macros */
|
|
#define spi_readl(port, reg) \
|
|
readl_relaxed((port)->regs + SPI_##reg)
|
|
#define spi_writel(port, reg, value) \
|
|
writel_relaxed((value), (port)->regs + SPI_##reg)
|
|
#define spi_writew(port, reg, value) \
|
|
writew_relaxed((value), (port)->regs + SPI_##reg)
|
|
|
|
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
|
|
* cache operations; better heuristics consider wordsize and bitrate.
|
|
*/
|
|
#define DMA_MIN_BYTES 16
|
|
|
|
#define SPI_DMA_MIN_TIMEOUT (msecs_to_jiffies(1000))
|
|
#define SPI_DMA_TIMEOUT_PER_10K (msecs_to_jiffies(4))
|
|
|
|
#define AUTOSUSPEND_TIMEOUT 2000
|
|
|
|
struct atmel_spi_caps {
|
|
bool is_spi2;
|
|
bool has_wdrbt;
|
|
bool has_dma_support;
|
|
bool has_pdc_support;
|
|
};
|
|
|
|
/*
|
|
* The core SPI transfer engine just talks to a register bank to set up
|
|
* DMA transfers; transfer queue progress is driven by IRQs. The clock
|
|
* framework provides the base clock, subdivided for each spi_device.
|
|
*/
|
|
struct atmel_spi {
|
|
spinlock_t lock;
|
|
unsigned long flags;
|
|
|
|
phys_addr_t phybase;
|
|
void __iomem *regs;
|
|
int irq;
|
|
struct clk *clk;
|
|
struct platform_device *pdev;
|
|
unsigned long spi_clk;
|
|
|
|
struct spi_transfer *current_transfer;
|
|
int current_remaining_bytes;
|
|
int done_status;
|
|
dma_addr_t dma_addr_rx_bbuf;
|
|
dma_addr_t dma_addr_tx_bbuf;
|
|
void *addr_rx_bbuf;
|
|
void *addr_tx_bbuf;
|
|
|
|
struct completion xfer_completion;
|
|
|
|
struct atmel_spi_caps caps;
|
|
|
|
bool use_dma;
|
|
bool use_pdc;
|
|
|
|
bool keep_cs;
|
|
|
|
u32 fifo_size;
|
|
u8 native_cs_free;
|
|
u8 native_cs_for_gpio;
|
|
};
|
|
|
|
/* Controller-specific per-slave state */
|
|
struct atmel_spi_device {
|
|
u32 csr;
|
|
};
|
|
|
|
#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
|
|
#define INVALID_DMA_ADDRESS 0xffffffff
|
|
|
|
/*
|
|
* Version 2 of the SPI controller has
|
|
* - CR.LASTXFER
|
|
* - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
|
|
* - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
|
|
* - SPI_CSRx.CSAAT
|
|
* - SPI_CSRx.SBCR allows faster clocking
|
|
*/
|
|
static bool atmel_spi_is_v2(struct atmel_spi *as)
|
|
{
|
|
return as->caps.is_spi2;
|
|
}
|
|
|
|
/*
|
|
* Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
|
|
* they assume that spi slave device state will not change on deselect, so
|
|
* that automagic deselection is OK. ("NPCSx rises if no data is to be
|
|
* transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
|
|
* controllers have CSAAT and friends.
|
|
*
|
|
* Even controller newer than ar91rm9200, using GPIOs can make sens as
|
|
* it lets us support active-high chipselects despite the controller's
|
|
* belief that only active-low devices/systems exists.
|
|
*
|
|
* However, at91rm9200 has a second erratum whereby nCS0 doesn't work
|
|
* right when driven with GPIO. ("Mode Fault does not allow more than one
|
|
* Master on Chip Select 0.") No workaround exists for that ... so for
|
|
* nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
|
|
* and (c) will trigger that first erratum in some cases.
|
|
*/
|
|
|
|
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
|
|
{
|
|
struct atmel_spi_device *asd = spi->controller_state;
|
|
int chip_select;
|
|
u32 mr;
|
|
|
|
if (spi_get_csgpiod(spi, 0))
|
|
chip_select = as->native_cs_for_gpio;
|
|
else
|
|
chip_select = spi_get_chipselect(spi, 0);
|
|
|
|
if (atmel_spi_is_v2(as)) {
|
|
spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
|
|
/* For the low SPI version, there is a issue that PDC transfer
|
|
* on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
|
|
*/
|
|
spi_writel(as, CSR0, asd->csr);
|
|
if (as->caps.has_wdrbt) {
|
|
spi_writel(as, MR,
|
|
SPI_BF(PCS, ~(0x01 << chip_select))
|
|
| SPI_BIT(WDRBT)
|
|
| SPI_BIT(MODFDIS)
|
|
| SPI_BIT(MSTR));
|
|
} else {
|
|
spi_writel(as, MR,
|
|
SPI_BF(PCS, ~(0x01 << chip_select))
|
|
| SPI_BIT(MODFDIS)
|
|
| SPI_BIT(MSTR));
|
|
}
|
|
|
|
mr = spi_readl(as, MR);
|
|
} else {
|
|
u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
|
|
int i;
|
|
u32 csr;
|
|
|
|
/* Make sure clock polarity is correct */
|
|
for (i = 0; i < spi->controller->num_chipselect; i++) {
|
|
csr = spi_readl(as, CSR0 + 4 * i);
|
|
if ((csr ^ cpol) & SPI_BIT(CPOL))
|
|
spi_writel(as, CSR0 + 4 * i,
|
|
csr ^ SPI_BIT(CPOL));
|
|
}
|
|
|
|
mr = spi_readl(as, MR);
|
|
mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
|
|
spi_writel(as, MR, mr);
|
|
}
|
|
|
|
dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
|
|
}
|
|
|
|
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
|
|
{
|
|
int chip_select;
|
|
u32 mr;
|
|
|
|
if (spi_get_csgpiod(spi, 0))
|
|
chip_select = as->native_cs_for_gpio;
|
|
else
|
|
chip_select = spi_get_chipselect(spi, 0);
|
|
|
|
/* only deactivate *this* device; sometimes transfers to
|
|
* another device may be active when this routine is called.
|
|
*/
|
|
mr = spi_readl(as, MR);
|
|
if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
|
|
mr = SPI_BFINS(PCS, 0xf, mr);
|
|
spi_writel(as, MR, mr);
|
|
}
|
|
|
|
dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
|
|
|
|
if (!spi_get_csgpiod(spi, 0))
|
|
spi_writel(as, CR, SPI_BIT(LASTXFER));
|
|
}
|
|
|
|
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
|
|
{
|
|
spin_lock_irqsave(&as->lock, as->flags);
|
|
}
|
|
|
|
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
|
|
{
|
|
spin_unlock_irqrestore(&as->lock, as->flags);
|
|
}
|
|
|
|
static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
|
|
{
|
|
return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
|
|
}
|
|
|
|
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
return as->use_dma && xfer->len >= DMA_MIN_BYTES;
|
|
}
|
|
|
|
static bool atmel_spi_can_dma(struct spi_controller *host,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
|
|
if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
|
|
return atmel_spi_use_dma(as, xfer) &&
|
|
!atmel_spi_is_vmalloc_xfer(xfer);
|
|
else
|
|
return atmel_spi_use_dma(as, xfer);
|
|
|
|
}
|
|
|
|
static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
|
|
{
|
|
struct spi_controller *host = platform_get_drvdata(as->pdev);
|
|
struct dma_slave_config slave_config;
|
|
int err = 0;
|
|
|
|
if (bits_per_word > 8) {
|
|
slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
} else {
|
|
slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
}
|
|
|
|
slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
|
|
slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
|
|
slave_config.src_maxburst = 1;
|
|
slave_config.dst_maxburst = 1;
|
|
slave_config.device_fc = false;
|
|
|
|
/*
|
|
* This driver uses fixed peripheral select mode (PS bit set to '0' in
|
|
* the Mode Register).
|
|
* So according to the datasheet, when FIFOs are available (and
|
|
* enabled), the Transmit FIFO operates in Multiple Data Mode.
|
|
* In this mode, up to 2 data, not 4, can be written into the Transmit
|
|
* Data Register in a single access.
|
|
* However, the first data has to be written into the lowest 16 bits and
|
|
* the second data into the highest 16 bits of the Transmit
|
|
* Data Register. For 8bit data (the most frequent case), it would
|
|
* require to rework tx_buf so each data would actually fit 16 bits.
|
|
* So we'd rather write only one data at the time. Hence the transmit
|
|
* path works the same whether FIFOs are available (and enabled) or not.
|
|
*/
|
|
if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
|
|
dev_err(&as->pdev->dev,
|
|
"failed to configure tx dma channel\n");
|
|
err = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* This driver configures the spi controller for host mode (MSTR bit
|
|
* set to '1' in the Mode Register).
|
|
* So according to the datasheet, when FIFOs are available (and
|
|
* enabled), the Receive FIFO operates in Single Data Mode.
|
|
* So the receive path works the same whether FIFOs are available (and
|
|
* enabled) or not.
|
|
*/
|
|
if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
|
|
dev_err(&as->pdev->dev,
|
|
"failed to configure rx dma channel\n");
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int atmel_spi_configure_dma(struct spi_controller *host,
|
|
struct atmel_spi *as)
|
|
{
|
|
struct device *dev = &as->pdev->dev;
|
|
int err;
|
|
|
|
host->dma_tx = dma_request_chan(dev, "tx");
|
|
if (IS_ERR(host->dma_tx)) {
|
|
err = PTR_ERR(host->dma_tx);
|
|
dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
|
|
goto error_clear;
|
|
}
|
|
|
|
host->dma_rx = dma_request_chan(dev, "rx");
|
|
if (IS_ERR(host->dma_rx)) {
|
|
err = PTR_ERR(host->dma_rx);
|
|
/*
|
|
* No reason to check EPROBE_DEFER here since we have already
|
|
* requested tx channel.
|
|
*/
|
|
dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
|
|
goto error;
|
|
}
|
|
|
|
err = atmel_spi_dma_slave_config(as, 8);
|
|
if (err)
|
|
goto error;
|
|
|
|
dev_info(&as->pdev->dev,
|
|
"Using %s (tx) and %s (rx) for DMA transfers\n",
|
|
dma_chan_name(host->dma_tx),
|
|
dma_chan_name(host->dma_rx));
|
|
|
|
return 0;
|
|
error:
|
|
if (!IS_ERR(host->dma_rx))
|
|
dma_release_channel(host->dma_rx);
|
|
if (!IS_ERR(host->dma_tx))
|
|
dma_release_channel(host->dma_tx);
|
|
error_clear:
|
|
host->dma_tx = host->dma_rx = NULL;
|
|
return err;
|
|
}
|
|
|
|
static void atmel_spi_stop_dma(struct spi_controller *host)
|
|
{
|
|
if (host->dma_rx)
|
|
dmaengine_terminate_all(host->dma_rx);
|
|
if (host->dma_tx)
|
|
dmaengine_terminate_all(host->dma_tx);
|
|
}
|
|
|
|
static void atmel_spi_release_dma(struct spi_controller *host)
|
|
{
|
|
if (host->dma_rx) {
|
|
dma_release_channel(host->dma_rx);
|
|
host->dma_rx = NULL;
|
|
}
|
|
if (host->dma_tx) {
|
|
dma_release_channel(host->dma_tx);
|
|
host->dma_tx = NULL;
|
|
}
|
|
}
|
|
|
|
/* This function is called by the DMA driver from tasklet context */
|
|
static void dma_callback(void *data)
|
|
{
|
|
struct spi_controller *host = data;
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
|
|
if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
|
|
IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
|
|
memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
|
|
as->current_transfer->len);
|
|
}
|
|
complete(&as->xfer_completion);
|
|
}
|
|
|
|
/*
|
|
* Next transfer using PIO without FIFO.
|
|
*/
|
|
static void atmel_spi_next_xfer_single(struct spi_controller *host,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
|
|
|
|
dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
|
|
|
|
/* Make sure data is not remaining in RDR */
|
|
spi_readl(as, RDR);
|
|
while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
|
|
spi_readl(as, RDR);
|
|
cpu_relax();
|
|
}
|
|
|
|
if (xfer->bits_per_word > 8)
|
|
spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
|
|
else
|
|
spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
|
|
|
|
dev_dbg(host->dev.parent,
|
|
" start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
|
|
xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
|
|
xfer->bits_per_word);
|
|
|
|
/* Enable relevant interrupts */
|
|
spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
|
|
}
|
|
|
|
/*
|
|
* Next transfer using PIO with FIFO.
|
|
*/
|
|
static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
u32 current_remaining_data, num_data;
|
|
u32 offset = xfer->len - as->current_remaining_bytes;
|
|
const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
|
|
const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
|
|
u16 td0, td1;
|
|
u32 fifomr;
|
|
|
|
dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
|
|
|
|
/* Compute the number of data to transfer in the current iteration */
|
|
current_remaining_data = ((xfer->bits_per_word > 8) ?
|
|
((u32)as->current_remaining_bytes >> 1) :
|
|
(u32)as->current_remaining_bytes);
|
|
num_data = min(current_remaining_data, as->fifo_size);
|
|
|
|
/* Flush RX and TX FIFOs */
|
|
spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
|
|
while (spi_readl(as, FLR))
|
|
cpu_relax();
|
|
|
|
/* Set RX FIFO Threshold to the number of data to transfer */
|
|
fifomr = spi_readl(as, FMR);
|
|
spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
|
|
|
|
/* Clear FIFO flags in the Status Register, especially RXFTHF */
|
|
(void)spi_readl(as, SR);
|
|
|
|
/* Fill TX FIFO */
|
|
while (num_data >= 2) {
|
|
if (xfer->bits_per_word > 8) {
|
|
td0 = *words++;
|
|
td1 = *words++;
|
|
} else {
|
|
td0 = *bytes++;
|
|
td1 = *bytes++;
|
|
}
|
|
|
|
spi_writel(as, TDR, (td1 << 16) | td0);
|
|
num_data -= 2;
|
|
}
|
|
|
|
if (num_data) {
|
|
if (xfer->bits_per_word > 8)
|
|
td0 = *words++;
|
|
else
|
|
td0 = *bytes++;
|
|
|
|
spi_writew(as, TDR, td0);
|
|
num_data--;
|
|
}
|
|
|
|
dev_dbg(host->dev.parent,
|
|
" start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
|
|
xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
|
|
xfer->bits_per_word);
|
|
|
|
/*
|
|
* Enable RX FIFO Threshold Flag interrupt to be notified about
|
|
* transfer completion.
|
|
*/
|
|
spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
|
|
}
|
|
|
|
/*
|
|
* Next transfer using PIO.
|
|
*/
|
|
static void atmel_spi_next_xfer_pio(struct spi_controller *host,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
|
|
if (as->fifo_size)
|
|
atmel_spi_next_xfer_fifo(host, xfer);
|
|
else
|
|
atmel_spi_next_xfer_single(host, xfer);
|
|
}
|
|
|
|
/*
|
|
* Submit next transfer for DMA.
|
|
*/
|
|
static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
|
|
struct spi_transfer *xfer,
|
|
u32 *plen)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
struct dma_chan *rxchan = host->dma_rx;
|
|
struct dma_chan *txchan = host->dma_tx;
|
|
struct dma_async_tx_descriptor *rxdesc;
|
|
struct dma_async_tx_descriptor *txdesc;
|
|
dma_cookie_t cookie;
|
|
|
|
dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
|
|
|
|
/* Check that the channels are available */
|
|
if (!rxchan || !txchan)
|
|
return -ENODEV;
|
|
|
|
|
|
*plen = xfer->len;
|
|
|
|
if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
|
|
goto err_exit;
|
|
|
|
/* Send both scatterlists */
|
|
if (atmel_spi_is_vmalloc_xfer(xfer) &&
|
|
IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
|
|
rxdesc = dmaengine_prep_slave_single(rxchan,
|
|
as->dma_addr_rx_bbuf,
|
|
xfer->len,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT |
|
|
DMA_CTRL_ACK);
|
|
} else {
|
|
rxdesc = dmaengine_prep_slave_sg(rxchan,
|
|
xfer->rx_sg.sgl,
|
|
xfer->rx_sg.nents,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT |
|
|
DMA_CTRL_ACK);
|
|
}
|
|
if (!rxdesc)
|
|
goto err_dma;
|
|
|
|
if (atmel_spi_is_vmalloc_xfer(xfer) &&
|
|
IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
|
|
memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
|
|
txdesc = dmaengine_prep_slave_single(txchan,
|
|
as->dma_addr_tx_bbuf,
|
|
xfer->len, DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT |
|
|
DMA_CTRL_ACK);
|
|
} else {
|
|
txdesc = dmaengine_prep_slave_sg(txchan,
|
|
xfer->tx_sg.sgl,
|
|
xfer->tx_sg.nents,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT |
|
|
DMA_CTRL_ACK);
|
|
}
|
|
if (!txdesc)
|
|
goto err_dma;
|
|
|
|
dev_dbg(host->dev.parent,
|
|
" start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
|
|
xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
|
|
xfer->rx_buf, (unsigned long long)xfer->rx_dma);
|
|
|
|
/* Enable relevant interrupts */
|
|
spi_writel(as, IER, SPI_BIT(OVRES));
|
|
|
|
/* Put the callback on the RX transfer only, that should finish last */
|
|
rxdesc->callback = dma_callback;
|
|
rxdesc->callback_param = host;
|
|
|
|
/* Submit and fire RX and TX with TX last so we're ready to read! */
|
|
cookie = rxdesc->tx_submit(rxdesc);
|
|
if (dma_submit_error(cookie))
|
|
goto err_dma;
|
|
cookie = txdesc->tx_submit(txdesc);
|
|
if (dma_submit_error(cookie))
|
|
goto err_dma;
|
|
rxchan->device->device_issue_pending(rxchan);
|
|
txchan->device->device_issue_pending(txchan);
|
|
|
|
return 0;
|
|
|
|
err_dma:
|
|
spi_writel(as, IDR, SPI_BIT(OVRES));
|
|
atmel_spi_stop_dma(host);
|
|
err_exit:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void atmel_spi_next_xfer_data(struct spi_controller *host,
|
|
struct spi_transfer *xfer,
|
|
dma_addr_t *tx_dma,
|
|
dma_addr_t *rx_dma,
|
|
u32 *plen)
|
|
{
|
|
*rx_dma = xfer->rx_dma + xfer->len - *plen;
|
|
*tx_dma = xfer->tx_dma + xfer->len - *plen;
|
|
if (*plen > host->max_dma_len)
|
|
*plen = host->max_dma_len;
|
|
}
|
|
|
|
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
u32 scbr, csr;
|
|
unsigned long bus_hz;
|
|
int chip_select;
|
|
|
|
if (spi_get_csgpiod(spi, 0))
|
|
chip_select = as->native_cs_for_gpio;
|
|
else
|
|
chip_select = spi_get_chipselect(spi, 0);
|
|
|
|
/* v1 chips start out at half the peripheral bus speed. */
|
|
bus_hz = as->spi_clk;
|
|
if (!atmel_spi_is_v2(as))
|
|
bus_hz /= 2;
|
|
|
|
/*
|
|
* Calculate the lowest divider that satisfies the
|
|
* constraint, assuming div32/fdiv/mbz == 0.
|
|
*/
|
|
scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
|
|
|
|
/*
|
|
* If the resulting divider doesn't fit into the
|
|
* register bitfield, we can't satisfy the constraint.
|
|
*/
|
|
if (scbr >= (1 << SPI_SCBR_SIZE)) {
|
|
dev_err(&spi->dev,
|
|
"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
|
|
xfer->speed_hz, scbr, bus_hz/255);
|
|
return -EINVAL;
|
|
}
|
|
if (scbr == 0) {
|
|
dev_err(&spi->dev,
|
|
"setup: %d Hz too high, scbr %u; max %ld Hz\n",
|
|
xfer->speed_hz, scbr, bus_hz);
|
|
return -EINVAL;
|
|
}
|
|
csr = spi_readl(as, CSR0 + 4 * chip_select);
|
|
csr = SPI_BFINS(SCBR, scbr, csr);
|
|
spi_writel(as, CSR0 + 4 * chip_select, csr);
|
|
xfer->effective_speed_hz = bus_hz / scbr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Submit next transfer for PDC.
|
|
* lock is held, spi irq is blocked
|
|
*/
|
|
static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
u32 len;
|
|
dma_addr_t tx_dma, rx_dma;
|
|
|
|
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
|
|
|
|
len = as->current_remaining_bytes;
|
|
atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
|
|
as->current_remaining_bytes -= len;
|
|
|
|
spi_writel(as, RPR, rx_dma);
|
|
spi_writel(as, TPR, tx_dma);
|
|
|
|
if (xfer->bits_per_word > 8)
|
|
len >>= 1;
|
|
spi_writel(as, RCR, len);
|
|
spi_writel(as, TCR, len);
|
|
|
|
dev_dbg(&host->dev,
|
|
" start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
|
|
xfer, xfer->len, xfer->tx_buf,
|
|
(unsigned long long)xfer->tx_dma, xfer->rx_buf,
|
|
(unsigned long long)xfer->rx_dma);
|
|
|
|
if (as->current_remaining_bytes) {
|
|
len = as->current_remaining_bytes;
|
|
atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
|
|
as->current_remaining_bytes -= len;
|
|
|
|
spi_writel(as, RNPR, rx_dma);
|
|
spi_writel(as, TNPR, tx_dma);
|
|
|
|
if (xfer->bits_per_word > 8)
|
|
len >>= 1;
|
|
spi_writel(as, RNCR, len);
|
|
spi_writel(as, TNCR, len);
|
|
|
|
dev_dbg(&host->dev,
|
|
" next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
|
|
xfer, xfer->len, xfer->tx_buf,
|
|
(unsigned long long)xfer->tx_dma, xfer->rx_buf,
|
|
(unsigned long long)xfer->rx_dma);
|
|
}
|
|
|
|
/* REVISIT: We're waiting for RXBUFF before we start the next
|
|
* transfer because we need to handle some difficult timing
|
|
* issues otherwise. If we wait for TXBUFE in one transfer and
|
|
* then starts waiting for RXBUFF in the next, it's difficult
|
|
* to tell the difference between the RXBUFF interrupt we're
|
|
* actually waiting for and the RXBUFF interrupt of the
|
|
* previous transfer.
|
|
*
|
|
* It should be doable, though. Just not now...
|
|
*/
|
|
spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
|
|
spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
|
|
}
|
|
|
|
/*
|
|
* For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
|
|
* - The buffer is either valid for CPU access, else NULL
|
|
* - If the buffer is valid, so is its DMA address
|
|
*
|
|
* This driver manages the dma address unless message->is_dma_mapped.
|
|
*/
|
|
static int
|
|
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
|
|
{
|
|
struct device *dev = &as->pdev->dev;
|
|
|
|
xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
|
|
if (xfer->tx_buf) {
|
|
/* tx_buf is a const void* where we need a void * for the dma
|
|
* mapping */
|
|
void *nonconst_tx = (void *)xfer->tx_buf;
|
|
|
|
xfer->tx_dma = dma_map_single(dev,
|
|
nonconst_tx, xfer->len,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, xfer->tx_dma))
|
|
return -ENOMEM;
|
|
}
|
|
if (xfer->rx_buf) {
|
|
xfer->rx_dma = dma_map_single(dev,
|
|
xfer->rx_buf, xfer->len,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(dev, xfer->rx_dma)) {
|
|
if (xfer->tx_buf)
|
|
dma_unmap_single(dev,
|
|
xfer->tx_dma, xfer->len,
|
|
DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
if (xfer->tx_dma != INVALID_DMA_ADDRESS)
|
|
dma_unmap_single(host->dev.parent, xfer->tx_dma,
|
|
xfer->len, DMA_TO_DEVICE);
|
|
if (xfer->rx_dma != INVALID_DMA_ADDRESS)
|
|
dma_unmap_single(host->dev.parent, xfer->rx_dma,
|
|
xfer->len, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
|
|
{
|
|
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
|
|
}
|
|
|
|
static void
|
|
atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
|
|
{
|
|
u8 *rxp;
|
|
u16 *rxp16;
|
|
unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
|
|
|
|
if (xfer->bits_per_word > 8) {
|
|
rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
|
|
*rxp16 = spi_readl(as, RDR);
|
|
} else {
|
|
rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
|
|
*rxp = spi_readl(as, RDR);
|
|
}
|
|
if (xfer->bits_per_word > 8) {
|
|
if (as->current_remaining_bytes > 2)
|
|
as->current_remaining_bytes -= 2;
|
|
else
|
|
as->current_remaining_bytes = 0;
|
|
} else {
|
|
as->current_remaining_bytes--;
|
|
}
|
|
}
|
|
|
|
static void
|
|
atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
|
|
{
|
|
u32 fifolr = spi_readl(as, FLR);
|
|
u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
|
|
u32 offset = xfer->len - as->current_remaining_bytes;
|
|
u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
|
|
u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
|
|
u16 rd; /* RD field is the lowest 16 bits of RDR */
|
|
|
|
/* Update the number of remaining bytes to transfer */
|
|
num_bytes = ((xfer->bits_per_word > 8) ?
|
|
(num_data << 1) :
|
|
num_data);
|
|
|
|
if (as->current_remaining_bytes > num_bytes)
|
|
as->current_remaining_bytes -= num_bytes;
|
|
else
|
|
as->current_remaining_bytes = 0;
|
|
|
|
/* Handle odd number of bytes when data are more than 8bit width */
|
|
if (xfer->bits_per_word > 8)
|
|
as->current_remaining_bytes &= ~0x1;
|
|
|
|
/* Read data */
|
|
while (num_data) {
|
|
rd = spi_readl(as, RDR);
|
|
if (xfer->bits_per_word > 8)
|
|
*words++ = rd;
|
|
else
|
|
*bytes++ = rd;
|
|
num_data--;
|
|
}
|
|
}
|
|
|
|
/* Called from IRQ
|
|
*
|
|
* Must update "current_remaining_bytes" to keep track of data
|
|
* to transfer.
|
|
*/
|
|
static void
|
|
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
|
|
{
|
|
if (as->fifo_size)
|
|
atmel_spi_pump_fifo_data(as, xfer);
|
|
else
|
|
atmel_spi_pump_single_data(as, xfer);
|
|
}
|
|
|
|
/* Interrupt
|
|
*
|
|
*/
|
|
static irqreturn_t
|
|
atmel_spi_pio_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct spi_controller *host = dev_id;
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
u32 status, pending, imr;
|
|
struct spi_transfer *xfer;
|
|
int ret = IRQ_NONE;
|
|
|
|
imr = spi_readl(as, IMR);
|
|
status = spi_readl(as, SR);
|
|
pending = status & imr;
|
|
|
|
if (pending & SPI_BIT(OVRES)) {
|
|
ret = IRQ_HANDLED;
|
|
spi_writel(as, IDR, SPI_BIT(OVRES));
|
|
dev_warn(host->dev.parent, "overrun\n");
|
|
|
|
/*
|
|
* When we get an overrun, we disregard the current
|
|
* transfer. Data will not be copied back from any
|
|
* bounce buffer and msg->actual_len will not be
|
|
* updated with the last xfer.
|
|
*
|
|
* We will also not process any remaning transfers in
|
|
* the message.
|
|
*/
|
|
as->done_status = -EIO;
|
|
smp_wmb();
|
|
|
|
/* Clear any overrun happening while cleaning up */
|
|
spi_readl(as, SR);
|
|
|
|
complete(&as->xfer_completion);
|
|
|
|
} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
|
|
atmel_spi_lock(as);
|
|
|
|
if (as->current_remaining_bytes) {
|
|
ret = IRQ_HANDLED;
|
|
xfer = as->current_transfer;
|
|
atmel_spi_pump_pio_data(as, xfer);
|
|
if (!as->current_remaining_bytes)
|
|
spi_writel(as, IDR, pending);
|
|
|
|
complete(&as->xfer_completion);
|
|
}
|
|
|
|
atmel_spi_unlock(as);
|
|
} else {
|
|
WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
|
|
ret = IRQ_HANDLED;
|
|
spi_writel(as, IDR, pending);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t
|
|
atmel_spi_pdc_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct spi_controller *host = dev_id;
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
u32 status, pending, imr;
|
|
int ret = IRQ_NONE;
|
|
|
|
imr = spi_readl(as, IMR);
|
|
status = spi_readl(as, SR);
|
|
pending = status & imr;
|
|
|
|
if (pending & SPI_BIT(OVRES)) {
|
|
|
|
ret = IRQ_HANDLED;
|
|
|
|
spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
|
|
| SPI_BIT(OVRES)));
|
|
|
|
/* Clear any overrun happening while cleaning up */
|
|
spi_readl(as, SR);
|
|
|
|
as->done_status = -EIO;
|
|
|
|
complete(&as->xfer_completion);
|
|
|
|
} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
|
|
ret = IRQ_HANDLED;
|
|
|
|
spi_writel(as, IDR, pending);
|
|
|
|
complete(&as->xfer_completion);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
|
|
{
|
|
struct spi_delay *delay = &spi->word_delay;
|
|
u32 value = delay->value;
|
|
|
|
switch (delay->unit) {
|
|
case SPI_DELAY_UNIT_NSECS:
|
|
value /= 1000;
|
|
break;
|
|
case SPI_DELAY_UNIT_USECS:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return (as->spi_clk / 1000000 * value) >> 5;
|
|
}
|
|
|
|
static void initialize_native_cs_for_gpio(struct atmel_spi *as)
|
|
{
|
|
int i;
|
|
struct spi_controller *host = platform_get_drvdata(as->pdev);
|
|
|
|
if (!as->native_cs_free)
|
|
return; /* already initialized */
|
|
|
|
if (!host->cs_gpiods)
|
|
return; /* No CS GPIO */
|
|
|
|
/*
|
|
* On the first version of the controller (AT91RM9200), CS0
|
|
* can't be used associated with GPIO
|
|
*/
|
|
if (atmel_spi_is_v2(as))
|
|
i = 0;
|
|
else
|
|
i = 1;
|
|
|
|
for (; i < 4; i++)
|
|
if (host->cs_gpiods[i])
|
|
as->native_cs_free |= BIT(i);
|
|
|
|
if (as->native_cs_free)
|
|
as->native_cs_for_gpio = ffs(as->native_cs_free);
|
|
}
|
|
|
|
static int atmel_spi_setup(struct spi_device *spi)
|
|
{
|
|
struct atmel_spi *as;
|
|
struct atmel_spi_device *asd;
|
|
u32 csr;
|
|
unsigned int bits = spi->bits_per_word;
|
|
int chip_select;
|
|
int word_delay_csr;
|
|
|
|
as = spi_controller_get_devdata(spi->controller);
|
|
|
|
/* see notes above re chipselect */
|
|
if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
|
|
dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Setup() is called during spi_register_controller(aka
|
|
* spi_register_master) but after all membmers of the cs_gpiod
|
|
* array have been filled, so we can looked for which native
|
|
* CS will be free for using with GPIO
|
|
*/
|
|
initialize_native_cs_for_gpio(as);
|
|
|
|
if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
|
|
dev_err(&spi->dev,
|
|
"No native CS available to support this GPIO CS\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (spi_get_csgpiod(spi, 0))
|
|
chip_select = as->native_cs_for_gpio;
|
|
else
|
|
chip_select = spi_get_chipselect(spi, 0);
|
|
|
|
csr = SPI_BF(BITS, bits - 8);
|
|
if (spi->mode & SPI_CPOL)
|
|
csr |= SPI_BIT(CPOL);
|
|
if (!(spi->mode & SPI_CPHA))
|
|
csr |= SPI_BIT(NCPHA);
|
|
|
|
if (!spi_get_csgpiod(spi, 0))
|
|
csr |= SPI_BIT(CSAAT);
|
|
csr |= SPI_BF(DLYBS, 0);
|
|
|
|
word_delay_csr = atmel_word_delay_csr(spi, as);
|
|
if (word_delay_csr < 0)
|
|
return word_delay_csr;
|
|
|
|
/* DLYBCT adds delays between words. This is useful for slow devices
|
|
* that need a bit of time to setup the next transfer.
|
|
*/
|
|
csr |= SPI_BF(DLYBCT, word_delay_csr);
|
|
|
|
asd = spi->controller_state;
|
|
if (!asd) {
|
|
asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
|
|
if (!asd)
|
|
return -ENOMEM;
|
|
|
|
spi->controller_state = asd;
|
|
}
|
|
|
|
asd->csr = csr;
|
|
|
|
dev_dbg(&spi->dev,
|
|
"setup: bpw %u mode 0x%x -> csr%d %08x\n",
|
|
bits, spi->mode, spi_get_chipselect(spi, 0), csr);
|
|
|
|
if (!atmel_spi_is_v2(as))
|
|
spi_writel(as, CSR0 + 4 * chip_select, csr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
|
|
{
|
|
struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
|
|
/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
|
|
* since we already have routines for activate/deactivate translate
|
|
* high/low to active/inactive
|
|
*/
|
|
enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
|
|
|
|
if (enable) {
|
|
cs_activate(as, spi);
|
|
} else {
|
|
cs_deactivate(as, spi);
|
|
}
|
|
|
|
}
|
|
|
|
static int atmel_spi_one_transfer(struct spi_controller *host,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct atmel_spi *as;
|
|
u8 bits;
|
|
u32 len;
|
|
struct atmel_spi_device *asd;
|
|
int timeout;
|
|
int ret;
|
|
unsigned int dma_timeout;
|
|
long ret_timeout;
|
|
|
|
as = spi_controller_get_devdata(host);
|
|
|
|
asd = spi->controller_state;
|
|
bits = (asd->csr >> 4) & 0xf;
|
|
if (bits != xfer->bits_per_word - 8) {
|
|
dev_dbg(&spi->dev,
|
|
"you can't yet change bits_per_word in transfers\n");
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
/*
|
|
* DMA map early, for performance (empties dcache ASAP) and
|
|
* better fault reporting.
|
|
*/
|
|
if ((!host->cur_msg->is_dma_mapped)
|
|
&& as->use_pdc) {
|
|
if (atmel_spi_dma_map_xfer(as, xfer) < 0)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
atmel_spi_set_xfer_speed(as, spi, xfer);
|
|
|
|
as->done_status = 0;
|
|
as->current_transfer = xfer;
|
|
as->current_remaining_bytes = xfer->len;
|
|
while (as->current_remaining_bytes) {
|
|
reinit_completion(&as->xfer_completion);
|
|
|
|
if (as->use_pdc) {
|
|
atmel_spi_lock(as);
|
|
atmel_spi_pdc_next_xfer(host, xfer);
|
|
atmel_spi_unlock(as);
|
|
} else if (atmel_spi_use_dma(as, xfer)) {
|
|
len = as->current_remaining_bytes;
|
|
ret = atmel_spi_next_xfer_dma_submit(host,
|
|
xfer, &len);
|
|
if (ret) {
|
|
dev_err(&spi->dev,
|
|
"unable to use DMA, fallback to PIO\n");
|
|
as->done_status = ret;
|
|
break;
|
|
} else {
|
|
as->current_remaining_bytes -= len;
|
|
if (as->current_remaining_bytes < 0)
|
|
as->current_remaining_bytes = 0;
|
|
}
|
|
} else {
|
|
atmel_spi_lock(as);
|
|
atmel_spi_next_xfer_pio(host, xfer);
|
|
atmel_spi_unlock(as);
|
|
}
|
|
|
|
dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
|
|
ret_timeout = wait_for_completion_interruptible_timeout(&as->xfer_completion,
|
|
dma_timeout);
|
|
if (ret_timeout <= 0) {
|
|
dev_err(&spi->dev, "spi transfer %s\n",
|
|
!ret_timeout ? "timeout" : "canceled");
|
|
as->done_status = ret_timeout < 0 ? ret_timeout : -EIO;
|
|
}
|
|
|
|
if (as->done_status)
|
|
break;
|
|
}
|
|
|
|
if (as->done_status) {
|
|
if (as->use_pdc) {
|
|
dev_warn(host->dev.parent,
|
|
"overrun (%u/%u remaining)\n",
|
|
spi_readl(as, TCR), spi_readl(as, RCR));
|
|
|
|
/*
|
|
* Clean up DMA registers and make sure the data
|
|
* registers are empty.
|
|
*/
|
|
spi_writel(as, RNCR, 0);
|
|
spi_writel(as, TNCR, 0);
|
|
spi_writel(as, RCR, 0);
|
|
spi_writel(as, TCR, 0);
|
|
for (timeout = 1000; timeout; timeout--)
|
|
if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
|
|
break;
|
|
if (!timeout)
|
|
dev_warn(host->dev.parent,
|
|
"timeout waiting for TXEMPTY");
|
|
while (spi_readl(as, SR) & SPI_BIT(RDRF))
|
|
spi_readl(as, RDR);
|
|
|
|
/* Clear any overrun happening while cleaning up */
|
|
spi_readl(as, SR);
|
|
|
|
} else if (atmel_spi_use_dma(as, xfer)) {
|
|
atmel_spi_stop_dma(host);
|
|
}
|
|
}
|
|
|
|
if (!host->cur_msg->is_dma_mapped
|
|
&& as->use_pdc)
|
|
atmel_spi_dma_unmap_xfer(host, xfer);
|
|
|
|
if (as->use_pdc)
|
|
atmel_spi_disable_pdc_transfer(as);
|
|
|
|
return as->done_status;
|
|
}
|
|
|
|
static void atmel_spi_cleanup(struct spi_device *spi)
|
|
{
|
|
struct atmel_spi_device *asd = spi->controller_state;
|
|
|
|
if (!asd)
|
|
return;
|
|
|
|
spi->controller_state = NULL;
|
|
kfree(asd);
|
|
}
|
|
|
|
static inline unsigned int atmel_get_version(struct atmel_spi *as)
|
|
{
|
|
return spi_readl(as, VERSION) & 0x00000fff;
|
|
}
|
|
|
|
static void atmel_get_caps(struct atmel_spi *as)
|
|
{
|
|
unsigned int version;
|
|
|
|
version = atmel_get_version(as);
|
|
|
|
as->caps.is_spi2 = version > 0x121;
|
|
as->caps.has_wdrbt = version >= 0x210;
|
|
as->caps.has_dma_support = version >= 0x212;
|
|
as->caps.has_pdc_support = version < 0x212;
|
|
}
|
|
|
|
static void atmel_spi_init(struct atmel_spi *as)
|
|
{
|
|
spi_writel(as, CR, SPI_BIT(SWRST));
|
|
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
|
|
|
|
/* It is recommended to enable FIFOs first thing after reset */
|
|
if (as->fifo_size)
|
|
spi_writel(as, CR, SPI_BIT(FIFOEN));
|
|
|
|
if (as->caps.has_wdrbt) {
|
|
spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
|
|
| SPI_BIT(MSTR));
|
|
} else {
|
|
spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
|
|
}
|
|
|
|
if (as->use_pdc)
|
|
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
|
|
spi_writel(as, CR, SPI_BIT(SPIEN));
|
|
}
|
|
|
|
static int atmel_spi_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *regs;
|
|
int irq;
|
|
struct clk *clk;
|
|
int ret;
|
|
struct spi_controller *host;
|
|
struct atmel_spi *as;
|
|
|
|
/* Select default pin state */
|
|
pinctrl_pm_select_default_state(&pdev->dev);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
clk = devm_clk_get(&pdev->dev, "spi_clk");
|
|
if (IS_ERR(clk))
|
|
return PTR_ERR(clk);
|
|
|
|
/* setup spi core then atmel-specific driver state */
|
|
host = spi_alloc_host(&pdev->dev, sizeof(*as));
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
/* the spi->mode bits understood by this driver: */
|
|
host->use_gpio_descriptors = true;
|
|
host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
|
|
host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
|
|
host->dev.of_node = pdev->dev.of_node;
|
|
host->bus_num = pdev->id;
|
|
host->num_chipselect = 4;
|
|
host->setup = atmel_spi_setup;
|
|
host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
|
|
SPI_CONTROLLER_GPIO_SS);
|
|
host->transfer_one = atmel_spi_one_transfer;
|
|
host->set_cs = atmel_spi_set_cs;
|
|
host->cleanup = atmel_spi_cleanup;
|
|
host->auto_runtime_pm = true;
|
|
host->max_dma_len = SPI_MAX_DMA_XFER;
|
|
host->can_dma = atmel_spi_can_dma;
|
|
platform_set_drvdata(pdev, host);
|
|
|
|
as = spi_controller_get_devdata(host);
|
|
|
|
spin_lock_init(&as->lock);
|
|
|
|
as->pdev = pdev;
|
|
as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
|
|
if (IS_ERR(as->regs)) {
|
|
ret = PTR_ERR(as->regs);
|
|
goto out_unmap_regs;
|
|
}
|
|
as->phybase = regs->start;
|
|
as->irq = irq;
|
|
as->clk = clk;
|
|
|
|
init_completion(&as->xfer_completion);
|
|
|
|
atmel_get_caps(as);
|
|
|
|
as->use_dma = false;
|
|
as->use_pdc = false;
|
|
if (as->caps.has_dma_support) {
|
|
ret = atmel_spi_configure_dma(host, as);
|
|
if (ret == 0) {
|
|
as->use_dma = true;
|
|
} else if (ret == -EPROBE_DEFER) {
|
|
goto out_unmap_regs;
|
|
}
|
|
} else if (as->caps.has_pdc_support) {
|
|
as->use_pdc = true;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
|
|
as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
|
|
SPI_MAX_DMA_XFER,
|
|
&as->dma_addr_rx_bbuf,
|
|
GFP_KERNEL | GFP_DMA);
|
|
if (!as->addr_rx_bbuf) {
|
|
as->use_dma = false;
|
|
} else {
|
|
as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
|
|
SPI_MAX_DMA_XFER,
|
|
&as->dma_addr_tx_bbuf,
|
|
GFP_KERNEL | GFP_DMA);
|
|
if (!as->addr_tx_bbuf) {
|
|
as->use_dma = false;
|
|
dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
|
|
as->addr_rx_bbuf,
|
|
as->dma_addr_rx_bbuf);
|
|
}
|
|
}
|
|
if (!as->use_dma)
|
|
dev_info(host->dev.parent,
|
|
" can not allocate dma coherent memory\n");
|
|
}
|
|
|
|
if (as->caps.has_dma_support && !as->use_dma)
|
|
dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
|
|
|
|
if (as->use_pdc) {
|
|
ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
|
|
0, dev_name(&pdev->dev), host);
|
|
} else {
|
|
ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
|
|
0, dev_name(&pdev->dev), host);
|
|
}
|
|
if (ret)
|
|
goto out_unmap_regs;
|
|
|
|
/* Initialize the hardware */
|
|
ret = clk_prepare_enable(clk);
|
|
if (ret)
|
|
goto out_free_irq;
|
|
|
|
as->spi_clk = clk_get_rate(clk);
|
|
|
|
as->fifo_size = 0;
|
|
if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
|
|
&as->fifo_size)) {
|
|
dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
|
|
}
|
|
|
|
atmel_spi_init(as);
|
|
|
|
pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
|
|
pm_runtime_use_autosuspend(&pdev->dev);
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
|
|
ret = devm_spi_register_controller(&pdev->dev, host);
|
|
if (ret)
|
|
goto out_free_dma;
|
|
|
|
/* go! */
|
|
dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
|
|
atmel_get_version(as), (unsigned long)regs->start,
|
|
irq);
|
|
|
|
return 0;
|
|
|
|
out_free_dma:
|
|
pm_runtime_disable(&pdev->dev);
|
|
pm_runtime_set_suspended(&pdev->dev);
|
|
|
|
if (as->use_dma)
|
|
atmel_spi_release_dma(host);
|
|
|
|
spi_writel(as, CR, SPI_BIT(SWRST));
|
|
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
|
|
clk_disable_unprepare(clk);
|
|
out_free_irq:
|
|
out_unmap_regs:
|
|
spi_controller_put(host);
|
|
return ret;
|
|
}
|
|
|
|
static void atmel_spi_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *host = platform_get_drvdata(pdev);
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
|
|
pm_runtime_get_sync(&pdev->dev);
|
|
|
|
/* reset the hardware and block queue progress */
|
|
if (as->use_dma) {
|
|
atmel_spi_stop_dma(host);
|
|
atmel_spi_release_dma(host);
|
|
if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
|
|
dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
|
|
as->addr_tx_bbuf,
|
|
as->dma_addr_tx_bbuf);
|
|
dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
|
|
as->addr_rx_bbuf,
|
|
as->dma_addr_rx_bbuf);
|
|
}
|
|
}
|
|
|
|
spin_lock_irq(&as->lock);
|
|
spi_writel(as, CR, SPI_BIT(SWRST));
|
|
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
|
|
spi_readl(as, SR);
|
|
spin_unlock_irq(&as->lock);
|
|
|
|
clk_disable_unprepare(as->clk);
|
|
|
|
pm_runtime_put_noidle(&pdev->dev);
|
|
pm_runtime_disable(&pdev->dev);
|
|
}
|
|
|
|
static int atmel_spi_runtime_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
|
|
clk_disable_unprepare(as->clk);
|
|
pinctrl_pm_select_sleep_state(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_spi_runtime_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
|
|
pinctrl_pm_select_default_state(dev);
|
|
|
|
return clk_prepare_enable(as->clk);
|
|
}
|
|
|
|
static int atmel_spi_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
/* Stop the queue running */
|
|
ret = spi_controller_suspend(host);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!pm_runtime_suspended(dev))
|
|
atmel_spi_runtime_suspend(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_spi_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct atmel_spi *as = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(as->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
atmel_spi_init(as);
|
|
|
|
clk_disable_unprepare(as->clk);
|
|
|
|
if (!pm_runtime_suspended(dev)) {
|
|
ret = atmel_spi_runtime_resume(dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Start the queue running */
|
|
return spi_controller_resume(host);
|
|
}
|
|
|
|
static const struct dev_pm_ops atmel_spi_pm_ops = {
|
|
SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
|
|
RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
|
|
atmel_spi_runtime_resume, NULL)
|
|
};
|
|
|
|
static const struct of_device_id atmel_spi_dt_ids[] = {
|
|
{ .compatible = "atmel,at91rm9200-spi" },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
|
|
|
|
static struct platform_driver atmel_spi_driver = {
|
|
.driver = {
|
|
.name = "atmel_spi",
|
|
.pm = pm_ptr(&atmel_spi_pm_ops),
|
|
.of_match_table = atmel_spi_dt_ids,
|
|
},
|
|
.probe = atmel_spi_probe,
|
|
.remove_new = atmel_spi_remove,
|
|
};
|
|
module_platform_driver(atmel_spi_driver);
|
|
|
|
MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
|
|
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:atmel_spi");
|