linux/drivers/cpufreq/amd-pstate.c
Thomas Weißschuh 5e720f8c8c cpufreq: amd-pstate: fix global sysfs attribute type
In commit 3666062b87 ("cpufreq: amd-pstate: move to use bus_get_dev_root()")
the "amd_pstate" attributes where moved from a dedicated kobject to the
cpu root kobject.

While the dedicated kobject expects to contain kobj_attributes the root
kobject needs device_attributes.

As the changed arguments are not used by the callbacks it works most of
the time.
However CFI will detect this issue:

[ 4947.849350] CFI failure at dev_attr_show+0x24/0x60 (target: show_status+0x0/0x70; expected type: 0x8651b1de)
...
[ 4947.849409] Call Trace:
[ 4947.849410]  <TASK>
[ 4947.849411]  ? __warn+0xcf/0x1c0
[ 4947.849414]  ? dev_attr_show+0x24/0x60
[ 4947.849415]  ? report_cfi_failure+0x4e/0x60
[ 4947.849417]  ? handle_cfi_failure+0x14c/0x1d0
[ 4947.849419]  ? __cfi_show_status+0x10/0x10
[ 4947.849420]  ? handle_bug+0x4f/0x90
[ 4947.849421]  ? exc_invalid_op+0x1a/0x60
[ 4947.849422]  ? asm_exc_invalid_op+0x1a/0x20
[ 4947.849424]  ? __cfi_show_status+0x10/0x10
[ 4947.849425]  ? dev_attr_show+0x24/0x60
[ 4947.849426]  sysfs_kf_seq_show+0xa6/0x110
[ 4947.849433]  seq_read_iter+0x16c/0x4b0
[ 4947.849436]  vfs_read+0x272/0x2d0
[ 4947.849438]  ksys_read+0x72/0xe0
[ 4947.849439]  do_syscall_64+0x76/0xb0
[ 4947.849440]  ? do_user_addr_fault+0x252/0x650
[ 4947.849442]  ? exc_page_fault+0x7a/0x1b0
[ 4947.849443]  entry_SYSCALL_64_after_hwframe+0x72/0xdc

Fixes: 3666062b87 ("cpufreq: amd-pstate: move to use bus_get_dev_root()")
Reported-by: Jannik Glückert <jannik.glueckert@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217765
Link: https://lore.kernel.org/lkml/c7f1bf9b-b183-bf6e-1cbb-d43f72494083@gmail.com/
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2023-08-07 19:41:48 +02:00

1534 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* amd-pstate.c - AMD Processor P-state Frequency Driver
*
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Author: Huang Rui <ray.huang@amd.com>
*
* AMD P-State introduces a new CPU performance scaling design for AMD
* processors using the ACPI Collaborative Performance and Power Control (CPPC)
* feature which works with the AMD SMU firmware providing a finer grained
* frequency control range. It is to replace the legacy ACPI P-States control,
* allows a flexible, low-latency interface for the Linux kernel to directly
* communicate the performance hints to hardware.
*
* AMD P-State is supported on recent AMD Zen base CPU series include some of
* Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
* P-State supported system. And there are two types of hardware implementations
* for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
* X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/static_call.h>
#include <linux/amd-pstate.h>
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
#include "amd-pstate-trace.h"
#define AMD_PSTATE_TRANSITION_LATENCY 20000
#define AMD_PSTATE_TRANSITION_DELAY 1000
/*
* TODO: We need more time to fine tune processors with shared memory solution
* with community together.
*
* There are some performance drops on the CPU benchmarks which reports from
* Suse. We are co-working with them to fine tune the shared memory solution. So
* we disable it by default to go acpi-cpufreq on these processors and add a
* module parameter to be able to enable it manually for debugging.
*/
static struct cpufreq_driver *current_pstate_driver;
static struct cpufreq_driver amd_pstate_driver;
static struct cpufreq_driver amd_pstate_epp_driver;
static int cppc_state = AMD_PSTATE_UNDEFINED;
static bool cppc_enabled;
/*
* AMD Energy Preference Performance (EPP)
* The EPP is used in the CCLK DPM controller to drive
* the frequency that a core is going to operate during
* short periods of activity. EPP values will be utilized for
* different OS profiles (balanced, performance, power savings)
* display strings corresponding to EPP index in the
* energy_perf_strings[]
* index String
*-------------------------------------
* 0 default
* 1 performance
* 2 balance_performance
* 3 balance_power
* 4 power
*/
enum energy_perf_value_index {
EPP_INDEX_DEFAULT = 0,
EPP_INDEX_PERFORMANCE,
EPP_INDEX_BALANCE_PERFORMANCE,
EPP_INDEX_BALANCE_POWERSAVE,
EPP_INDEX_POWERSAVE,
};
static const char * const energy_perf_strings[] = {
[EPP_INDEX_DEFAULT] = "default",
[EPP_INDEX_PERFORMANCE] = "performance",
[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
[EPP_INDEX_POWERSAVE] = "power",
NULL
};
static unsigned int epp_values[] = {
[EPP_INDEX_DEFAULT] = 0,
[EPP_INDEX_PERFORMANCE] = AMD_CPPC_EPP_PERFORMANCE,
[EPP_INDEX_BALANCE_PERFORMANCE] = AMD_CPPC_EPP_BALANCE_PERFORMANCE,
[EPP_INDEX_BALANCE_POWERSAVE] = AMD_CPPC_EPP_BALANCE_POWERSAVE,
[EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE,
};
typedef int (*cppc_mode_transition_fn)(int);
static inline int get_mode_idx_from_str(const char *str, size_t size)
{
int i;
for (i=0; i < AMD_PSTATE_MAX; i++) {
if (!strncmp(str, amd_pstate_mode_string[i], size))
return i;
}
return -EINVAL;
}
static DEFINE_MUTEX(amd_pstate_limits_lock);
static DEFINE_MUTEX(amd_pstate_driver_lock);
static s16 amd_pstate_get_epp(struct amd_cpudata *cpudata, u64 cppc_req_cached)
{
u64 epp;
int ret;
if (boot_cpu_has(X86_FEATURE_CPPC)) {
if (!cppc_req_cached) {
epp = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
&cppc_req_cached);
if (epp)
return epp;
}
epp = (cppc_req_cached >> 24) & 0xFF;
} else {
ret = cppc_get_epp_perf(cpudata->cpu, &epp);
if (ret < 0) {
pr_debug("Could not retrieve energy perf value (%d)\n", ret);
return -EIO;
}
}
return (s16)(epp & 0xff);
}
static int amd_pstate_get_energy_pref_index(struct amd_cpudata *cpudata)
{
s16 epp;
int index = -EINVAL;
epp = amd_pstate_get_epp(cpudata, 0);
if (epp < 0)
return epp;
switch (epp) {
case AMD_CPPC_EPP_PERFORMANCE:
index = EPP_INDEX_PERFORMANCE;
break;
case AMD_CPPC_EPP_BALANCE_PERFORMANCE:
index = EPP_INDEX_BALANCE_PERFORMANCE;
break;
case AMD_CPPC_EPP_BALANCE_POWERSAVE:
index = EPP_INDEX_BALANCE_POWERSAVE;
break;
case AMD_CPPC_EPP_POWERSAVE:
index = EPP_INDEX_POWERSAVE;
break;
default:
break;
}
return index;
}
static int amd_pstate_set_epp(struct amd_cpudata *cpudata, u32 epp)
{
int ret;
struct cppc_perf_ctrls perf_ctrls;
if (boot_cpu_has(X86_FEATURE_CPPC)) {
u64 value = READ_ONCE(cpudata->cppc_req_cached);
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
WRITE_ONCE(cpudata->cppc_req_cached, value);
ret = wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
if (!ret)
cpudata->epp_cached = epp;
} else {
perf_ctrls.energy_perf = epp;
ret = cppc_set_epp_perf(cpudata->cpu, &perf_ctrls, 1);
if (ret) {
pr_debug("failed to set energy perf value (%d)\n", ret);
return ret;
}
cpudata->epp_cached = epp;
}
return ret;
}
static int amd_pstate_set_energy_pref_index(struct amd_cpudata *cpudata,
int pref_index)
{
int epp = -EINVAL;
int ret;
if (!pref_index) {
pr_debug("EPP pref_index is invalid\n");
return -EINVAL;
}
if (epp == -EINVAL)
epp = epp_values[pref_index];
if (epp > 0 && cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) {
pr_debug("EPP cannot be set under performance policy\n");
return -EBUSY;
}
ret = amd_pstate_set_epp(cpudata, epp);
return ret;
}
static inline int pstate_enable(bool enable)
{
int ret, cpu;
unsigned long logical_proc_id_mask = 0;
if (enable == cppc_enabled)
return 0;
for_each_present_cpu(cpu) {
unsigned long logical_id = topology_logical_die_id(cpu);
if (test_bit(logical_id, &logical_proc_id_mask))
continue;
set_bit(logical_id, &logical_proc_id_mask);
ret = wrmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_ENABLE,
enable);
if (ret)
return ret;
}
cppc_enabled = enable;
return 0;
}
static int cppc_enable(bool enable)
{
int cpu, ret = 0;
struct cppc_perf_ctrls perf_ctrls;
if (enable == cppc_enabled)
return 0;
for_each_present_cpu(cpu) {
ret = cppc_set_enable(cpu, enable);
if (ret)
return ret;
/* Enable autonomous mode for EPP */
if (cppc_state == AMD_PSTATE_ACTIVE) {
/* Set desired perf as zero to allow EPP firmware control */
perf_ctrls.desired_perf = 0;
ret = cppc_set_perf(cpu, &perf_ctrls);
if (ret)
return ret;
}
}
cppc_enabled = enable;
return ret;
}
DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);
static inline int amd_pstate_enable(bool enable)
{
return static_call(amd_pstate_enable)(enable);
}
static int pstate_init_perf(struct amd_cpudata *cpudata)
{
u64 cap1;
u32 highest_perf;
int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
&cap1);
if (ret)
return ret;
/*
* TODO: Introduce AMD specific power feature.
*
* CPPC entry doesn't indicate the highest performance in some ASICs.
*/
highest_perf = amd_get_highest_perf();
if (highest_perf > AMD_CPPC_HIGHEST_PERF(cap1))
highest_perf = AMD_CPPC_HIGHEST_PERF(cap1);
WRITE_ONCE(cpudata->highest_perf, highest_perf);
WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
return 0;
}
static int cppc_init_perf(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 highest_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
highest_perf = amd_get_highest_perf();
if (highest_perf > cppc_perf.highest_perf)
highest_perf = cppc_perf.highest_perf;
WRITE_ONCE(cpudata->highest_perf, highest_perf);
WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
WRITE_ONCE(cpudata->lowest_nonlinear_perf,
cppc_perf.lowest_nonlinear_perf);
WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
if (cppc_state == AMD_PSTATE_ACTIVE)
return 0;
ret = cppc_get_auto_sel_caps(cpudata->cpu, &cppc_perf);
if (ret) {
pr_warn("failed to get auto_sel, ret: %d\n", ret);
return 0;
}
ret = cppc_set_auto_sel(cpudata->cpu,
(cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
if (ret)
pr_warn("failed to set auto_sel, ret: %d\n", ret);
return ret;
}
DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);
static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
{
return static_call(amd_pstate_init_perf)(cpudata);
}
static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
{
if (fast_switch)
wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
else
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
READ_ONCE(cpudata->cppc_req_cached));
}
static void cppc_update_perf(struct amd_cpudata *cpudata,
u32 min_perf, u32 des_perf,
u32 max_perf, bool fast_switch)
{
struct cppc_perf_ctrls perf_ctrls;
perf_ctrls.max_perf = max_perf;
perf_ctrls.min_perf = min_perf;
perf_ctrls.desired_perf = des_perf;
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);
static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
u32 min_perf, u32 des_perf,
u32 max_perf, bool fast_switch)
{
static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
max_perf, fast_switch);
}
static inline bool amd_pstate_sample(struct amd_cpudata *cpudata)
{
u64 aperf, mperf, tsc;
unsigned long flags;
local_irq_save(flags);
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
tsc = rdtsc();
if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) {
local_irq_restore(flags);
return false;
}
local_irq_restore(flags);
cpudata->cur.aperf = aperf;
cpudata->cur.mperf = mperf;
cpudata->cur.tsc = tsc;
cpudata->cur.aperf -= cpudata->prev.aperf;
cpudata->cur.mperf -= cpudata->prev.mperf;
cpudata->cur.tsc -= cpudata->prev.tsc;
cpudata->prev.aperf = aperf;
cpudata->prev.mperf = mperf;
cpudata->prev.tsc = tsc;
cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf);
return true;
}
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch, int gov_flags)
{
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
u64 value = prev;
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
if ((cppc_state == AMD_PSTATE_GUIDED) && (gov_flags & CPUFREQ_GOV_DYNAMIC_SWITCHING)) {
min_perf = des_perf;
des_perf = 0;
}
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(des_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) {
trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq,
cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc,
cpudata->cpu, (value != prev), fast_switch);
}
if (value == prev)
return;
WRITE_ONCE(cpudata->cppc_req_cached, value);
amd_pstate_update_perf(cpudata, min_perf, des_perf,
max_perf, fast_switch);
}
static int amd_pstate_verify(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
return 0;
}
static int amd_pstate_update_freq(struct cpufreq_policy *policy,
unsigned int target_freq, bool fast_switch)
{
struct cpufreq_freqs freqs;
struct amd_cpudata *cpudata = policy->driver_data;
unsigned long max_perf, min_perf, des_perf, cap_perf;
if (!cpudata->max_freq)
return -ENODEV;
cap_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_perf);
max_perf = cap_perf;
freqs.old = policy->cur;
freqs.new = target_freq;
des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
cpudata->max_freq);
WARN_ON(fast_switch && !policy->fast_switch_enabled);
/*
* If fast_switch is desired, then there aren't any registered
* transition notifiers. See comment for
* cpufreq_enable_fast_switch().
*/
if (!fast_switch)
cpufreq_freq_transition_begin(policy, &freqs);
amd_pstate_update(cpudata, min_perf, des_perf,
max_perf, fast_switch, policy->governor->flags);
if (!fast_switch)
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
}
static int amd_pstate_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
return amd_pstate_update_freq(policy, target_freq, false);
}
static unsigned int amd_pstate_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
return amd_pstate_update_freq(policy, target_freq, true);
}
static void amd_pstate_adjust_perf(unsigned int cpu,
unsigned long _min_perf,
unsigned long target_perf,
unsigned long capacity)
{
unsigned long max_perf, min_perf, des_perf,
cap_perf, lowest_nonlinear_perf, max_freq;
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct amd_cpudata *cpudata = policy->driver_data;
unsigned int target_freq;
cap_perf = READ_ONCE(cpudata->highest_perf);
lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
max_freq = READ_ONCE(cpudata->max_freq);
des_perf = cap_perf;
if (target_perf < capacity)
des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);
min_perf = READ_ONCE(cpudata->highest_perf);
if (_min_perf < capacity)
min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);
if (min_perf < lowest_nonlinear_perf)
min_perf = lowest_nonlinear_perf;
max_perf = cap_perf;
if (max_perf < min_perf)
max_perf = min_perf;
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
target_freq = div_u64(des_perf * max_freq, max_perf);
policy->cur = target_freq;
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true,
policy->governor->flags);
cpufreq_cpu_put(policy);
}
static int amd_get_min_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
/* Switch to khz */
return cppc_perf.lowest_freq * 1000;
}
static int amd_get_max_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 max_perf, max_freq, nominal_freq, nominal_perf;
u64 boost_ratio;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
max_perf = READ_ONCE(cpudata->highest_perf);
boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;
/* Switch to khz */
return max_freq * 1000;
}
static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
/* Switch to khz */
return cppc_perf.nominal_freq * 1000;
}
static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
nominal_freq, nominal_perf;
u64 lowest_nonlinear_ratio;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;
lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;
/* Switch to khz */
return lowest_nonlinear_freq * 1000;
}
static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
if (!cpudata->boost_supported) {
pr_err("Boost mode is not supported by this processor or SBIOS\n");
return -EINVAL;
}
if (state)
policy->cpuinfo.max_freq = cpudata->max_freq;
else
policy->cpuinfo.max_freq = cpudata->nominal_freq;
policy->max = policy->cpuinfo.max_freq;
ret = freq_qos_update_request(&cpudata->req[1],
policy->cpuinfo.max_freq);
if (ret < 0)
return ret;
return 0;
}
static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
{
u32 highest_perf, nominal_perf;
highest_perf = READ_ONCE(cpudata->highest_perf);
nominal_perf = READ_ONCE(cpudata->nominal_perf);
if (highest_perf <= nominal_perf)
return;
cpudata->boost_supported = true;
current_pstate_driver->boost_enabled = true;
}
static void amd_perf_ctl_reset(unsigned int cpu)
{
wrmsrl_on_cpu(cpu, MSR_AMD_PERF_CTL, 0);
}
static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
struct device *dev;
struct amd_cpudata *cpudata;
/*
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
* which is ideal for initialization process.
*/
amd_perf_ctl_reset(policy->cpu);
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata1;
min_freq = amd_get_min_freq(cpudata);
max_freq = amd_get_max_freq(cpudata);
nominal_freq = amd_get_nominal_freq(cpudata);
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
min_freq, max_freq);
ret = -EINVAL;
goto free_cpudata1;
}
policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;
policy->min = min_freq;
policy->max = max_freq;
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
if (boot_cpu_has(X86_FEATURE_CPPC))
policy->fast_switch_possible = true;
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
FREQ_QOS_MIN, policy->cpuinfo.min_freq);
if (ret < 0) {
dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
goto free_cpudata1;
}
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
FREQ_QOS_MAX, policy->cpuinfo.max_freq);
if (ret < 0) {
dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
goto free_cpudata2;
}
/* Initial processor data capability frequencies */
cpudata->max_freq = max_freq;
cpudata->min_freq = min_freq;
cpudata->nominal_freq = nominal_freq;
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
policy->driver_data = cpudata;
amd_pstate_boost_init(cpudata);
if (!current_pstate_driver->adjust_perf)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
return 0;
free_cpudata2:
freq_qos_remove_request(&cpudata->req[0]);
free_cpudata1:
kfree(cpudata);
return ret;
}
static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
freq_qos_remove_request(&cpudata->req[1]);
freq_qos_remove_request(&cpudata->req[0]);
policy->fast_switch_possible = false;
kfree(cpudata);
return 0;
}
static int amd_pstate_cpu_resume(struct cpufreq_policy *policy)
{
int ret;
ret = amd_pstate_enable(true);
if (ret)
pr_err("failed to enable amd-pstate during resume, return %d\n", ret);
return ret;
}
static int amd_pstate_cpu_suspend(struct cpufreq_policy *policy)
{
int ret;
ret = amd_pstate_enable(false);
if (ret)
pr_err("failed to disable amd-pstate during suspend, return %d\n", ret);
return ret;
}
/* Sysfs attributes */
/*
* This frequency is to indicate the maximum hardware frequency.
* If boost is not active but supported, the frequency will be larger than the
* one in cpuinfo.
*/
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
char *buf)
{
int max_freq;
struct amd_cpudata *cpudata = policy->driver_data;
max_freq = amd_get_max_freq(cpudata);
if (max_freq < 0)
return max_freq;
return sysfs_emit(buf, "%u\n", max_freq);
}
static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
char *buf)
{
int freq;
struct amd_cpudata *cpudata = policy->driver_data;
freq = amd_get_lowest_nonlinear_freq(cpudata);
if (freq < 0)
return freq;
return sysfs_emit(buf, "%u\n", freq);
}
/*
* In some of ASICs, the highest_perf is not the one in the _CPC table, so we
* need to expose it to sysfs.
*/
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
char *buf)
{
u32 perf;
struct amd_cpudata *cpudata = policy->driver_data;
perf = READ_ONCE(cpudata->highest_perf);
return sysfs_emit(buf, "%u\n", perf);
}
static ssize_t show_energy_performance_available_preferences(
struct cpufreq_policy *policy, char *buf)
{
int i = 0;
int offset = 0;
while (energy_perf_strings[i] != NULL)
offset += sysfs_emit_at(buf, offset, "%s ", energy_perf_strings[i++]);
sysfs_emit_at(buf, offset, "\n");
return offset;
}
static ssize_t store_energy_performance_preference(
struct cpufreq_policy *policy, const char *buf, size_t count)
{
struct amd_cpudata *cpudata = policy->driver_data;
char str_preference[21];
ssize_t ret;
ret = sscanf(buf, "%20s", str_preference);
if (ret != 1)
return -EINVAL;
ret = match_string(energy_perf_strings, -1, str_preference);
if (ret < 0)
return -EINVAL;
mutex_lock(&amd_pstate_limits_lock);
ret = amd_pstate_set_energy_pref_index(cpudata, ret);
mutex_unlock(&amd_pstate_limits_lock);
return ret ?: count;
}
static ssize_t show_energy_performance_preference(
struct cpufreq_policy *policy, char *buf)
{
struct amd_cpudata *cpudata = policy->driver_data;
int preference;
preference = amd_pstate_get_energy_pref_index(cpudata);
if (preference < 0)
return preference;
return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]);
}
static void amd_pstate_driver_cleanup(void)
{
amd_pstate_enable(false);
cppc_state = AMD_PSTATE_DISABLE;
current_pstate_driver = NULL;
}
static int amd_pstate_register_driver(int mode)
{
int ret;
if (mode == AMD_PSTATE_PASSIVE || mode == AMD_PSTATE_GUIDED)
current_pstate_driver = &amd_pstate_driver;
else if (mode == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
else
return -EINVAL;
cppc_state = mode;
ret = cpufreq_register_driver(current_pstate_driver);
if (ret) {
amd_pstate_driver_cleanup();
return ret;
}
return 0;
}
static int amd_pstate_unregister_driver(int dummy)
{
cpufreq_unregister_driver(current_pstate_driver);
amd_pstate_driver_cleanup();
return 0;
}
static int amd_pstate_change_mode_without_dvr_change(int mode)
{
int cpu = 0;
cppc_state = mode;
if (boot_cpu_has(X86_FEATURE_CPPC) || cppc_state == AMD_PSTATE_ACTIVE)
return 0;
for_each_present_cpu(cpu) {
cppc_set_auto_sel(cpu, (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
}
return 0;
}
static int amd_pstate_change_driver_mode(int mode)
{
int ret;
ret = amd_pstate_unregister_driver(0);
if (ret)
return ret;
ret = amd_pstate_register_driver(mode);
if (ret)
return ret;
return 0;
}
static cppc_mode_transition_fn mode_state_machine[AMD_PSTATE_MAX][AMD_PSTATE_MAX] = {
[AMD_PSTATE_DISABLE] = {
[AMD_PSTATE_DISABLE] = NULL,
[AMD_PSTATE_PASSIVE] = amd_pstate_register_driver,
[AMD_PSTATE_ACTIVE] = amd_pstate_register_driver,
[AMD_PSTATE_GUIDED] = amd_pstate_register_driver,
},
[AMD_PSTATE_PASSIVE] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = NULL,
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_GUIDED] = amd_pstate_change_mode_without_dvr_change,
},
[AMD_PSTATE_ACTIVE] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_ACTIVE] = NULL,
[AMD_PSTATE_GUIDED] = amd_pstate_change_driver_mode,
},
[AMD_PSTATE_GUIDED] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = amd_pstate_change_mode_without_dvr_change,
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_GUIDED] = NULL,
},
};
static ssize_t amd_pstate_show_status(char *buf)
{
if (!current_pstate_driver)
return sysfs_emit(buf, "disable\n");
return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]);
}
static int amd_pstate_update_status(const char *buf, size_t size)
{
int mode_idx;
if (size > strlen("passive") || size < strlen("active"))
return -EINVAL;
mode_idx = get_mode_idx_from_str(buf, size);
if (mode_idx < 0 || mode_idx >= AMD_PSTATE_MAX)
return -EINVAL;
if (mode_state_machine[cppc_state][mode_idx])
return mode_state_machine[cppc_state][mode_idx](mode_idx);
return 0;
}
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_show_status(buf);
mutex_unlock(&amd_pstate_driver_lock);
return ret;
}
static ssize_t status_store(struct device *a, struct device_attribute *b,
const char *buf, size_t count)
{
char *p = memchr(buf, '\n', count);
int ret;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_update_status(buf, p ? p - buf : count);
mutex_unlock(&amd_pstate_driver_lock);
return ret < 0 ? ret : count;
}
cpufreq_freq_attr_ro(amd_pstate_max_freq);
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);
cpufreq_freq_attr_ro(amd_pstate_highest_perf);
cpufreq_freq_attr_rw(energy_performance_preference);
cpufreq_freq_attr_ro(energy_performance_available_preferences);
static DEVICE_ATTR_RW(status);
static struct freq_attr *amd_pstate_attr[] = {
&amd_pstate_max_freq,
&amd_pstate_lowest_nonlinear_freq,
&amd_pstate_highest_perf,
NULL,
};
static struct freq_attr *amd_pstate_epp_attr[] = {
&amd_pstate_max_freq,
&amd_pstate_lowest_nonlinear_freq,
&amd_pstate_highest_perf,
&energy_performance_preference,
&energy_performance_available_preferences,
NULL,
};
static struct attribute *pstate_global_attributes[] = {
&dev_attr_status.attr,
NULL
};
static const struct attribute_group amd_pstate_global_attr_group = {
.name = "amd_pstate",
.attrs = pstate_global_attributes,
};
static bool amd_pstate_acpi_pm_profile_server(void)
{
switch (acpi_gbl_FADT.preferred_profile) {
case PM_ENTERPRISE_SERVER:
case PM_SOHO_SERVER:
case PM_PERFORMANCE_SERVER:
return true;
}
return false;
}
static bool amd_pstate_acpi_pm_profile_undefined(void)
{
if (acpi_gbl_FADT.preferred_profile == PM_UNSPECIFIED)
return true;
if (acpi_gbl_FADT.preferred_profile >= NR_PM_PROFILES)
return true;
return false;
}
static int amd_pstate_epp_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
struct amd_cpudata *cpudata;
struct device *dev;
u64 value;
/*
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
* which is ideal for initialization process.
*/
amd_perf_ctl_reset(policy->cpu);
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
cpudata->epp_policy = 0;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata1;
min_freq = amd_get_min_freq(cpudata);
max_freq = amd_get_max_freq(cpudata);
nominal_freq = amd_get_nominal_freq(cpudata);
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
min_freq, max_freq);
ret = -EINVAL;
goto free_cpudata1;
}
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
/* Initial processor data capability frequencies */
cpudata->max_freq = max_freq;
cpudata->min_freq = min_freq;
cpudata->nominal_freq = nominal_freq;
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
policy->driver_data = cpudata;
cpudata->epp_cached = amd_pstate_get_epp(cpudata, 0);
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
/*
* Set the policy to provide a valid fallback value in case
* the default cpufreq governor is neither powersave nor performance.
*/
if (amd_pstate_acpi_pm_profile_server() ||
amd_pstate_acpi_pm_profile_undefined())
policy->policy = CPUFREQ_POLICY_PERFORMANCE;
else
policy->policy = CPUFREQ_POLICY_POWERSAVE;
if (boot_cpu_has(X86_FEATURE_CPPC)) {
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, &value);
if (ret)
return ret;
WRITE_ONCE(cpudata->cppc_req_cached, value);
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, &value);
if (ret)
return ret;
WRITE_ONCE(cpudata->cppc_cap1_cached, value);
}
amd_pstate_boost_init(cpudata);
return 0;
free_cpudata1:
kfree(cpudata);
return ret;
}
static int amd_pstate_epp_cpu_exit(struct cpufreq_policy *policy)
{
pr_debug("CPU %d exiting\n", policy->cpu);
return 0;
}
static void amd_pstate_epp_init(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct amd_cpudata *cpudata = policy->driver_data;
u32 max_perf, min_perf;
u64 value;
s16 epp;
max_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_perf);
value = READ_ONCE(cpudata->cppc_req_cached);
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
min_perf = max_perf;
/* Initial min/max values for CPPC Performance Controls Register */
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
/* CPPC EPP feature require to set zero to the desire perf bit */
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(0);
if (cpudata->epp_policy == cpudata->policy)
goto skip_epp;
cpudata->epp_policy = cpudata->policy;
/* Get BIOS pre-defined epp value */
epp = amd_pstate_get_epp(cpudata, value);
if (epp < 0) {
/**
* This return value can only be negative for shared_memory
* systems where EPP register read/write not supported.
*/
goto skip_epp;
}
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
epp = 0;
/* Set initial EPP value */
if (boot_cpu_has(X86_FEATURE_CPPC)) {
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
}
WRITE_ONCE(cpudata->cppc_req_cached, value);
amd_pstate_set_epp(cpudata, epp);
skip_epp:
cpufreq_cpu_put(policy);
}
static int amd_pstate_epp_set_policy(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
if (!policy->cpuinfo.max_freq)
return -ENODEV;
pr_debug("set_policy: cpuinfo.max %u policy->max %u\n",
policy->cpuinfo.max_freq, policy->max);
cpudata->policy = policy->policy;
amd_pstate_epp_init(policy->cpu);
return 0;
}
static void amd_pstate_epp_reenable(struct amd_cpudata *cpudata)
{
struct cppc_perf_ctrls perf_ctrls;
u64 value, max_perf;
int ret;
ret = amd_pstate_enable(true);
if (ret)
pr_err("failed to enable amd pstate during resume, return %d\n", ret);
value = READ_ONCE(cpudata->cppc_req_cached);
max_perf = READ_ONCE(cpudata->highest_perf);
if (boot_cpu_has(X86_FEATURE_CPPC)) {
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.max_perf = max_perf;
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(cpudata->epp_cached);
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
}
static int amd_pstate_epp_cpu_online(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
pr_debug("AMD CPU Core %d going online\n", cpudata->cpu);
if (cppc_state == AMD_PSTATE_ACTIVE) {
amd_pstate_epp_reenable(cpudata);
cpudata->suspended = false;
}
return 0;
}
static void amd_pstate_epp_offline(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
struct cppc_perf_ctrls perf_ctrls;
int min_perf;
u64 value;
min_perf = READ_ONCE(cpudata->lowest_perf);
value = READ_ONCE(cpudata->cppc_req_cached);
mutex_lock(&amd_pstate_limits_lock);
if (boot_cpu_has(X86_FEATURE_CPPC)) {
cpudata->epp_policy = CPUFREQ_POLICY_UNKNOWN;
/* Set max perf same as min perf */
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(min_perf);
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.desired_perf = 0;
perf_ctrls.max_perf = min_perf;
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(HWP_EPP_BALANCE_POWERSAVE);
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
mutex_unlock(&amd_pstate_limits_lock);
}
static int amd_pstate_epp_cpu_offline(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
pr_debug("AMD CPU Core %d going offline\n", cpudata->cpu);
if (cpudata->suspended)
return 0;
if (cppc_state == AMD_PSTATE_ACTIVE)
amd_pstate_epp_offline(policy);
return 0;
}
static int amd_pstate_epp_verify_policy(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
pr_debug("policy_max =%d, policy_min=%d\n", policy->max, policy->min);
return 0;
}
static int amd_pstate_epp_suspend(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
/* avoid suspending when EPP is not enabled */
if (cppc_state != AMD_PSTATE_ACTIVE)
return 0;
/* set this flag to avoid setting core offline*/
cpudata->suspended = true;
/* disable CPPC in lowlevel firmware */
ret = amd_pstate_enable(false);
if (ret)
pr_err("failed to suspend, return %d\n", ret);
return 0;
}
static int amd_pstate_epp_resume(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
if (cpudata->suspended) {
mutex_lock(&amd_pstate_limits_lock);
/* enable amd pstate from suspend state*/
amd_pstate_epp_reenable(cpudata);
mutex_unlock(&amd_pstate_limits_lock);
cpudata->suspended = false;
}
return 0;
}
static struct cpufreq_driver amd_pstate_driver = {
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
.verify = amd_pstate_verify,
.target = amd_pstate_target,
.fast_switch = amd_pstate_fast_switch,
.init = amd_pstate_cpu_init,
.exit = amd_pstate_cpu_exit,
.suspend = amd_pstate_cpu_suspend,
.resume = amd_pstate_cpu_resume,
.set_boost = amd_pstate_set_boost,
.name = "amd-pstate",
.attr = amd_pstate_attr,
};
static struct cpufreq_driver amd_pstate_epp_driver = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = amd_pstate_epp_verify_policy,
.setpolicy = amd_pstate_epp_set_policy,
.init = amd_pstate_epp_cpu_init,
.exit = amd_pstate_epp_cpu_exit,
.offline = amd_pstate_epp_cpu_offline,
.online = amd_pstate_epp_cpu_online,
.suspend = amd_pstate_epp_suspend,
.resume = amd_pstate_epp_resume,
.name = "amd-pstate-epp",
.attr = amd_pstate_epp_attr,
};
static int __init amd_pstate_set_driver(int mode_idx)
{
if (mode_idx >= AMD_PSTATE_DISABLE && mode_idx < AMD_PSTATE_MAX) {
cppc_state = mode_idx;
if (cppc_state == AMD_PSTATE_DISABLE)
pr_info("driver is explicitly disabled\n");
if (cppc_state == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
if (cppc_state == AMD_PSTATE_PASSIVE || cppc_state == AMD_PSTATE_GUIDED)
current_pstate_driver = &amd_pstate_driver;
return 0;
}
return -EINVAL;
}
static int __init amd_pstate_init(void)
{
struct device *dev_root;
int ret;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return -ENODEV;
if (!acpi_cpc_valid()) {
pr_warn_once("the _CPC object is not present in SBIOS or ACPI disabled\n");
return -ENODEV;
}
/* don't keep reloading if cpufreq_driver exists */
if (cpufreq_get_current_driver())
return -EEXIST;
switch (cppc_state) {
case AMD_PSTATE_UNDEFINED:
/* Disable on the following configs by default:
* 1. Undefined platforms
* 2. Server platforms
* 3. Shared memory designs
*/
if (amd_pstate_acpi_pm_profile_undefined() ||
amd_pstate_acpi_pm_profile_server() ||
!boot_cpu_has(X86_FEATURE_CPPC)) {
pr_info("driver load is disabled, boot with specific mode to enable this\n");
return -ENODEV;
}
ret = amd_pstate_set_driver(CONFIG_X86_AMD_PSTATE_DEFAULT_MODE);
if (ret)
return ret;
break;
case AMD_PSTATE_DISABLE:
return -ENODEV;
case AMD_PSTATE_PASSIVE:
case AMD_PSTATE_ACTIVE:
case AMD_PSTATE_GUIDED:
break;
default:
return -EINVAL;
}
/* capability check */
if (boot_cpu_has(X86_FEATURE_CPPC)) {
pr_debug("AMD CPPC MSR based functionality is supported\n");
if (cppc_state != AMD_PSTATE_ACTIVE)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
} else {
pr_debug("AMD CPPC shared memory based functionality is supported\n");
static_call_update(amd_pstate_enable, cppc_enable);
static_call_update(amd_pstate_init_perf, cppc_init_perf);
static_call_update(amd_pstate_update_perf, cppc_update_perf);
}
/* enable amd pstate feature */
ret = amd_pstate_enable(true);
if (ret) {
pr_err("failed to enable with return %d\n", ret);
return ret;
}
ret = cpufreq_register_driver(current_pstate_driver);
if (ret)
pr_err("failed to register with return %d\n", ret);
dev_root = bus_get_dev_root(&cpu_subsys);
if (dev_root) {
ret = sysfs_create_group(&dev_root->kobj, &amd_pstate_global_attr_group);
put_device(dev_root);
if (ret) {
pr_err("sysfs attribute export failed with error %d.\n", ret);
goto global_attr_free;
}
}
return ret;
global_attr_free:
cpufreq_unregister_driver(current_pstate_driver);
return ret;
}
device_initcall(amd_pstate_init);
static int __init amd_pstate_param(char *str)
{
size_t size;
int mode_idx;
if (!str)
return -EINVAL;
size = strlen(str);
mode_idx = get_mode_idx_from_str(str, size);
return amd_pstate_set_driver(mode_idx);
}
early_param("amd_pstate", amd_pstate_param);
MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");