linux/drivers/hwmon/vt8231.c
Jean Delvare 04a6217df2 hwmon: Fix a potential race condition on unload
Fix a potential race condition when some hardware monitoring platform
drivers are being unloaded. I believe that the driver data pointer
shouldn't be cleared before all the sysfs files are removed, otherwise
a sysfs callback might attempt to dereference a NULL pointer. I'm not
sure exactly what the driver core protects drivers against, so let's
play it safe.

While we're here, clear the driver data pointer when probe fails, so
as to not leave an invalid pointer behind us.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Mark M. Hoffman <mhoffman@lightlink.com>
2007-07-19 14:22:14 -04:00

972 lines
29 KiB
C

/*
vt8231.c - Part of lm_sensors, Linux kernel modules
for hardware monitoring
Copyright (c) 2005 Roger Lucas <roger@planbit.co.uk>
Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
Aaron M. Marsh <amarsh@sdf.lonestar.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Supports VIA VT8231 South Bridge embedded sensors
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <asm/io.h>
static int force_addr;
module_param(force_addr, int, 0);
MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors");
static struct platform_device *pdev;
#define VT8231_EXTENT 0x80
#define VT8231_BASE_REG 0x70
#define VT8231_ENABLE_REG 0x74
/* The VT8231 registers
The reset value for the input channel configuration is used (Reg 0x4A=0x07)
which sets the selected inputs marked with '*' below if multiple options are
possible:
Voltage Mode Temperature Mode
Sensor Linux Id Linux Id VIA Id
-------- -------- -------- ------
CPU Diode N/A temp1 0
UIC1 in0 temp2 * 1
UIC2 in1 * temp3 2
UIC3 in2 * temp4 3
UIC4 in3 * temp5 4
UIC5 in4 * temp6 5
3.3V in5 N/A
Note that the BIOS may set the configuration register to a different value
to match the motherboard configuration.
*/
/* fans numbered 0-1 */
#define VT8231_REG_FAN_MIN(nr) (0x3b + (nr))
#define VT8231_REG_FAN(nr) (0x29 + (nr))
/* Voltage inputs numbered 0-5 */
static const u8 regvolt[] = { 0x21, 0x22, 0x23, 0x24, 0x25, 0x26 };
static const u8 regvoltmax[] = { 0x3d, 0x2b, 0x2d, 0x2f, 0x31, 0x33 };
static const u8 regvoltmin[] = { 0x3e, 0x2c, 0x2e, 0x30, 0x32, 0x34 };
/* Temperatures are numbered 1-6 according to the Linux kernel specification.
**
** In the VIA datasheet, however, the temperatures are numbered from zero.
** Since it is important that this driver can easily be compared to the VIA
** datasheet, we will use the VIA numbering within this driver and map the
** kernel sysfs device name to the VIA number in the sysfs callback.
*/
#define VT8231_REG_TEMP_LOW01 0x49
#define VT8231_REG_TEMP_LOW25 0x4d
static const u8 regtemp[] = { 0x1f, 0x21, 0x22, 0x23, 0x24, 0x25 };
static const u8 regtempmax[] = { 0x39, 0x3d, 0x2b, 0x2d, 0x2f, 0x31 };
static const u8 regtempmin[] = { 0x3a, 0x3e, 0x2c, 0x2e, 0x30, 0x32 };
#define TEMP_FROM_REG(reg) (((253 * 4 - (reg)) * 550 + 105) / 210)
#define TEMP_MAXMIN_FROM_REG(reg) (((253 - (reg)) * 2200 + 105) / 210)
#define TEMP_MAXMIN_TO_REG(val) (253 - ((val) * 210 + 1100) / 2200)
#define VT8231_REG_CONFIG 0x40
#define VT8231_REG_ALARM1 0x41
#define VT8231_REG_ALARM2 0x42
#define VT8231_REG_FANDIV 0x47
#define VT8231_REG_UCH_CONFIG 0x4a
#define VT8231_REG_TEMP1_CONFIG 0x4b
#define VT8231_REG_TEMP2_CONFIG 0x4c
/* temps 0-5 as numbered in VIA datasheet - see later for mapping to Linux
** numbering
*/
#define ISTEMP(i, ch_config) ((i) == 0 ? 1 : \
((ch_config) >> ((i)+1)) & 0x01)
/* voltages 0-5 */
#define ISVOLT(i, ch_config) ((i) == 5 ? 1 : \
!(((ch_config) >> ((i)+2)) & 0x01))
#define DIV_FROM_REG(val) (1 << (val))
/* NB The values returned here are NOT temperatures. The calibration curves
** for the thermistor curves are board-specific and must go in the
** sensors.conf file. Temperature sensors are actually ten bits, but the
** VIA datasheet only considers the 8 MSBs obtained from the regtemp[]
** register. The temperature value returned should have a magnitude of 3,
** so we use the VIA scaling as the "true" scaling and use the remaining 2
** LSBs as fractional precision.
**
** All the on-chip hardware temperature comparisons for the alarms are only
** 8-bits wide, and compare against the 8 MSBs of the temperature. The bits
** in the registers VT8231_REG_TEMP_LOW01 and VT8231_REG_TEMP_LOW25 are
** ignored.
*/
/******** FAN RPM CONVERSIONS ********
** This chip saturates back at 0, not at 255 like many the other chips.
** So, 0 means 0 RPM
*/
static inline u8 FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 0;
return SENSORS_LIMIT(1310720 / (rpm * div), 1, 255);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : 1310720 / ((val) * (div)))
struct vt8231_data {
unsigned short addr;
const char *name;
struct mutex update_lock;
struct class_device *class_dev;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[6]; /* Register value */
u8 in_max[6]; /* Register value */
u8 in_min[6]; /* Register value */
u16 temp[6]; /* Register value 10 bit, right aligned */
u8 temp_max[6]; /* Register value */
u8 temp_min[6]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 alarms; /* Register encoding */
u8 uch_config;
};
static struct pci_dev *s_bridge;
static int vt8231_probe(struct platform_device *pdev);
static int vt8231_remove(struct platform_device *pdev);
static struct vt8231_data *vt8231_update_device(struct device *dev);
static void vt8231_init_device(struct vt8231_data *data);
static inline int vt8231_read_value(struct vt8231_data *data, u8 reg)
{
return inb_p(data->addr + reg);
}
static inline void vt8231_write_value(struct vt8231_data *data, u8 reg,
u8 value)
{
outb_p(value, data->addr + reg);
}
/* following are the sysfs callback functions */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", ((data->in[nr] - 3) * 10000) / 958);
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", ((data->in_min[nr] - 3) * 10000) / 958);
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", (((data->in_max[nr] - 3) * 10000) / 958));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
vt8231_write_value(data, regvoltmin[nr], data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
vt8231_write_value(data, regvoltmax[nr], data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* Special case for input 5 as this has 3.3V scaling built into the chip */
static ssize_t show_in5(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t show_in5_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in_min[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t show_in5_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in_max[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t set_in5_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
0, 255);
vt8231_write_value(data, regvoltmin[5], data->in_min[5]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in5_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
0, 255);
vt8231_write_value(data, regvoltmax[5], data->in_max[5]);
mutex_unlock(&data->update_lock);
return count;
}
#define define_voltage_sysfs(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset)
define_voltage_sysfs(0);
define_voltage_sysfs(1);
define_voltage_sysfs(2);
define_voltage_sysfs(3);
define_voltage_sysfs(4);
static DEVICE_ATTR(in5_input, S_IRUGO, show_in5, NULL);
static DEVICE_ATTR(in5_min, S_IRUGO | S_IWUSR, show_in5_min, set_in5_min);
static DEVICE_ATTR(in5_max, S_IRUGO | S_IWUSR, show_in5_max, set_in5_max);
/* Temperatures */
static ssize_t show_temp0(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp[0] * 250);
}
static ssize_t show_temp0_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp_max[0] * 1000);
}
static ssize_t show_temp0_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp_min[0] * 1000);
}
static ssize_t set_temp0_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
vt8231_write_value(data, regtempmax[0], data->temp_max[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp0_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
vt8231_write_value(data, regtempmin[0], data->temp_min[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr]));
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_max[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_min[nr]));
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
vt8231_write_value(data, regtempmax[nr], data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
vt8231_write_value(data, regtempmin[nr], data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* Note that these map the Linux temperature sensor numbering (1-6) to the VIA
** temperature sensor numbering (0-5)
*/
#define define_temperature_sysfs(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1)
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp0, NULL);
static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp0_max, set_temp0_max);
static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp0_min, set_temp0_min);
define_temperature_sysfs(2);
define_temperature_sysfs(3);
define_temperature_sysfs(4);
define_temperature_sysfs(5);
define_temperature_sysfs(6);
/* Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
int val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
unsigned long val = simple_strtoul(buf, NULL, 10);
int nr = sensor_attr->index;
int old = vt8231_read_value(data, VT8231_REG_FANDIV);
long min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
mutex_lock(&data->update_lock);
switch (val) {
case 1: data->fan_div[nr] = 0; break;
case 2: data->fan_div[nr] = 1; break;
case 4: data->fan_div[nr] = 2; break;
case 8: data->fan_div[nr] = 3; break;
default:
dev_err(dev, "fan_div value %ld not supported."
"Choose one of 1, 2, 4 or 8!\n", val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
/* Correct the fan minimum speed */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
vt8231_write_value(data, VT8231_REG_FANDIV, old);
mutex_unlock(&data->update_lock);
return count;
}
#define define_fan_sysfs(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1)
define_fan_sysfs(1);
define_fan_sysfs(2);
/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_name(struct device *dev, struct device_attribute
*devattr, char *buf)
{
struct vt8231_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
static struct attribute *vt8231_attributes_temps[6][4] = {
{
&dev_attr_temp1_input.attr,
&dev_attr_temp1_max_hyst.attr,
&dev_attr_temp1_max.attr,
NULL
}, {
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp5_input.dev_attr.attr,
&sensor_dev_attr_temp5_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp5_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp6_input.dev_attr.attr,
&sensor_dev_attr_temp6_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp6_max.dev_attr.attr,
NULL
}
};
static const struct attribute_group vt8231_group_temps[6] = {
{ .attrs = vt8231_attributes_temps[0] },
{ .attrs = vt8231_attributes_temps[1] },
{ .attrs = vt8231_attributes_temps[2] },
{ .attrs = vt8231_attributes_temps[3] },
{ .attrs = vt8231_attributes_temps[4] },
{ .attrs = vt8231_attributes_temps[5] },
};
static struct attribute *vt8231_attributes_volts[6][4] = {
{
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
NULL
}, {
&dev_attr_in5_input.attr,
&dev_attr_in5_min.attr,
&dev_attr_in5_max.attr,
NULL
}
};
static const struct attribute_group vt8231_group_volts[6] = {
{ .attrs = vt8231_attributes_volts[0] },
{ .attrs = vt8231_attributes_volts[1] },
{ .attrs = vt8231_attributes_volts[2] },
{ .attrs = vt8231_attributes_volts[3] },
{ .attrs = vt8231_attributes_volts[4] },
{ .attrs = vt8231_attributes_volts[5] },
};
static struct attribute *vt8231_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_name.attr,
NULL
};
static const struct attribute_group vt8231_group = {
.attrs = vt8231_attributes,
};
static struct platform_driver vt8231_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "vt8231",
},
.probe = vt8231_probe,
.remove = __devexit_p(vt8231_remove),
};
static struct pci_device_id vt8231_pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8231_4) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, vt8231_pci_ids);
static int __devinit vt8231_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id);
static struct pci_driver vt8231_pci_driver = {
.name = "vt8231",
.id_table = vt8231_pci_ids,
.probe = vt8231_pci_probe,
};
int vt8231_probe(struct platform_device *pdev)
{
struct resource *res;
struct vt8231_data *data;
int err = 0, i;
/* Reserve the ISA region */
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!request_region(res->start, VT8231_EXTENT,
vt8231_driver.driver.name)) {
dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
(unsigned long)res->start, (unsigned long)res->end);
return -ENODEV;
}
if (!(data = kzalloc(sizeof(struct vt8231_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit_release;
}
platform_set_drvdata(pdev, data);
data->addr = res->start;
data->name = "vt8231";
mutex_init(&data->update_lock);
vt8231_init_device(data);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&pdev->dev.kobj, &vt8231_group)))
goto exit_free;
/* Must update device information to find out the config field */
data->uch_config = vt8231_read_value(data, VT8231_REG_UCH_CONFIG);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) {
if (ISTEMP(i, data->uch_config)) {
if ((err = sysfs_create_group(&pdev->dev.kobj,
&vt8231_group_temps[i])))
goto exit_remove_files;
}
}
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) {
if (ISVOLT(i, data->uch_config)) {
if ((err = sysfs_create_group(&pdev->dev.kobj,
&vt8231_group_volts[i])))
goto exit_remove_files;
}
}
data->class_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]);
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group);
exit_free:
platform_set_drvdata(pdev, NULL);
kfree(data);
exit_release:
release_region(res->start, VT8231_EXTENT);
return err;
}
static int vt8231_remove(struct platform_device *pdev)
{
struct vt8231_data *data = platform_get_drvdata(pdev);
int i;
hwmon_device_unregister(data->class_dev);
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]);
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group);
release_region(data->addr, VT8231_EXTENT);
platform_set_drvdata(pdev, NULL);
kfree(data);
return 0;
}
static void vt8231_init_device(struct vt8231_data *data)
{
vt8231_write_value(data, VT8231_REG_TEMP1_CONFIG, 0);
vt8231_write_value(data, VT8231_REG_TEMP2_CONFIG, 0);
}
static struct vt8231_data *vt8231_update_device(struct device *dev)
{
struct vt8231_data *data = dev_get_drvdata(dev);
int i;
u16 low;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
for (i = 0; i < 6; i++) {
if (ISVOLT(i, data->uch_config)) {
data->in[i] = vt8231_read_value(data,
regvolt[i]);
data->in_min[i] = vt8231_read_value(data,
regvoltmin[i]);
data->in_max[i] = vt8231_read_value(data,
regvoltmax[i]);
}
}
for (i = 0; i < 2; i++) {
data->fan[i] = vt8231_read_value(data,
VT8231_REG_FAN(i));
data->fan_min[i] = vt8231_read_value(data,
VT8231_REG_FAN_MIN(i));
}
low = vt8231_read_value(data, VT8231_REG_TEMP_LOW01);
low = (low >> 6) | ((low & 0x30) >> 2)
| (vt8231_read_value(data, VT8231_REG_TEMP_LOW25) << 4);
for (i = 0; i < 6; i++) {
if (ISTEMP(i, data->uch_config)) {
data->temp[i] = (vt8231_read_value(data,
regtemp[i]) << 2)
| ((low >> (2 * i)) & 0x03);
data->temp_max[i] = vt8231_read_value(data,
regtempmax[i]);
data->temp_min[i] = vt8231_read_value(data,
regtempmin[i]);
}
}
i = vt8231_read_value(data, VT8231_REG_FANDIV);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms = vt8231_read_value(data, VT8231_REG_ALARM1) |
(vt8231_read_value(data, VT8231_REG_ALARM2) << 8);
/* Set alarm flags correctly */
if (!data->fan[0] && data->fan_min[0]) {
data->alarms |= 0x40;
} else if (data->fan[0] && !data->fan_min[0]) {
data->alarms &= ~0x40;
}
if (!data->fan[1] && data->fan_min[1]) {
data->alarms |= 0x80;
} else if (data->fan[1] && !data->fan_min[1]) {
data->alarms &= ~0x80;
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __devinit vt8231_device_add(unsigned short address)
{
struct resource res = {
.start = address,
.end = address + VT8231_EXTENT - 1,
.name = "vt8231",
.flags = IORESOURCE_IO,
};
int err;
pdev = platform_device_alloc("vt8231", address);
if (!pdev) {
err = -ENOMEM;
printk(KERN_ERR "vt8231: Device allocation failed\n");
goto exit;
}
err = platform_device_add_resources(pdev, &res, 1);
if (err) {
printk(KERN_ERR "vt8231: Device resource addition failed "
"(%d)\n", err);
goto exit_device_put;
}
err = platform_device_add(pdev);
if (err) {
printk(KERN_ERR "vt8231: Device addition failed (%d)\n",
err);
goto exit_device_put;
}
return 0;
exit_device_put:
platform_device_put(pdev);
exit:
return err;
}
static int __devinit vt8231_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
u16 address, val;
if (force_addr) {
address = force_addr & 0xff00;
dev_warn(&dev->dev, "Forcing ISA address 0x%x\n",
address);
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(dev, VT8231_BASE_REG, address | 1))
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_BASE_REG,
&val))
return -ENODEV;
address = val & ~(VT8231_EXTENT - 1);
if (address == 0) {
dev_err(&dev->dev, "base address not set -\
upgrade BIOS or use force_addr=0xaddr\n");
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_ENABLE_REG,
&val))
return -ENODEV;
if (!(val & 0x0001)) {
dev_warn(&dev->dev, "enabling sensors\n");
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(dev, VT8231_ENABLE_REG,
val | 0x0001))
return -ENODEV;
}
if (platform_driver_register(&vt8231_driver))
goto exit;
/* Sets global pdev as a side effect */
if (vt8231_device_add(address))
goto exit_unregister;
/* Always return failure here. This is to allow other drivers to bind
* to this pci device. We don't really want to have control over the
* pci device, we only wanted to read as few register values from it.
*/
/* We do, however, mark ourselves as using the PCI device to stop it
getting unloaded. */
s_bridge = pci_dev_get(dev);
return -ENODEV;
exit_unregister:
platform_driver_unregister(&vt8231_driver);
exit:
return -ENODEV;
}
static int __init sm_vt8231_init(void)
{
return pci_register_driver(&vt8231_pci_driver);
}
static void __exit sm_vt8231_exit(void)
{
pci_unregister_driver(&vt8231_pci_driver);
if (s_bridge != NULL) {
platform_device_unregister(pdev);
platform_driver_unregister(&vt8231_driver);
pci_dev_put(s_bridge);
s_bridge = NULL;
}
}
MODULE_AUTHOR("Roger Lucas <roger@planbit.co.uk>");
MODULE_DESCRIPTION("VT8231 sensors");
MODULE_LICENSE("GPL");
module_init(sm_vt8231_init);
module_exit(sm_vt8231_exit);