mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 08:02:07 +00:00
6396bb2215
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
367 lines
10 KiB
C
367 lines
10 KiB
C
/*
|
|
* Copyright (C) 2017 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
#include "vgic.h"
|
|
|
|
/*
|
|
* How KVM uses GICv4 (insert rude comments here):
|
|
*
|
|
* The vgic-v4 layer acts as a bridge between several entities:
|
|
* - The GICv4 ITS representation offered by the ITS driver
|
|
* - VFIO, which is in charge of the PCI endpoint
|
|
* - The virtual ITS, which is the only thing the guest sees
|
|
*
|
|
* The configuration of VLPIs is triggered by a callback from VFIO,
|
|
* instructing KVM that a PCI device has been configured to deliver
|
|
* MSIs to a vITS.
|
|
*
|
|
* kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
|
|
* and this is used to find the corresponding vITS data structures
|
|
* (ITS instance, device, event and irq) using a process that is
|
|
* extremely similar to the injection of an MSI.
|
|
*
|
|
* At this stage, we can link the guest's view of an LPI (uniquely
|
|
* identified by the routing entry) and the host irq, using the GICv4
|
|
* driver mapping operation. Should the mapping succeed, we've then
|
|
* successfully upgraded the guest's LPI to a VLPI. We can then start
|
|
* with updating GICv4's view of the property table and generating an
|
|
* INValidation in order to kickstart the delivery of this VLPI to the
|
|
* guest directly, without software intervention. Well, almost.
|
|
*
|
|
* When the PCI endpoint is deconfigured, this operation is reversed
|
|
* with VFIO calling kvm_vgic_v4_unset_forwarding().
|
|
*
|
|
* Once the VLPI has been mapped, it needs to follow any change the
|
|
* guest performs on its LPI through the vITS. For that, a number of
|
|
* command handlers have hooks to communicate these changes to the HW:
|
|
* - Any invalidation triggers a call to its_prop_update_vlpi()
|
|
* - The INT command results in a irq_set_irqchip_state(), which
|
|
* generates an INT on the corresponding VLPI.
|
|
* - The CLEAR command results in a irq_set_irqchip_state(), which
|
|
* generates an CLEAR on the corresponding VLPI.
|
|
* - DISCARD translates into an unmap, similar to a call to
|
|
* kvm_vgic_v4_unset_forwarding().
|
|
* - MOVI is translated by an update of the existing mapping, changing
|
|
* the target vcpu, resulting in a VMOVI being generated.
|
|
* - MOVALL is translated by a string of mapping updates (similar to
|
|
* the handling of MOVI). MOVALL is horrible.
|
|
*
|
|
* Note that a DISCARD/MAPTI sequence emitted from the guest without
|
|
* reprogramming the PCI endpoint after MAPTI does not result in a
|
|
* VLPI being mapped, as there is no callback from VFIO (the guest
|
|
* will get the interrupt via the normal SW injection). Fixing this is
|
|
* not trivial, and requires some horrible messing with the VFIO
|
|
* internals. Not fun. Don't do that.
|
|
*
|
|
* Then there is the scheduling. Each time a vcpu is about to run on a
|
|
* physical CPU, KVM must tell the corresponding redistributor about
|
|
* it. And if we've migrated our vcpu from one CPU to another, we must
|
|
* tell the ITS (so that the messages reach the right redistributor).
|
|
* This is done in two steps: first issue a irq_set_affinity() on the
|
|
* irq corresponding to the vcpu, then call its_schedule_vpe(). You
|
|
* must be in a non-preemptible context. On exit, another call to
|
|
* its_schedule_vpe() tells the redistributor that we're done with the
|
|
* vcpu.
|
|
*
|
|
* Finally, the doorbell handling: Each vcpu is allocated an interrupt
|
|
* which will fire each time a VLPI is made pending whilst the vcpu is
|
|
* not running. Each time the vcpu gets blocked, the doorbell
|
|
* interrupt gets enabled. When the vcpu is unblocked (for whatever
|
|
* reason), the doorbell interrupt is disabled.
|
|
*/
|
|
|
|
#define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
|
|
|
|
static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
|
|
{
|
|
struct kvm_vcpu *vcpu = info;
|
|
|
|
vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* vgic_v4_init - Initialize the GICv4 data structures
|
|
* @kvm: Pointer to the VM being initialized
|
|
*
|
|
* We may be called each time a vITS is created, or when the
|
|
* vgic is initialized. This relies on kvm->lock to be
|
|
* held. In both cases, the number of vcpus should now be
|
|
* fixed.
|
|
*/
|
|
int vgic_v4_init(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, nr_vcpus, ret;
|
|
|
|
if (!kvm_vgic_global_state.has_gicv4)
|
|
return 0; /* Nothing to see here... move along. */
|
|
|
|
if (dist->its_vm.vpes)
|
|
return 0;
|
|
|
|
nr_vcpus = atomic_read(&kvm->online_vcpus);
|
|
|
|
dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
|
|
GFP_KERNEL);
|
|
if (!dist->its_vm.vpes)
|
|
return -ENOMEM;
|
|
|
|
dist->its_vm.nr_vpes = nr_vcpus;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
|
|
|
|
ret = its_alloc_vcpu_irqs(&dist->its_vm);
|
|
if (ret < 0) {
|
|
kvm_err("VPE IRQ allocation failure\n");
|
|
kfree(dist->its_vm.vpes);
|
|
dist->its_vm.nr_vpes = 0;
|
|
dist->its_vm.vpes = NULL;
|
|
return ret;
|
|
}
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
int irq = dist->its_vm.vpes[i]->irq;
|
|
|
|
/*
|
|
* Don't automatically enable the doorbell, as we're
|
|
* flipping it back and forth when the vcpu gets
|
|
* blocked. Also disable the lazy disabling, as the
|
|
* doorbell could kick us out of the guest too
|
|
* early...
|
|
*/
|
|
irq_set_status_flags(irq, DB_IRQ_FLAGS);
|
|
ret = request_irq(irq, vgic_v4_doorbell_handler,
|
|
0, "vcpu", vcpu);
|
|
if (ret) {
|
|
kvm_err("failed to allocate vcpu IRQ%d\n", irq);
|
|
/*
|
|
* Trick: adjust the number of vpes so we know
|
|
* how many to nuke on teardown...
|
|
*/
|
|
dist->its_vm.nr_vpes = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
vgic_v4_teardown(kvm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_v4_teardown - Free the GICv4 data structures
|
|
* @kvm: Pointer to the VM being destroyed
|
|
*
|
|
* Relies on kvm->lock to be held.
|
|
*/
|
|
void vgic_v4_teardown(struct kvm *kvm)
|
|
{
|
|
struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
|
|
int i;
|
|
|
|
if (!its_vm->vpes)
|
|
return;
|
|
|
|
for (i = 0; i < its_vm->nr_vpes; i++) {
|
|
struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
|
|
int irq = its_vm->vpes[i]->irq;
|
|
|
|
irq_clear_status_flags(irq, DB_IRQ_FLAGS);
|
|
free_irq(irq, vcpu);
|
|
}
|
|
|
|
its_free_vcpu_irqs(its_vm);
|
|
kfree(its_vm->vpes);
|
|
its_vm->nr_vpes = 0;
|
|
its_vm->vpes = NULL;
|
|
}
|
|
|
|
int vgic_v4_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vgic_supports_direct_msis(vcpu->kvm))
|
|
return 0;
|
|
|
|
return its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, false);
|
|
}
|
|
|
|
int vgic_v4_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
|
|
int err;
|
|
|
|
if (!vgic_supports_direct_msis(vcpu->kvm))
|
|
return 0;
|
|
|
|
/*
|
|
* Before making the VPE resident, make sure the redistributor
|
|
* corresponding to our current CPU expects us here. See the
|
|
* doc in drivers/irqchip/irq-gic-v4.c to understand how this
|
|
* turns into a VMOVP command at the ITS level.
|
|
*/
|
|
err = irq_set_affinity(irq, cpumask_of(smp_processor_id()));
|
|
if (err)
|
|
return err;
|
|
|
|
err = its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, true);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Now that the VPE is resident, let's get rid of a potential
|
|
* doorbell interrupt that would still be pending.
|
|
*/
|
|
err = irq_set_irqchip_state(irq, IRQCHIP_STATE_PENDING, false);
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct vgic_its *vgic_get_its(struct kvm *kvm,
|
|
struct kvm_kernel_irq_routing_entry *irq_entry)
|
|
{
|
|
struct kvm_msi msi = (struct kvm_msi) {
|
|
.address_lo = irq_entry->msi.address_lo,
|
|
.address_hi = irq_entry->msi.address_hi,
|
|
.data = irq_entry->msi.data,
|
|
.flags = irq_entry->msi.flags,
|
|
.devid = irq_entry->msi.devid,
|
|
};
|
|
|
|
return vgic_msi_to_its(kvm, &msi);
|
|
}
|
|
|
|
int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
|
|
struct kvm_kernel_irq_routing_entry *irq_entry)
|
|
{
|
|
struct vgic_its *its;
|
|
struct vgic_irq *irq;
|
|
struct its_vlpi_map map;
|
|
int ret;
|
|
|
|
if (!vgic_supports_direct_msis(kvm))
|
|
return 0;
|
|
|
|
/*
|
|
* Get the ITS, and escape early on error (not a valid
|
|
* doorbell for any of our vITSs).
|
|
*/
|
|
its = vgic_get_its(kvm, irq_entry);
|
|
if (IS_ERR(its))
|
|
return 0;
|
|
|
|
mutex_lock(&its->its_lock);
|
|
|
|
/* Perform then actual DevID/EventID -> LPI translation. */
|
|
ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
|
|
irq_entry->msi.data, &irq);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Emit the mapping request. If it fails, the ITS probably
|
|
* isn't v4 compatible, so let's silently bail out. Holding
|
|
* the ITS lock should ensure that nothing can modify the
|
|
* target vcpu.
|
|
*/
|
|
map = (struct its_vlpi_map) {
|
|
.vm = &kvm->arch.vgic.its_vm,
|
|
.vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
|
|
.vintid = irq->intid,
|
|
.properties = ((irq->priority & 0xfc) |
|
|
(irq->enabled ? LPI_PROP_ENABLED : 0) |
|
|
LPI_PROP_GROUP1),
|
|
.db_enabled = true,
|
|
};
|
|
|
|
ret = its_map_vlpi(virq, &map);
|
|
if (ret)
|
|
goto out;
|
|
|
|
irq->hw = true;
|
|
irq->host_irq = virq;
|
|
|
|
out:
|
|
mutex_unlock(&its->its_lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
|
|
struct kvm_kernel_irq_routing_entry *irq_entry)
|
|
{
|
|
struct vgic_its *its;
|
|
struct vgic_irq *irq;
|
|
int ret;
|
|
|
|
if (!vgic_supports_direct_msis(kvm))
|
|
return 0;
|
|
|
|
/*
|
|
* Get the ITS, and escape early on error (not a valid
|
|
* doorbell for any of our vITSs).
|
|
*/
|
|
its = vgic_get_its(kvm, irq_entry);
|
|
if (IS_ERR(its))
|
|
return 0;
|
|
|
|
mutex_lock(&its->its_lock);
|
|
|
|
ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
|
|
irq_entry->msi.data, &irq);
|
|
if (ret)
|
|
goto out;
|
|
|
|
WARN_ON(!(irq->hw && irq->host_irq == virq));
|
|
if (irq->hw) {
|
|
irq->hw = false;
|
|
ret = its_unmap_vlpi(virq);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&its->its_lock);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_vgic_v4_enable_doorbell(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vgic_supports_direct_msis(vcpu->kvm)) {
|
|
int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
|
|
if (irq)
|
|
enable_irq(irq);
|
|
}
|
|
}
|
|
|
|
void kvm_vgic_v4_disable_doorbell(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vgic_supports_direct_msis(vcpu->kvm)) {
|
|
int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
|
|
if (irq)
|
|
disable_irq(irq);
|
|
}
|
|
}
|