linux/drivers/tty/serial/etraxfs-uart.c
Guenter Roeck f356d7a7dd serial: etraxfs-uart: Fix crash
Since commit 7d8c70d804 ("serial: mctrl-gpio: rename init function"),
crisv32 either do not build or crash as follows.

Unable to handle kernel NULL pointer dereference
Linux 4.3.0-rc7-next-20151101 #1 Sun Nov 1 11:41:28 PST 2015
...
Call Trace: [<c0004a0e>] show_stack+0x0/0x9e
[<c004c0c0>] printk+0x0/0x2c
[<c00059d4>] show_registers+0x14a/0x1c2
[<c004c0c0>] printk+0x0/0x2c
[<c0004b52>] die_if_kernel+0x7c/0x9e
[<c0005346>] do_page_fault+0x32e/0x3e6
[<c01dc59c>] of_get_property+0x0/0x2c
[<c01e0558>] of_irq_parse_raw+0x12a/0x376
[<c01dc59c>] of_get_property+0x0/0x2c
[<c0053aca>] get_page_from_freelist+0x73e/0x856
[<c01dc59c>] of_get_property+0x0/0x2c
[<c0008912>] d_mmu_refill+0x10a/0x112
[<c01b488c>] devm_kmalloc+0x40/0x56
[<c01b47d0>] add_dr+0xc/0x1c
[<c01b4800>] devm_add_action+0x2/0x4e
[<c01abdbc>] mctrl_gpio_init_noauto+0x1c/0x76
[<c01abf9e>] mctrl_gpio_init+0x22/0x110

The function call in the etraxfs-uart driver was not renamed,
possibly due to interference with commit 7b9c5162c1 ("serial:
etraxfs-uart: use mctrl_gpio helpers for handling modem signals").

Fixes: 7d8c70d804 ("serial: mctrl-gpio: rename init function")
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Niklas Cassel <nks@flawful.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-11-20 16:19:54 -08:00

960 lines
26 KiB
C

#include <linux/module.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/tty_flip.h>
#include <linux/of.h>
#include <linux/gpio.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <hwregs/ser_defs.h>
#include "serial_mctrl_gpio.h"
#define DRV_NAME "etraxfs-uart"
#define UART_NR CONFIG_ETRAX_SERIAL_PORTS
#define MODIFY_REG(instance, reg, var) \
do { \
if (REG_RD_INT(ser, instance, reg) != \
REG_TYPE_CONV(int, reg_ser_##reg, var)) \
REG_WR(ser, instance, reg, var); \
} while (0)
struct uart_cris_port {
struct uart_port port;
int initialized;
int irq;
void __iomem *regi_ser;
struct mctrl_gpios *gpios;
int write_ongoing;
};
static struct uart_driver etraxfs_uart_driver;
static struct uart_port *console_port;
static int console_baud = 115200;
static struct uart_cris_port *etraxfs_uart_ports[UART_NR];
static void cris_serial_port_init(struct uart_port *port, int line);
static void etraxfs_uart_stop_rx(struct uart_port *port);
static inline void etraxfs_uart_start_tx_bottom(struct uart_port *port);
#ifdef CONFIG_SERIAL_ETRAXFS_CONSOLE
static void
cris_console_write(struct console *co, const char *s, unsigned int count)
{
struct uart_cris_port *up;
int i;
reg_ser_r_stat_din stat;
reg_ser_rw_tr_dma_en tr_dma_en, old;
up = etraxfs_uart_ports[co->index];
if (!up)
return;
/* Switch to manual mode. */
tr_dma_en = old = REG_RD(ser, up->regi_ser, rw_tr_dma_en);
if (tr_dma_en.en == regk_ser_yes) {
tr_dma_en.en = regk_ser_no;
REG_WR(ser, up->regi_ser, rw_tr_dma_en, tr_dma_en);
}
/* Send data. */
for (i = 0; i < count; i++) {
/* LF -> CRLF */
if (s[i] == '\n') {
do {
stat = REG_RD(ser, up->regi_ser, r_stat_din);
} while (!stat.tr_rdy);
REG_WR_INT(ser, up->regi_ser, rw_dout, '\r');
}
/* Wait until transmitter is ready and send. */
do {
stat = REG_RD(ser, up->regi_ser, r_stat_din);
} while (!stat.tr_rdy);
REG_WR_INT(ser, up->regi_ser, rw_dout, s[i]);
}
/* Restore mode. */
if (tr_dma_en.en != old.en)
REG_WR(ser, up->regi_ser, rw_tr_dma_en, old);
}
static int __init
cris_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index < 0 || co->index >= UART_NR)
co->index = 0;
port = &etraxfs_uart_ports[co->index]->port;
console_port = port;
co->flags |= CON_CONSDEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
console_baud = baud;
cris_serial_port_init(port, co->index);
uart_set_options(port, co, baud, parity, bits, flow);
return 0;
}
static struct console cris_console = {
.name = "ttyS",
.write = cris_console_write,
.device = uart_console_device,
.setup = cris_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &etraxfs_uart_driver,
};
#endif /* CONFIG_SERIAL_ETRAXFS_CONSOLE */
static struct uart_driver etraxfs_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "serial",
.dev_name = "ttyS",
.major = TTY_MAJOR,
.minor = 64,
.nr = UART_NR,
#ifdef CONFIG_SERIAL_ETRAXFS_CONSOLE
.cons = &cris_console,
#endif /* CONFIG_SERIAL_ETRAXFS_CONSOLE */
};
static inline int crisv32_serial_get_rts(struct uart_cris_port *up)
{
void __iomem *regi_ser = up->regi_ser;
/*
* Return what the user has controlled rts to or
* what the pin is? (if auto_rts is used it differs during tx)
*/
reg_ser_r_stat_din rstat = REG_RD(ser, regi_ser, r_stat_din);
return !(rstat.rts_n == regk_ser_active);
}
/*
* A set = 0 means 3.3V on the pin, bitvalue: 0=active, 1=inactive
* 0=0V , 1=3.3V
*/
static inline void crisv32_serial_set_rts(struct uart_cris_port *up,
int set, int force)
{
void __iomem *regi_ser = up->regi_ser;
unsigned long flags;
reg_ser_rw_rec_ctrl rec_ctrl;
local_irq_save(flags);
rec_ctrl = REG_RD(ser, regi_ser, rw_rec_ctrl);
if (set)
rec_ctrl.rts_n = regk_ser_active;
else
rec_ctrl.rts_n = regk_ser_inactive;
REG_WR(ser, regi_ser, rw_rec_ctrl, rec_ctrl);
local_irq_restore(flags);
}
static inline int crisv32_serial_get_cts(struct uart_cris_port *up)
{
void __iomem *regi_ser = up->regi_ser;
reg_ser_r_stat_din rstat = REG_RD(ser, regi_ser, r_stat_din);
return (rstat.cts_n == regk_ser_active);
}
/*
* Send a single character for XON/XOFF purposes. We do it in this separate
* function instead of the alternative support port.x_char, in the ...start_tx
* function, so we don't mix up this case with possibly enabling transmission
* of queued-up data (in case that's disabled after *receiving* an XOFF or
* negative CTS). This function is used for both DMA and non-DMA case; see HW
* docs specifically blessing sending characters manually when DMA for
* transmission is enabled and running. We may be asked to transmit despite
* the transmitter being disabled by a ..._stop_tx call so we need to enable
* it temporarily but restore the state afterwards.
*/
static void etraxfs_uart_send_xchar(struct uart_port *port, char ch)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
reg_ser_rw_dout dout = { .data = ch };
reg_ser_rw_ack_intr ack_intr = { .tr_rdy = regk_ser_yes };
reg_ser_r_stat_din rstat;
reg_ser_rw_tr_ctrl prev_tr_ctrl, tr_ctrl;
void __iomem *regi_ser = up->regi_ser;
unsigned long flags;
/*
* Wait for tr_rdy in case a character is already being output. Make
* sure we have integrity between the register reads and the writes
* below, but don't busy-wait with interrupts off and the port lock
* taken.
*/
spin_lock_irqsave(&port->lock, flags);
do {
spin_unlock_irqrestore(&port->lock, flags);
spin_lock_irqsave(&port->lock, flags);
prev_tr_ctrl = tr_ctrl = REG_RD(ser, regi_ser, rw_tr_ctrl);
rstat = REG_RD(ser, regi_ser, r_stat_din);
} while (!rstat.tr_rdy);
/*
* Ack an interrupt if one was just issued for the previous character
* that was output. This is required for non-DMA as the interrupt is
* used as the only indicator that the transmitter is ready and it
* isn't while this x_char is being transmitted.
*/
REG_WR(ser, regi_ser, rw_ack_intr, ack_intr);
/* Enable the transmitter in case it was disabled. */
tr_ctrl.stop = 0;
REG_WR(ser, regi_ser, rw_tr_ctrl, tr_ctrl);
/*
* Finally, send the blessed character; nothing should stop it now,
* except for an xoff-detected state, which we'll handle below.
*/
REG_WR(ser, regi_ser, rw_dout, dout);
up->port.icount.tx++;
/* There might be an xoff state to clear. */
rstat = REG_RD(ser, up->regi_ser, r_stat_din);
/*
* Clear any xoff state that *may* have been there to
* inhibit transmission of the character.
*/
if (rstat.xoff_detect) {
reg_ser_rw_xoff_clr xoff_clr = { .clr = 1 };
reg_ser_rw_tr_dma_en tr_dma_en;
REG_WR(ser, regi_ser, rw_xoff_clr, xoff_clr);
tr_dma_en = REG_RD(ser, regi_ser, rw_tr_dma_en);
/*
* If we had an xoff state but cleared it, instead sneak in a
* disabled state for the transmitter, after the character we
* sent. Thus we keep the port disabled, just as if the xoff
* state was still in effect (or actually, as if stop_tx had
* been called, as we stop DMA too).
*/
prev_tr_ctrl.stop = 1;
tr_dma_en.en = 0;
REG_WR(ser, regi_ser, rw_tr_dma_en, tr_dma_en);
}
/* Restore "previous" enabled/disabled state of the transmitter. */
REG_WR(ser, regi_ser, rw_tr_ctrl, prev_tr_ctrl);
spin_unlock_irqrestore(&port->lock, flags);
}
/*
* Do not spin_lock_irqsave or disable interrupts by other means here; it's
* already done by the caller.
*/
static void etraxfs_uart_start_tx(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
/* we have already done below if a write is ongoing */
if (up->write_ongoing)
return;
/* Signal that write is ongoing */
up->write_ongoing = 1;
etraxfs_uart_start_tx_bottom(port);
}
static inline void etraxfs_uart_start_tx_bottom(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
void __iomem *regi_ser = up->regi_ser;
reg_ser_rw_tr_ctrl tr_ctrl;
reg_ser_rw_intr_mask intr_mask;
tr_ctrl = REG_RD(ser, regi_ser, rw_tr_ctrl);
tr_ctrl.stop = regk_ser_no;
REG_WR(ser, regi_ser, rw_tr_ctrl, tr_ctrl);
intr_mask = REG_RD(ser, regi_ser, rw_intr_mask);
intr_mask.tr_rdy = regk_ser_yes;
REG_WR(ser, regi_ser, rw_intr_mask, intr_mask);
}
/*
* This function handles both the DMA and non-DMA case by ordering the
* transmitter to stop of after the current character. We don't need to wait
* for any such character to be completely transmitted; we do that where it
* matters, like in etraxfs_uart_set_termios. Don't busy-wait here; see
* Documentation/serial/driver: this function is called within
* spin_lock_irq{,save} and thus separate ones would be disastrous (when SMP).
* There's no documented need to set the txd pin to any particular value;
* break setting is controlled solely by etraxfs_uart_break_ctl.
*/
static void etraxfs_uart_stop_tx(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
void __iomem *regi_ser = up->regi_ser;
reg_ser_rw_tr_ctrl tr_ctrl;
reg_ser_rw_intr_mask intr_mask;
reg_ser_rw_tr_dma_en tr_dma_en = {0};
reg_ser_rw_xoff_clr xoff_clr = {0};
/*
* For the non-DMA case, we'd get a tr_rdy interrupt that we're not
* interested in as we're not transmitting any characters. For the
* DMA case, that interrupt is already turned off, but no reason to
* waste code on conditionals here.
*/
intr_mask = REG_RD(ser, regi_ser, rw_intr_mask);
intr_mask.tr_rdy = regk_ser_no;
REG_WR(ser, regi_ser, rw_intr_mask, intr_mask);
tr_ctrl = REG_RD(ser, regi_ser, rw_tr_ctrl);
tr_ctrl.stop = 1;
REG_WR(ser, regi_ser, rw_tr_ctrl, tr_ctrl);
/*
* Always clear possible hardware xoff-detected state here, no need to
* unnecessary consider mctrl settings and when they change. We clear
* it here rather than in start_tx: both functions are called as the
* effect of XOFF processing, but start_tx is also called when upper
* levels tell the driver that there are more characters to send, so
* avoid adding code there.
*/
xoff_clr.clr = 1;
REG_WR(ser, regi_ser, rw_xoff_clr, xoff_clr);
/*
* Disable transmitter DMA, so that if we're in XON/XOFF, we can send
* those single characters without also giving go-ahead for queued up
* DMA data.
*/
tr_dma_en.en = 0;
REG_WR(ser, regi_ser, rw_tr_dma_en, tr_dma_en);
/*
* Make sure that write_ongoing is reset when stopping tx.
*/
up->write_ongoing = 0;
}
static void etraxfs_uart_stop_rx(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
void __iomem *regi_ser = up->regi_ser;
reg_ser_rw_rec_ctrl rec_ctrl = REG_RD(ser, regi_ser, rw_rec_ctrl);
rec_ctrl.en = regk_ser_no;
REG_WR(ser, regi_ser, rw_rec_ctrl, rec_ctrl);
}
static unsigned int etraxfs_uart_tx_empty(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
unsigned long flags;
unsigned int ret;
reg_ser_r_stat_din rstat = {0};
spin_lock_irqsave(&up->port.lock, flags);
rstat = REG_RD(ser, up->regi_ser, r_stat_din);
ret = rstat.tr_empty ? TIOCSER_TEMT : 0;
spin_unlock_irqrestore(&up->port.lock, flags);
return ret;
}
static unsigned int etraxfs_uart_get_mctrl(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
unsigned int ret;
ret = 0;
if (crisv32_serial_get_rts(up))
ret |= TIOCM_RTS;
if (crisv32_serial_get_cts(up))
ret |= TIOCM_CTS;
return mctrl_gpio_get(up->gpios, &ret);
}
static void etraxfs_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
crisv32_serial_set_rts(up, mctrl & TIOCM_RTS ? 1 : 0, 0);
mctrl_gpio_set(up->gpios, mctrl);
}
static void etraxfs_uart_break_ctl(struct uart_port *port, int break_state)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
unsigned long flags;
reg_ser_rw_tr_ctrl tr_ctrl;
reg_ser_rw_tr_dma_en tr_dma_en;
reg_ser_rw_intr_mask intr_mask;
spin_lock_irqsave(&up->port.lock, flags);
tr_ctrl = REG_RD(ser, up->regi_ser, rw_tr_ctrl);
tr_dma_en = REG_RD(ser, up->regi_ser, rw_tr_dma_en);
intr_mask = REG_RD(ser, up->regi_ser, rw_intr_mask);
if (break_state != 0) { /* Send break */
/*
* We need to disable DMA (if used) or tr_rdy interrupts if no
* DMA. No need to make this conditional on use of DMA;
* disabling will be a no-op for the other mode.
*/
intr_mask.tr_rdy = regk_ser_no;
tr_dma_en.en = 0;
/*
* Stop transmission and set the txd pin to 0 after the
* current character. The txd setting will take effect after
* any current transmission has completed.
*/
tr_ctrl.stop = 1;
tr_ctrl.txd = 0;
} else {
/* Re-enable the serial interrupt. */
intr_mask.tr_rdy = regk_ser_yes;
tr_ctrl.stop = 0;
tr_ctrl.txd = 1;
}
REG_WR(ser, up->regi_ser, rw_tr_ctrl, tr_ctrl);
REG_WR(ser, up->regi_ser, rw_tr_dma_en, tr_dma_en);
REG_WR(ser, up->regi_ser, rw_intr_mask, intr_mask);
spin_unlock_irqrestore(&up->port.lock, flags);
}
static void
transmit_chars_no_dma(struct uart_cris_port *up)
{
int max_count;
struct circ_buf *xmit = &up->port.state->xmit;
void __iomem *regi_ser = up->regi_ser;
reg_ser_r_stat_din rstat;
reg_ser_rw_ack_intr ack_intr = { .tr_rdy = regk_ser_yes };
if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) {
/* No more to send, so disable the interrupt. */
reg_ser_rw_intr_mask intr_mask;
intr_mask = REG_RD(ser, regi_ser, rw_intr_mask);
intr_mask.tr_rdy = 0;
intr_mask.tr_empty = 0;
REG_WR(ser, regi_ser, rw_intr_mask, intr_mask);
up->write_ongoing = 0;
return;
}
/* If the serport is fast, we send up to max_count bytes before
exiting the loop. */
max_count = 64;
do {
reg_ser_rw_dout dout = { .data = xmit->buf[xmit->tail] };
REG_WR(ser, regi_ser, rw_dout, dout);
REG_WR(ser, regi_ser, rw_ack_intr, ack_intr);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE-1);
up->port.icount.tx++;
if (xmit->head == xmit->tail)
break;
rstat = REG_RD(ser, regi_ser, r_stat_din);
} while ((--max_count > 0) && rstat.tr_rdy);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&up->port);
}
static void receive_chars_no_dma(struct uart_cris_port *up)
{
reg_ser_rs_stat_din stat_din;
reg_ser_r_stat_din rstat;
struct tty_port *port;
struct uart_icount *icount;
int max_count = 16;
char flag;
reg_ser_rw_ack_intr ack_intr = { 0 };
rstat = REG_RD(ser, up->regi_ser, r_stat_din);
icount = &up->port.icount;
port = &up->port.state->port;
do {
stat_din = REG_RD(ser, up->regi_ser, rs_stat_din);
flag = TTY_NORMAL;
ack_intr.dav = 1;
REG_WR(ser, up->regi_ser, rw_ack_intr, ack_intr);
icount->rx++;
if (stat_din.framing_err | stat_din.par_err | stat_din.orun) {
if (stat_din.data == 0x00 &&
stat_din.framing_err) {
/* Most likely a break. */
flag = TTY_BREAK;
icount->brk++;
} else if (stat_din.par_err) {
flag = TTY_PARITY;
icount->parity++;
} else if (stat_din.orun) {
flag = TTY_OVERRUN;
icount->overrun++;
} else if (stat_din.framing_err) {
flag = TTY_FRAME;
icount->frame++;
}
}
/*
* If this becomes important, we probably *could* handle this
* gracefully by keeping track of the unhandled character.
*/
if (!tty_insert_flip_char(port, stat_din.data, flag))
panic("%s: No tty buffer space", __func__);
rstat = REG_RD(ser, up->regi_ser, r_stat_din);
} while (rstat.dav && (max_count-- > 0));
spin_unlock(&up->port.lock);
tty_flip_buffer_push(port);
spin_lock(&up->port.lock);
}
static irqreturn_t
ser_interrupt(int irq, void *dev_id)
{
struct uart_cris_port *up = (struct uart_cris_port *)dev_id;
void __iomem *regi_ser;
int handled = 0;
spin_lock(&up->port.lock);
regi_ser = up->regi_ser;
if (regi_ser) {
reg_ser_r_masked_intr masked_intr;
masked_intr = REG_RD(ser, regi_ser, r_masked_intr);
/*
* Check what interrupts are active before taking
* actions. If DMA is used the interrupt shouldn't
* be enabled.
*/
if (masked_intr.dav) {
receive_chars_no_dma(up);
handled = 1;
}
if (masked_intr.tr_rdy) {
transmit_chars_no_dma(up);
handled = 1;
}
}
spin_unlock(&up->port.lock);
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_CONSOLE_POLL
static int etraxfs_uart_get_poll_char(struct uart_port *port)
{
reg_ser_rs_stat_din stat;
reg_ser_rw_ack_intr ack_intr = { 0 };
struct uart_cris_port *up = (struct uart_cris_port *)port;
do {
stat = REG_RD(ser, up->regi_ser, rs_stat_din);
} while (!stat.dav);
/* Ack the data_avail interrupt. */
ack_intr.dav = 1;
REG_WR(ser, up->regi_ser, rw_ack_intr, ack_intr);
return stat.data;
}
static void etraxfs_uart_put_poll_char(struct uart_port *port,
unsigned char c)
{
reg_ser_r_stat_din stat;
struct uart_cris_port *up = (struct uart_cris_port *)port;
do {
stat = REG_RD(ser, up->regi_ser, r_stat_din);
} while (!stat.tr_rdy);
REG_WR_INT(ser, up->regi_ser, rw_dout, c);
}
#endif /* CONFIG_CONSOLE_POLL */
static int etraxfs_uart_startup(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
unsigned long flags;
reg_ser_rw_intr_mask ser_intr_mask = {0};
ser_intr_mask.dav = regk_ser_yes;
if (request_irq(etraxfs_uart_ports[port->line]->irq, ser_interrupt,
0, DRV_NAME, etraxfs_uart_ports[port->line]))
panic("irq ser%d", port->line);
spin_lock_irqsave(&up->port.lock, flags);
REG_WR(ser, up->regi_ser, rw_intr_mask, ser_intr_mask);
etraxfs_uart_set_mctrl(&up->port, up->port.mctrl);
spin_unlock_irqrestore(&up->port.lock, flags);
return 0;
}
static void etraxfs_uart_shutdown(struct uart_port *port)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
unsigned long flags;
spin_lock_irqsave(&up->port.lock, flags);
etraxfs_uart_stop_tx(port);
etraxfs_uart_stop_rx(port);
free_irq(etraxfs_uart_ports[port->line]->irq,
etraxfs_uart_ports[port->line]);
etraxfs_uart_set_mctrl(&up->port, up->port.mctrl);
spin_unlock_irqrestore(&up->port.lock, flags);
}
static void
etraxfs_uart_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
unsigned long flags;
reg_ser_rw_xoff xoff;
reg_ser_rw_xoff_clr xoff_clr = {0};
reg_ser_rw_tr_ctrl tx_ctrl = {0};
reg_ser_rw_tr_dma_en tx_dma_en = {0};
reg_ser_rw_rec_ctrl rx_ctrl = {0};
reg_ser_rw_tr_baud_div tx_baud_div = {0};
reg_ser_rw_rec_baud_div rx_baud_div = {0};
int baud;
if (old &&
termios->c_cflag == old->c_cflag &&
termios->c_iflag == old->c_iflag)
return;
/* Tx: 8 bit, no/even parity, 1 stop bit, no cts. */
tx_ctrl.base_freq = regk_ser_f29_493;
tx_ctrl.en = 0;
tx_ctrl.stop = 0;
tx_ctrl.auto_rts = regk_ser_no;
tx_ctrl.txd = 1;
tx_ctrl.auto_cts = 0;
/* Rx: 8 bit, no/even parity. */
rx_ctrl.dma_err = regk_ser_stop;
rx_ctrl.sampling = regk_ser_majority;
rx_ctrl.timeout = 1;
rx_ctrl.rts_n = regk_ser_inactive;
/* Common for tx and rx: 8N1. */
tx_ctrl.data_bits = regk_ser_bits8;
rx_ctrl.data_bits = regk_ser_bits8;
tx_ctrl.par = regk_ser_even;
rx_ctrl.par = regk_ser_even;
tx_ctrl.par_en = regk_ser_no;
rx_ctrl.par_en = regk_ser_no;
tx_ctrl.stop_bits = regk_ser_bits1;
/*
* Change baud-rate and write it to the hardware.
*
* baud_clock = base_freq / (divisor*8)
* divisor = base_freq / (baud_clock * 8)
* base_freq is either:
* off, ext, 29.493MHz, 32.000 MHz, 32.768 MHz or 100 MHz
* 20.493MHz is used for standard baudrates
*/
/*
* For the console port we keep the original baudrate here. Not very
* beautiful.
*/
if ((port != console_port) || old)
baud = uart_get_baud_rate(port, termios, old, 0,
port->uartclk / 8);
else
baud = console_baud;
tx_baud_div.div = 29493000 / (8 * baud);
/* Rx uses same as tx. */
rx_baud_div.div = tx_baud_div.div;
rx_ctrl.base_freq = tx_ctrl.base_freq;
if ((termios->c_cflag & CSIZE) == CS7) {
/* Set 7 bit mode. */
tx_ctrl.data_bits = regk_ser_bits7;
rx_ctrl.data_bits = regk_ser_bits7;
}
if (termios->c_cflag & CSTOPB) {
/* Set 2 stop bit mode. */
tx_ctrl.stop_bits = regk_ser_bits2;
}
if (termios->c_cflag & PARENB) {
/* Enable parity. */
tx_ctrl.par_en = regk_ser_yes;
rx_ctrl.par_en = regk_ser_yes;
}
if (termios->c_cflag & CMSPAR) {
if (termios->c_cflag & PARODD) {
/* Set mark parity if PARODD and CMSPAR. */
tx_ctrl.par = regk_ser_mark;
rx_ctrl.par = regk_ser_mark;
} else {
tx_ctrl.par = regk_ser_space;
rx_ctrl.par = regk_ser_space;
}
} else {
if (termios->c_cflag & PARODD) {
/* Set odd parity. */
tx_ctrl.par = regk_ser_odd;
rx_ctrl.par = regk_ser_odd;
}
}
if (termios->c_cflag & CRTSCTS) {
/* Enable automatic CTS handling. */
tx_ctrl.auto_cts = regk_ser_yes;
}
/* Make sure the tx and rx are enabled. */
tx_ctrl.en = regk_ser_yes;
rx_ctrl.en = regk_ser_yes;
spin_lock_irqsave(&port->lock, flags);
tx_dma_en.en = 0;
REG_WR(ser, up->regi_ser, rw_tr_dma_en, tx_dma_en);
/* Actually write the control regs (if modified) to the hardware. */
uart_update_timeout(port, termios->c_cflag, port->uartclk/8);
MODIFY_REG(up->regi_ser, rw_rec_baud_div, rx_baud_div);
MODIFY_REG(up->regi_ser, rw_rec_ctrl, rx_ctrl);
MODIFY_REG(up->regi_ser, rw_tr_baud_div, tx_baud_div);
MODIFY_REG(up->regi_ser, rw_tr_ctrl, tx_ctrl);
tx_dma_en.en = 0;
REG_WR(ser, up->regi_ser, rw_tr_dma_en, tx_dma_en);
xoff = REG_RD(ser, up->regi_ser, rw_xoff);
if (up->port.state && up->port.state->port.tty &&
(up->port.state->port.tty->termios.c_iflag & IXON)) {
xoff.chr = STOP_CHAR(up->port.state->port.tty);
xoff.automatic = regk_ser_yes;
} else
xoff.automatic = regk_ser_no;
MODIFY_REG(up->regi_ser, rw_xoff, xoff);
/*
* Make sure we don't start in an automatically shut-off state due to
* a previous early exit.
*/
xoff_clr.clr = 1;
REG_WR(ser, up->regi_ser, rw_xoff_clr, xoff_clr);
etraxfs_uart_set_mctrl(&up->port, up->port.mctrl);
spin_unlock_irqrestore(&up->port.lock, flags);
}
static const char *
etraxfs_uart_type(struct uart_port *port)
{
return "CRISv32";
}
static void etraxfs_uart_release_port(struct uart_port *port)
{
}
static int etraxfs_uart_request_port(struct uart_port *port)
{
return 0;
}
static void etraxfs_uart_config_port(struct uart_port *port, int flags)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
up->port.type = PORT_CRIS;
}
static const struct uart_ops etraxfs_uart_pops = {
.tx_empty = etraxfs_uart_tx_empty,
.set_mctrl = etraxfs_uart_set_mctrl,
.get_mctrl = etraxfs_uart_get_mctrl,
.stop_tx = etraxfs_uart_stop_tx,
.start_tx = etraxfs_uart_start_tx,
.send_xchar = etraxfs_uart_send_xchar,
.stop_rx = etraxfs_uart_stop_rx,
.break_ctl = etraxfs_uart_break_ctl,
.startup = etraxfs_uart_startup,
.shutdown = etraxfs_uart_shutdown,
.set_termios = etraxfs_uart_set_termios,
.type = etraxfs_uart_type,
.release_port = etraxfs_uart_release_port,
.request_port = etraxfs_uart_request_port,
.config_port = etraxfs_uart_config_port,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = etraxfs_uart_get_poll_char,
.poll_put_char = etraxfs_uart_put_poll_char,
#endif
};
static void cris_serial_port_init(struct uart_port *port, int line)
{
struct uart_cris_port *up = (struct uart_cris_port *)port;
if (up->initialized)
return;
up->initialized = 1;
port->line = line;
spin_lock_init(&port->lock);
port->ops = &etraxfs_uart_pops;
port->irq = up->irq;
port->iobase = (unsigned long) up->regi_ser;
port->uartclk = 29493000;
/*
* We can't fit any more than 255 here (unsigned char), though
* actually UART_XMIT_SIZE characters could be pending output.
* At time of this writing, the definition of "fifosize" is here the
* amount of characters that can be pending output after a start_tx call
* until tx_empty returns 1: see serial_core.c:uart_wait_until_sent.
* This matters for timeout calculations unfortunately, but keeping
* larger amounts at the DMA wouldn't win much so let's just play nice.
*/
port->fifosize = 255;
port->flags = UPF_BOOT_AUTOCONF;
}
static int etraxfs_uart_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct uart_cris_port *up;
int dev_id;
if (!np)
return -ENODEV;
dev_id = of_alias_get_id(np, "serial");
if (dev_id < 0)
dev_id = 0;
if (dev_id >= UART_NR)
return -EINVAL;
if (etraxfs_uart_ports[dev_id])
return -EBUSY;
up = devm_kzalloc(&pdev->dev, sizeof(struct uart_cris_port),
GFP_KERNEL);
if (!up)
return -ENOMEM;
up->irq = irq_of_parse_and_map(np, 0);
up->regi_ser = of_iomap(np, 0);
up->port.dev = &pdev->dev;
up->gpios = mctrl_gpio_init_noauto(&pdev->dev, 0);
if (IS_ERR(up->gpios))
return PTR_ERR(up->gpios);
cris_serial_port_init(&up->port, dev_id);
etraxfs_uart_ports[dev_id] = up;
platform_set_drvdata(pdev, &up->port);
uart_add_one_port(&etraxfs_uart_driver, &up->port);
return 0;
}
static int etraxfs_uart_remove(struct platform_device *pdev)
{
struct uart_port *port;
port = platform_get_drvdata(pdev);
uart_remove_one_port(&etraxfs_uart_driver, port);
etraxfs_uart_ports[port->line] = NULL;
return 0;
}
static const struct of_device_id etraxfs_uart_dt_ids[] = {
{ .compatible = "axis,etraxfs-uart" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, etraxfs_uart_dt_ids);
static struct platform_driver etraxfs_uart_platform_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(etraxfs_uart_dt_ids),
},
.probe = etraxfs_uart_probe,
.remove = etraxfs_uart_remove,
};
static int __init etraxfs_uart_init(void)
{
int ret;
ret = uart_register_driver(&etraxfs_uart_driver);
if (ret)
return ret;
ret = platform_driver_register(&etraxfs_uart_platform_driver);
if (ret)
uart_unregister_driver(&etraxfs_uart_driver);
return ret;
}
static void __exit etraxfs_uart_exit(void)
{
platform_driver_unregister(&etraxfs_uart_platform_driver);
uart_unregister_driver(&etraxfs_uart_driver);
}
module_init(etraxfs_uart_init);
module_exit(etraxfs_uart_exit);