linux/drivers/rtc/rtc-pcf2127.c
Hugo Villeneuve e9a5a1b418 rtc: pcf2127: add UIE support for PCF2131
The PCF2127/29 do NOT support alarms with a 1 second resolution, but
the PCF2131 does.

Signed-off-by: Hugo Villeneuve <hvilleneuve@dimonoff.com>
Link: https://lore.kernel.org/r/20230622145800.2442116-17-hugo@hugovil.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2023-07-27 22:54:53 +02:00

1552 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* An I2C and SPI driver for the NXP PCF2127/29/31 RTC
* Copyright 2013 Til-Technologies
*
* Author: Renaud Cerrato <r.cerrato@til-technologies.fr>
*
* Watchdog and tamper functions
* Author: Bruno Thomsen <bruno.thomsen@gmail.com>
*
* PCF2131 support
* Author: Hugo Villeneuve <hvilleneuve@dimonoff.com>
*
* based on the other drivers in this same directory.
*
* Datasheets: https://www.nxp.com/docs/en/data-sheet/PCF2127.pdf
* https://www.nxp.com/docs/en/data-sheet/PCF2131DS.pdf
*/
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/watchdog.h>
/* Control register 1 */
#define PCF2127_REG_CTRL1 0x00
#define PCF2127_BIT_CTRL1_POR_OVRD BIT(3)
#define PCF2127_BIT_CTRL1_TSF1 BIT(4)
#define PCF2127_BIT_CTRL1_STOP BIT(5)
/* Control register 2 */
#define PCF2127_REG_CTRL2 0x01
#define PCF2127_BIT_CTRL2_AIE BIT(1)
#define PCF2127_BIT_CTRL2_TSIE BIT(2)
#define PCF2127_BIT_CTRL2_AF BIT(4)
#define PCF2127_BIT_CTRL2_TSF2 BIT(5)
#define PCF2127_BIT_CTRL2_WDTF BIT(6)
/* Control register 3 */
#define PCF2127_REG_CTRL3 0x02
#define PCF2127_BIT_CTRL3_BLIE BIT(0)
#define PCF2127_BIT_CTRL3_BIE BIT(1)
#define PCF2127_BIT_CTRL3_BLF BIT(2)
#define PCF2127_BIT_CTRL3_BF BIT(3)
#define PCF2127_BIT_CTRL3_BTSE BIT(4)
/* Time and date registers */
#define PCF2127_REG_TIME_BASE 0x03
#define PCF2127_BIT_SC_OSF BIT(7)
/* Alarm registers */
#define PCF2127_REG_ALARM_BASE 0x0A
#define PCF2127_BIT_ALARM_AE BIT(7)
/* CLKOUT control register */
#define PCF2127_REG_CLKOUT 0x0f
#define PCF2127_BIT_CLKOUT_OTPR BIT(5)
/* Watchdog registers */
#define PCF2127_REG_WD_CTL 0x10
#define PCF2127_BIT_WD_CTL_TF0 BIT(0)
#define PCF2127_BIT_WD_CTL_TF1 BIT(1)
#define PCF2127_BIT_WD_CTL_CD0 BIT(6)
#define PCF2127_BIT_WD_CTL_CD1 BIT(7)
#define PCF2127_REG_WD_VAL 0x11
/* Tamper timestamp1 registers */
#define PCF2127_REG_TS1_BASE 0x12
#define PCF2127_BIT_TS_CTRL_TSOFF BIT(6)
#define PCF2127_BIT_TS_CTRL_TSM BIT(7)
/*
* RAM registers
* PCF2127 has 512 bytes general-purpose static RAM (SRAM) that is
* battery backed and can survive a power outage.
* PCF2129/31 doesn't have this feature.
*/
#define PCF2127_REG_RAM_ADDR_MSB 0x1A
#define PCF2127_REG_RAM_WRT_CMD 0x1C
#define PCF2127_REG_RAM_RD_CMD 0x1D
/* Watchdog timer value constants */
#define PCF2127_WD_VAL_STOP 0
/* PCF2127/29 watchdog timer value constants */
#define PCF2127_WD_CLOCK_HZ_X1000 1000 /* 1Hz */
#define PCF2127_WD_MIN_HW_HEARTBEAT_MS 500
/* PCF2131 watchdog timer value constants */
#define PCF2131_WD_CLOCK_HZ_X1000 250 /* 1/4Hz */
#define PCF2131_WD_MIN_HW_HEARTBEAT_MS 4000
#define PCF2127_WD_DEFAULT_TIMEOUT_S 60
/* Mask for currently enabled interrupts */
#define PCF2127_CTRL1_IRQ_MASK (PCF2127_BIT_CTRL1_TSF1)
#define PCF2127_CTRL2_IRQ_MASK ( \
PCF2127_BIT_CTRL2_AF | \
PCF2127_BIT_CTRL2_WDTF | \
PCF2127_BIT_CTRL2_TSF2)
#define PCF2127_MAX_TS_SUPPORTED 4
/* Control register 4 */
#define PCF2131_REG_CTRL4 0x03
#define PCF2131_BIT_CTRL4_TSF4 BIT(4)
#define PCF2131_BIT_CTRL4_TSF3 BIT(5)
#define PCF2131_BIT_CTRL4_TSF2 BIT(6)
#define PCF2131_BIT_CTRL4_TSF1 BIT(7)
/* Control register 5 */
#define PCF2131_REG_CTRL5 0x04
#define PCF2131_BIT_CTRL5_TSIE4 BIT(4)
#define PCF2131_BIT_CTRL5_TSIE3 BIT(5)
#define PCF2131_BIT_CTRL5_TSIE2 BIT(6)
#define PCF2131_BIT_CTRL5_TSIE1 BIT(7)
/* Software reset register */
#define PCF2131_REG_SR_RESET 0x05
#define PCF2131_SR_RESET_READ_PATTERN (BIT(2) | BIT(5))
#define PCF2131_SR_RESET_CPR_CMD (PCF2131_SR_RESET_READ_PATTERN | BIT(7))
/* Time and date registers */
#define PCF2131_REG_TIME_BASE 0x07
/* Alarm registers */
#define PCF2131_REG_ALARM_BASE 0x0E
/* CLKOUT control register */
#define PCF2131_REG_CLKOUT 0x13
/* Watchdog registers */
#define PCF2131_REG_WD_CTL 0x35
#define PCF2131_REG_WD_VAL 0x36
/* Tamper timestamp1 registers */
#define PCF2131_REG_TS1_BASE 0x14
/* Tamper timestamp2 registers */
#define PCF2131_REG_TS2_BASE 0x1B
/* Tamper timestamp3 registers */
#define PCF2131_REG_TS3_BASE 0x22
/* Tamper timestamp4 registers */
#define PCF2131_REG_TS4_BASE 0x29
/* Interrupt mask registers */
#define PCF2131_REG_INT_A_MASK1 0x31
#define PCF2131_REG_INT_A_MASK2 0x32
#define PCF2131_REG_INT_B_MASK1 0x33
#define PCF2131_REG_INT_B_MASK2 0x34
#define PCF2131_BIT_INT_BLIE BIT(0)
#define PCF2131_BIT_INT_BIE BIT(1)
#define PCF2131_BIT_INT_AIE BIT(2)
#define PCF2131_BIT_INT_WD_CD BIT(3)
#define PCF2131_BIT_INT_SI BIT(4)
#define PCF2131_BIT_INT_MI BIT(5)
#define PCF2131_CTRL2_IRQ_MASK ( \
PCF2127_BIT_CTRL2_AF | \
PCF2127_BIT_CTRL2_WDTF)
#define PCF2131_CTRL4_IRQ_MASK ( \
PCF2131_BIT_CTRL4_TSF4 | \
PCF2131_BIT_CTRL4_TSF3 | \
PCF2131_BIT_CTRL4_TSF2 | \
PCF2131_BIT_CTRL4_TSF1)
enum pcf21xx_type {
PCF2127,
PCF2129,
PCF2131,
PCF21XX_LAST_ID
};
struct pcf21xx_ts_config {
u8 reg_base; /* Base register to read timestamp values. */
/*
* If the TS input pin is driven to GND, an interrupt can be generated
* (supported by all variants).
*/
u8 gnd_detect_reg; /* Interrupt control register address. */
u8 gnd_detect_bit; /* Interrupt bit. */
/*
* If the TS input pin is driven to an intermediate level between GND
* and supply, an interrupt can be generated (optional feature depending
* on variant).
*/
u8 inter_detect_reg; /* Interrupt control register address. */
u8 inter_detect_bit; /* Interrupt bit. */
u8 ie_reg; /* Interrupt enable control register. */
u8 ie_bit; /* Interrupt enable bit. */
};
struct pcf21xx_config {
int type; /* IC variant */
int max_register;
unsigned int has_nvmem:1;
unsigned int has_bit_wd_ctl_cd0:1;
unsigned int wd_val_reg_readable:1; /* If watchdog value register can be read. */
unsigned int has_int_a_b:1; /* PCF2131 supports two interrupt outputs. */
u8 reg_time_base; /* Time/date base register. */
u8 regs_alarm_base; /* Alarm function base registers. */
u8 reg_wd_ctl; /* Watchdog control register. */
u8 reg_wd_val; /* Watchdog value register. */
u8 reg_clkout; /* Clkout register. */
int wdd_clock_hz_x1000; /* Watchdog clock in Hz multiplicated by 1000 */
int wdd_min_hw_heartbeat_ms;
unsigned int ts_count;
struct pcf21xx_ts_config ts[PCF2127_MAX_TS_SUPPORTED];
struct attribute_group attribute_group;
};
struct pcf2127 {
struct rtc_device *rtc;
struct watchdog_device wdd;
struct regmap *regmap;
const struct pcf21xx_config *cfg;
bool irq_enabled;
time64_t ts[PCF2127_MAX_TS_SUPPORTED]; /* Timestamp values. */
bool ts_valid[PCF2127_MAX_TS_SUPPORTED]; /* Timestamp valid indication. */
};
/*
* In the routines that deal directly with the pcf2127 hardware, we use
* rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
*/
static int pcf2127_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
unsigned char buf[7];
int ret;
/*
* Avoid reading CTRL2 register as it causes WD_VAL register
* value to reset to 0 which means watchdog is stopped.
*/
ret = regmap_bulk_read(pcf2127->regmap, pcf2127->cfg->reg_time_base,
buf, sizeof(buf));
if (ret) {
dev_err(dev, "%s: read error\n", __func__);
return ret;
}
/* Clock integrity is not guaranteed when OSF flag is set. */
if (buf[0] & PCF2127_BIT_SC_OSF) {
/*
* no need clear the flag here,
* it will be cleared once the new date is saved
*/
dev_warn(dev,
"oscillator stop detected, date/time is not reliable\n");
return -EINVAL;
}
dev_dbg(dev,
"%s: raw data is sec=%02x, min=%02x, hr=%02x, "
"mday=%02x, wday=%02x, mon=%02x, year=%02x\n",
__func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6]);
tm->tm_sec = bcd2bin(buf[0] & 0x7F);
tm->tm_min = bcd2bin(buf[1] & 0x7F);
tm->tm_hour = bcd2bin(buf[2] & 0x3F);
tm->tm_mday = bcd2bin(buf[3] & 0x3F);
tm->tm_wday = buf[4] & 0x07;
tm->tm_mon = bcd2bin(buf[5] & 0x1F) - 1;
tm->tm_year = bcd2bin(buf[6]);
tm->tm_year += 100;
dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
"mday=%d, mon=%d, year=%d, wday=%d\n",
__func__,
tm->tm_sec, tm->tm_min, tm->tm_hour,
tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
return 0;
}
static int pcf2127_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
unsigned char buf[7];
int i = 0, err;
dev_dbg(dev, "%s: secs=%d, mins=%d, hours=%d, "
"mday=%d, mon=%d, year=%d, wday=%d\n",
__func__,
tm->tm_sec, tm->tm_min, tm->tm_hour,
tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
/* hours, minutes and seconds */
buf[i++] = bin2bcd(tm->tm_sec); /* this will also clear OSF flag */
buf[i++] = bin2bcd(tm->tm_min);
buf[i++] = bin2bcd(tm->tm_hour);
buf[i++] = bin2bcd(tm->tm_mday);
buf[i++] = tm->tm_wday & 0x07;
/* month, 1 - 12 */
buf[i++] = bin2bcd(tm->tm_mon + 1);
/* year */
buf[i++] = bin2bcd(tm->tm_year - 100);
/* Write access to time registers:
* PCF2127/29: no special action required.
* PCF2131: requires setting the STOP and CPR bits. STOP bit needs to
* be cleared after time registers are updated.
*/
if (pcf2127->cfg->type == PCF2131) {
err = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL1,
PCF2127_BIT_CTRL1_STOP,
PCF2127_BIT_CTRL1_STOP);
if (err) {
dev_dbg(dev, "setting STOP bit failed\n");
return err;
}
err = regmap_write(pcf2127->regmap, PCF2131_REG_SR_RESET,
PCF2131_SR_RESET_CPR_CMD);
if (err) {
dev_dbg(dev, "sending CPR cmd failed\n");
return err;
}
}
/* write time register's data */
err = regmap_bulk_write(pcf2127->regmap, pcf2127->cfg->reg_time_base, buf, i);
if (err) {
dev_dbg(dev, "%s: err=%d", __func__, err);
return err;
}
if (pcf2127->cfg->type == PCF2131) {
/* Clear STOP bit (PCF2131 only) after write is completed. */
err = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL1,
PCF2127_BIT_CTRL1_STOP, 0);
if (err) {
dev_dbg(dev, "clearing STOP bit failed\n");
return err;
}
}
return 0;
}
static int pcf2127_rtc_ioctl(struct device *dev,
unsigned int cmd, unsigned long arg)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
int val, touser = 0;
int ret;
switch (cmd) {
case RTC_VL_READ:
ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL3, &val);
if (ret)
return ret;
if (val & PCF2127_BIT_CTRL3_BLF)
touser |= RTC_VL_BACKUP_LOW;
if (val & PCF2127_BIT_CTRL3_BF)
touser |= RTC_VL_BACKUP_SWITCH;
return put_user(touser, (unsigned int __user *)arg);
case RTC_VL_CLR:
return regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL3,
PCF2127_BIT_CTRL3_BF, 0);
default:
return -ENOIOCTLCMD;
}
}
static int pcf2127_nvmem_read(void *priv, unsigned int offset,
void *val, size_t bytes)
{
struct pcf2127 *pcf2127 = priv;
int ret;
unsigned char offsetbuf[] = { offset >> 8, offset };
ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_ADDR_MSB,
offsetbuf, 2);
if (ret)
return ret;
return regmap_bulk_read(pcf2127->regmap, PCF2127_REG_RAM_RD_CMD,
val, bytes);
}
static int pcf2127_nvmem_write(void *priv, unsigned int offset,
void *val, size_t bytes)
{
struct pcf2127 *pcf2127 = priv;
int ret;
unsigned char offsetbuf[] = { offset >> 8, offset };
ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_ADDR_MSB,
offsetbuf, 2);
if (ret)
return ret;
return regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_WRT_CMD,
val, bytes);
}
/* watchdog driver */
static int pcf2127_wdt_ping(struct watchdog_device *wdd)
{
int wd_val;
struct pcf2127 *pcf2127 = watchdog_get_drvdata(wdd);
/*
* Compute counter value of WATCHDG_TIM_VAL to obtain desired period
* in seconds, depending on the source clock frequency.
*/
wd_val = ((wdd->timeout * pcf2127->cfg->wdd_clock_hz_x1000) / 1000) + 1;
return regmap_write(pcf2127->regmap, pcf2127->cfg->reg_wd_val, wd_val);
}
/*
* Restart watchdog timer if feature is active.
*
* Note: Reading CTRL2 register causes watchdog to stop which is unfortunate,
* since register also contain control/status flags for other features.
* Always call this function after reading CTRL2 register.
*/
static int pcf2127_wdt_active_ping(struct watchdog_device *wdd)
{
int ret = 0;
if (watchdog_active(wdd)) {
ret = pcf2127_wdt_ping(wdd);
if (ret)
dev_err(wdd->parent,
"%s: watchdog restart failed, ret=%d\n",
__func__, ret);
}
return ret;
}
static int pcf2127_wdt_start(struct watchdog_device *wdd)
{
return pcf2127_wdt_ping(wdd);
}
static int pcf2127_wdt_stop(struct watchdog_device *wdd)
{
struct pcf2127 *pcf2127 = watchdog_get_drvdata(wdd);
return regmap_write(pcf2127->regmap, pcf2127->cfg->reg_wd_val,
PCF2127_WD_VAL_STOP);
}
static int pcf2127_wdt_set_timeout(struct watchdog_device *wdd,
unsigned int new_timeout)
{
dev_dbg(wdd->parent, "new watchdog timeout: %is (old: %is)\n",
new_timeout, wdd->timeout);
wdd->timeout = new_timeout;
return pcf2127_wdt_active_ping(wdd);
}
static const struct watchdog_info pcf2127_wdt_info = {
.identity = "NXP PCF2127/PCF2129 Watchdog",
.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT,
};
static const struct watchdog_ops pcf2127_watchdog_ops = {
.owner = THIS_MODULE,
.start = pcf2127_wdt_start,
.stop = pcf2127_wdt_stop,
.ping = pcf2127_wdt_ping,
.set_timeout = pcf2127_wdt_set_timeout,
};
/*
* Compute watchdog period, t, in seconds, from the WATCHDG_TIM_VAL register
* value, n, and the clock frequency, f1000, in Hz x 1000.
*
* The PCF2127/29 datasheet gives t as:
* t = n / f
* The PCF2131 datasheet gives t as:
* t = (n - 1) / f
* For both variants, the watchdog is triggered when the WATCHDG_TIM_VAL reaches
* the value 1, and not zero. Consequently, the equation from the PCF2131
* datasheet seems to be the correct one for both variants.
*/
static int pcf2127_watchdog_get_period(int n, int f1000)
{
return (1000 * (n - 1)) / f1000;
}
static int pcf2127_watchdog_init(struct device *dev, struct pcf2127 *pcf2127)
{
int ret;
if (!IS_ENABLED(CONFIG_WATCHDOG) ||
!device_property_read_bool(dev, "reset-source"))
return 0;
pcf2127->wdd.parent = dev;
pcf2127->wdd.info = &pcf2127_wdt_info;
pcf2127->wdd.ops = &pcf2127_watchdog_ops;
pcf2127->wdd.min_timeout =
pcf2127_watchdog_get_period(
2, pcf2127->cfg->wdd_clock_hz_x1000);
pcf2127->wdd.max_timeout =
pcf2127_watchdog_get_period(
255, pcf2127->cfg->wdd_clock_hz_x1000);
pcf2127->wdd.timeout = PCF2127_WD_DEFAULT_TIMEOUT_S;
dev_dbg(dev, "%s clock = %d Hz / 1000\n", __func__,
pcf2127->cfg->wdd_clock_hz_x1000);
pcf2127->wdd.min_hw_heartbeat_ms = pcf2127->cfg->wdd_min_hw_heartbeat_ms;
pcf2127->wdd.status = WATCHDOG_NOWAYOUT_INIT_STATUS;
watchdog_set_drvdata(&pcf2127->wdd, pcf2127);
/* Test if watchdog timer is started by bootloader */
if (pcf2127->cfg->wd_val_reg_readable) {
u32 wdd_timeout;
ret = regmap_read(pcf2127->regmap, pcf2127->cfg->reg_wd_val,
&wdd_timeout);
if (ret)
return ret;
if (wdd_timeout)
set_bit(WDOG_HW_RUNNING, &pcf2127->wdd.status);
}
return devm_watchdog_register_device(dev, &pcf2127->wdd);
}
/* Alarm */
static int pcf2127_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
u8 buf[5];
unsigned int ctrl2;
int ret;
ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL2, &ctrl2);
if (ret)
return ret;
ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
if (ret)
return ret;
ret = regmap_bulk_read(pcf2127->regmap, pcf2127->cfg->regs_alarm_base,
buf, sizeof(buf));
if (ret)
return ret;
alrm->enabled = ctrl2 & PCF2127_BIT_CTRL2_AIE;
alrm->pending = ctrl2 & PCF2127_BIT_CTRL2_AF;
alrm->time.tm_sec = bcd2bin(buf[0] & 0x7F);
alrm->time.tm_min = bcd2bin(buf[1] & 0x7F);
alrm->time.tm_hour = bcd2bin(buf[2] & 0x3F);
alrm->time.tm_mday = bcd2bin(buf[3] & 0x3F);
return 0;
}
static int pcf2127_rtc_alarm_irq_enable(struct device *dev, u32 enable)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
int ret;
ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2,
PCF2127_BIT_CTRL2_AIE,
enable ? PCF2127_BIT_CTRL2_AIE : 0);
if (ret)
return ret;
return pcf2127_wdt_active_ping(&pcf2127->wdd);
}
static int pcf2127_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
uint8_t buf[5];
int ret;
ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2,
PCF2127_BIT_CTRL2_AF, 0);
if (ret)
return ret;
ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
if (ret)
return ret;
buf[0] = bin2bcd(alrm->time.tm_sec);
buf[1] = bin2bcd(alrm->time.tm_min);
buf[2] = bin2bcd(alrm->time.tm_hour);
buf[3] = bin2bcd(alrm->time.tm_mday);
buf[4] = PCF2127_BIT_ALARM_AE; /* Do not match on week day */
ret = regmap_bulk_write(pcf2127->regmap, pcf2127->cfg->regs_alarm_base,
buf, sizeof(buf));
if (ret)
return ret;
return pcf2127_rtc_alarm_irq_enable(dev, alrm->enabled);
}
/*
* This function reads one timestamp function data, caller is responsible for
* calling pcf2127_wdt_active_ping()
*/
static int pcf2127_rtc_ts_read(struct device *dev, time64_t *ts,
int ts_id)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
struct rtc_time tm;
int ret;
unsigned char data[7];
ret = regmap_bulk_read(pcf2127->regmap, pcf2127->cfg->ts[ts_id].reg_base,
data, sizeof(data));
if (ret) {
dev_err(dev, "%s: read error ret=%d\n", __func__, ret);
return ret;
}
dev_dbg(dev,
"%s: raw data is ts_sc=%02x, ts_mn=%02x, ts_hr=%02x, ts_dm=%02x, ts_mo=%02x, ts_yr=%02x\n",
__func__, data[1], data[2], data[3], data[4], data[5], data[6]);
tm.tm_sec = bcd2bin(data[1] & 0x7F);
tm.tm_min = bcd2bin(data[2] & 0x7F);
tm.tm_hour = bcd2bin(data[3] & 0x3F);
tm.tm_mday = bcd2bin(data[4] & 0x3F);
/* TS_MO register (month) value range: 1-12 */
tm.tm_mon = bcd2bin(data[5] & 0x1F) - 1;
tm.tm_year = bcd2bin(data[6]);
if (tm.tm_year < 70)
tm.tm_year += 100; /* assume we are in 1970...2069 */
ret = rtc_valid_tm(&tm);
if (ret) {
dev_err(dev, "Invalid timestamp. ret=%d\n", ret);
return ret;
}
*ts = rtc_tm_to_time64(&tm);
return 0;
};
static void pcf2127_rtc_ts_snapshot(struct device *dev, int ts_id)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
int ret;
if (ts_id >= pcf2127->cfg->ts_count)
return;
/* Let userspace read the first timestamp */
if (pcf2127->ts_valid[ts_id])
return;
ret = pcf2127_rtc_ts_read(dev, &pcf2127->ts[ts_id], ts_id);
if (!ret)
pcf2127->ts_valid[ts_id] = true;
}
static irqreturn_t pcf2127_rtc_irq(int irq, void *dev)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
unsigned int ctrl2;
int ret = 0;
ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL2, &ctrl2);
if (ret)
return IRQ_NONE;
if (pcf2127->cfg->ts_count == 1) {
/* PCF2127/29 */
unsigned int ctrl1;
ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL1, &ctrl1);
if (ret)
return IRQ_NONE;
if (!(ctrl1 & PCF2127_CTRL1_IRQ_MASK || ctrl2 & PCF2127_CTRL2_IRQ_MASK))
return IRQ_NONE;
if (ctrl1 & PCF2127_BIT_CTRL1_TSF1 || ctrl2 & PCF2127_BIT_CTRL2_TSF2)
pcf2127_rtc_ts_snapshot(dev, 0);
if (ctrl1 & PCF2127_CTRL1_IRQ_MASK)
regmap_write(pcf2127->regmap, PCF2127_REG_CTRL1,
ctrl1 & ~PCF2127_CTRL1_IRQ_MASK);
if (ctrl2 & PCF2127_CTRL2_IRQ_MASK)
regmap_write(pcf2127->regmap, PCF2127_REG_CTRL2,
ctrl2 & ~PCF2127_CTRL2_IRQ_MASK);
} else {
/* PCF2131. */
unsigned int ctrl4;
ret = regmap_read(pcf2127->regmap, PCF2131_REG_CTRL4, &ctrl4);
if (ret)
return IRQ_NONE;
if (!(ctrl4 & PCF2131_CTRL4_IRQ_MASK || ctrl2 & PCF2131_CTRL2_IRQ_MASK))
return IRQ_NONE;
if (ctrl4 & PCF2131_CTRL4_IRQ_MASK) {
int i;
int tsf_bit = PCF2131_BIT_CTRL4_TSF1; /* Start at bit 7. */
for (i = 0; i < pcf2127->cfg->ts_count; i++) {
if (ctrl4 & tsf_bit)
pcf2127_rtc_ts_snapshot(dev, i);
tsf_bit = tsf_bit >> 1;
}
regmap_write(pcf2127->regmap, PCF2131_REG_CTRL4,
ctrl4 & ~PCF2131_CTRL4_IRQ_MASK);
}
if (ctrl2 & PCF2131_CTRL2_IRQ_MASK)
regmap_write(pcf2127->regmap, PCF2127_REG_CTRL2,
ctrl2 & ~PCF2131_CTRL2_IRQ_MASK);
}
if (ctrl2 & PCF2127_BIT_CTRL2_AF)
rtc_update_irq(pcf2127->rtc, 1, RTC_IRQF | RTC_AF);
pcf2127_wdt_active_ping(&pcf2127->wdd);
return IRQ_HANDLED;
}
static const struct rtc_class_ops pcf2127_rtc_ops = {
.ioctl = pcf2127_rtc_ioctl,
.read_time = pcf2127_rtc_read_time,
.set_time = pcf2127_rtc_set_time,
.read_alarm = pcf2127_rtc_read_alarm,
.set_alarm = pcf2127_rtc_set_alarm,
.alarm_irq_enable = pcf2127_rtc_alarm_irq_enable,
};
/* sysfs interface */
static ssize_t timestamp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count, int ts_id)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev->parent);
int ret;
if (ts_id >= pcf2127->cfg->ts_count)
return 0;
if (pcf2127->irq_enabled) {
pcf2127->ts_valid[ts_id] = false;
} else {
/* Always clear GND interrupt bit. */
ret = regmap_update_bits(pcf2127->regmap,
pcf2127->cfg->ts[ts_id].gnd_detect_reg,
pcf2127->cfg->ts[ts_id].gnd_detect_bit,
0);
if (ret) {
dev_err(dev, "%s: update TS gnd detect ret=%d\n", __func__, ret);
return ret;
}
if (pcf2127->cfg->ts[ts_id].inter_detect_bit) {
/* Clear intermediate level interrupt bit if supported. */
ret = regmap_update_bits(pcf2127->regmap,
pcf2127->cfg->ts[ts_id].inter_detect_reg,
pcf2127->cfg->ts[ts_id].inter_detect_bit,
0);
if (ret) {
dev_err(dev, "%s: update TS intermediate level detect ret=%d\n",
__func__, ret);
return ret;
}
}
ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
if (ret)
return ret;
}
return count;
}
static ssize_t timestamp0_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return timestamp_store(dev, attr, buf, count, 0);
};
static ssize_t timestamp1_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return timestamp_store(dev, attr, buf, count, 1);
};
static ssize_t timestamp2_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return timestamp_store(dev, attr, buf, count, 2);
};
static ssize_t timestamp3_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return timestamp_store(dev, attr, buf, count, 3);
};
static ssize_t timestamp_show(struct device *dev,
struct device_attribute *attr, char *buf,
int ts_id)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev->parent);
int ret;
time64_t ts;
if (ts_id >= pcf2127->cfg->ts_count)
return 0;
if (pcf2127->irq_enabled) {
if (!pcf2127->ts_valid[ts_id])
return 0;
ts = pcf2127->ts[ts_id];
} else {
u8 valid_low = 0;
u8 valid_inter = 0;
unsigned int ctrl;
/* Check if TS input pin is driven to GND, supported by all
* variants.
*/
ret = regmap_read(pcf2127->regmap,
pcf2127->cfg->ts[ts_id].gnd_detect_reg,
&ctrl);
if (ret)
return 0;
valid_low = ctrl & pcf2127->cfg->ts[ts_id].gnd_detect_bit;
if (pcf2127->cfg->ts[ts_id].inter_detect_bit) {
/* Check if TS input pin is driven to intermediate level
* between GND and supply, if supported by variant.
*/
ret = regmap_read(pcf2127->regmap,
pcf2127->cfg->ts[ts_id].inter_detect_reg,
&ctrl);
if (ret)
return 0;
valid_inter = ctrl & pcf2127->cfg->ts[ts_id].inter_detect_bit;
}
if (!valid_low && !valid_inter)
return 0;
ret = pcf2127_rtc_ts_read(dev->parent, &ts, ts_id);
if (ret)
return 0;
ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
if (ret)
return ret;
}
return sprintf(buf, "%llu\n", (unsigned long long)ts);
}
static ssize_t timestamp0_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return timestamp_show(dev, attr, buf, 0);
};
static ssize_t timestamp1_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return timestamp_show(dev, attr, buf, 1);
};
static ssize_t timestamp2_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return timestamp_show(dev, attr, buf, 2);
};
static ssize_t timestamp3_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return timestamp_show(dev, attr, buf, 3);
};
static DEVICE_ATTR_RW(timestamp0);
static DEVICE_ATTR_RW(timestamp1);
static DEVICE_ATTR_RW(timestamp2);
static DEVICE_ATTR_RW(timestamp3);
static struct attribute *pcf2127_attrs[] = {
&dev_attr_timestamp0.attr,
NULL
};
static struct attribute *pcf2131_attrs[] = {
&dev_attr_timestamp0.attr,
&dev_attr_timestamp1.attr,
&dev_attr_timestamp2.attr,
&dev_attr_timestamp3.attr,
NULL
};
static struct pcf21xx_config pcf21xx_cfg[] = {
[PCF2127] = {
.type = PCF2127,
.max_register = 0x1d,
.has_nvmem = 1,
.has_bit_wd_ctl_cd0 = 1,
.wd_val_reg_readable = 1,
.has_int_a_b = 0,
.reg_time_base = PCF2127_REG_TIME_BASE,
.regs_alarm_base = PCF2127_REG_ALARM_BASE,
.reg_wd_ctl = PCF2127_REG_WD_CTL,
.reg_wd_val = PCF2127_REG_WD_VAL,
.reg_clkout = PCF2127_REG_CLKOUT,
.wdd_clock_hz_x1000 = PCF2127_WD_CLOCK_HZ_X1000,
.wdd_min_hw_heartbeat_ms = PCF2127_WD_MIN_HW_HEARTBEAT_MS,
.ts_count = 1,
.ts[0] = {
.reg_base = PCF2127_REG_TS1_BASE,
.gnd_detect_reg = PCF2127_REG_CTRL1,
.gnd_detect_bit = PCF2127_BIT_CTRL1_TSF1,
.inter_detect_reg = PCF2127_REG_CTRL2,
.inter_detect_bit = PCF2127_BIT_CTRL2_TSF2,
.ie_reg = PCF2127_REG_CTRL2,
.ie_bit = PCF2127_BIT_CTRL2_TSIE,
},
.attribute_group = {
.attrs = pcf2127_attrs,
},
},
[PCF2129] = {
.type = PCF2129,
.max_register = 0x19,
.has_nvmem = 0,
.has_bit_wd_ctl_cd0 = 0,
.wd_val_reg_readable = 1,
.has_int_a_b = 0,
.reg_time_base = PCF2127_REG_TIME_BASE,
.regs_alarm_base = PCF2127_REG_ALARM_BASE,
.reg_wd_ctl = PCF2127_REG_WD_CTL,
.reg_wd_val = PCF2127_REG_WD_VAL,
.reg_clkout = PCF2127_REG_CLKOUT,
.wdd_clock_hz_x1000 = PCF2127_WD_CLOCK_HZ_X1000,
.wdd_min_hw_heartbeat_ms = PCF2127_WD_MIN_HW_HEARTBEAT_MS,
.ts_count = 1,
.ts[0] = {
.reg_base = PCF2127_REG_TS1_BASE,
.gnd_detect_reg = PCF2127_REG_CTRL1,
.gnd_detect_bit = PCF2127_BIT_CTRL1_TSF1,
.inter_detect_reg = PCF2127_REG_CTRL2,
.inter_detect_bit = PCF2127_BIT_CTRL2_TSF2,
.ie_reg = PCF2127_REG_CTRL2,
.ie_bit = PCF2127_BIT_CTRL2_TSIE,
},
.attribute_group = {
.attrs = pcf2127_attrs,
},
},
[PCF2131] = {
.type = PCF2131,
.max_register = 0x36,
.has_nvmem = 0,
.has_bit_wd_ctl_cd0 = 0,
.wd_val_reg_readable = 0,
.has_int_a_b = 1,
.reg_time_base = PCF2131_REG_TIME_BASE,
.regs_alarm_base = PCF2131_REG_ALARM_BASE,
.reg_wd_ctl = PCF2131_REG_WD_CTL,
.reg_wd_val = PCF2131_REG_WD_VAL,
.reg_clkout = PCF2131_REG_CLKOUT,
.wdd_clock_hz_x1000 = PCF2131_WD_CLOCK_HZ_X1000,
.wdd_min_hw_heartbeat_ms = PCF2131_WD_MIN_HW_HEARTBEAT_MS,
.ts_count = 4,
.ts[0] = {
.reg_base = PCF2131_REG_TS1_BASE,
.gnd_detect_reg = PCF2131_REG_CTRL4,
.gnd_detect_bit = PCF2131_BIT_CTRL4_TSF1,
.inter_detect_bit = 0,
.ie_reg = PCF2131_REG_CTRL5,
.ie_bit = PCF2131_BIT_CTRL5_TSIE1,
},
.ts[1] = {
.reg_base = PCF2131_REG_TS2_BASE,
.gnd_detect_reg = PCF2131_REG_CTRL4,
.gnd_detect_bit = PCF2131_BIT_CTRL4_TSF2,
.inter_detect_bit = 0,
.ie_reg = PCF2131_REG_CTRL5,
.ie_bit = PCF2131_BIT_CTRL5_TSIE2,
},
.ts[2] = {
.reg_base = PCF2131_REG_TS3_BASE,
.gnd_detect_reg = PCF2131_REG_CTRL4,
.gnd_detect_bit = PCF2131_BIT_CTRL4_TSF3,
.inter_detect_bit = 0,
.ie_reg = PCF2131_REG_CTRL5,
.ie_bit = PCF2131_BIT_CTRL5_TSIE3,
},
.ts[3] = {
.reg_base = PCF2131_REG_TS4_BASE,
.gnd_detect_reg = PCF2131_REG_CTRL4,
.gnd_detect_bit = PCF2131_BIT_CTRL4_TSF4,
.inter_detect_bit = 0,
.ie_reg = PCF2131_REG_CTRL5,
.ie_bit = PCF2131_BIT_CTRL5_TSIE4,
},
.attribute_group = {
.attrs = pcf2131_attrs,
},
},
};
/*
* Enable timestamp function and corresponding interrupt(s).
*/
static int pcf2127_enable_ts(struct device *dev, int ts_id)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
int ret;
if (ts_id >= pcf2127->cfg->ts_count) {
dev_err(dev, "%s: invalid tamper detection ID (%d)\n",
__func__, ts_id);
return -EINVAL;
}
/* Enable timestamp function. */
ret = regmap_update_bits(pcf2127->regmap,
pcf2127->cfg->ts[ts_id].reg_base,
PCF2127_BIT_TS_CTRL_TSOFF |
PCF2127_BIT_TS_CTRL_TSM,
PCF2127_BIT_TS_CTRL_TSM);
if (ret) {
dev_err(dev, "%s: tamper detection config (ts%d_ctrl) failed\n",
__func__, ts_id);
return ret;
}
/* TS input pin driven to GND detection is supported by all variants.
* Make sure that interrupt bit is defined.
*/
if (pcf2127->cfg->ts[ts_id].gnd_detect_bit == 0) {
dev_err(dev, "%s: tamper detection to GND configuration invalid\n",
__func__);
return ret;
}
/*
* Enable interrupt generation when TSF timestamp flag is set.
* Interrupt signals are open-drain outputs and can be left floating if
* unused.
*/
ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->ts[ts_id].ie_reg,
pcf2127->cfg->ts[ts_id].ie_bit,
pcf2127->cfg->ts[ts_id].ie_bit);
if (ret) {
dev_err(dev, "%s: tamper detection TSIE%d config failed\n",
__func__, ts_id);
return ret;
}
return ret;
}
/* Route all interrupt sources to INT A pin. */
static int pcf2127_configure_interrupt_pins(struct device *dev)
{
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
int ret;
/* Mask bits need to be cleared to enable corresponding
* interrupt source.
*/
ret = regmap_write(pcf2127->regmap,
PCF2131_REG_INT_A_MASK1, 0);
if (ret)
return ret;
ret = regmap_write(pcf2127->regmap,
PCF2131_REG_INT_A_MASK2, 0);
if (ret)
return ret;
return ret;
}
static int pcf2127_probe(struct device *dev, struct regmap *regmap,
int alarm_irq, const char *name, const struct pcf21xx_config *config)
{
struct pcf2127 *pcf2127;
int ret = 0;
unsigned int val;
dev_dbg(dev, "%s\n", __func__);
pcf2127 = devm_kzalloc(dev, sizeof(*pcf2127), GFP_KERNEL);
if (!pcf2127)
return -ENOMEM;
pcf2127->regmap = regmap;
pcf2127->cfg = config;
dev_set_drvdata(dev, pcf2127);
pcf2127->rtc = devm_rtc_allocate_device(dev);
if (IS_ERR(pcf2127->rtc))
return PTR_ERR(pcf2127->rtc);
pcf2127->rtc->ops = &pcf2127_rtc_ops;
pcf2127->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
pcf2127->rtc->range_max = RTC_TIMESTAMP_END_2099;
pcf2127->rtc->set_start_time = true; /* Sets actual start to 1970 */
/*
* PCF2127/29 do not work correctly when setting alarms at 1s intervals.
* PCF2131 is ok.
*/
if (pcf2127->cfg->type == PCF2127 || pcf2127->cfg->type == PCF2129) {
set_bit(RTC_FEATURE_ALARM_RES_2S, pcf2127->rtc->features);
clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, pcf2127->rtc->features);
}
clear_bit(RTC_FEATURE_ALARM, pcf2127->rtc->features);
if (alarm_irq > 0) {
unsigned long flags;
/*
* If flags = 0, devm_request_threaded_irq() will use IRQ flags
* obtained from device tree.
*/
if (dev_fwnode(dev))
flags = 0;
else
flags = IRQF_TRIGGER_LOW;
ret = devm_request_threaded_irq(dev, alarm_irq, NULL,
pcf2127_rtc_irq,
flags | IRQF_ONESHOT,
dev_name(dev), dev);
if (ret) {
dev_err(dev, "failed to request alarm irq\n");
return ret;
}
pcf2127->irq_enabled = true;
}
if (alarm_irq > 0 || device_property_read_bool(dev, "wakeup-source")) {
device_init_wakeup(dev, true);
set_bit(RTC_FEATURE_ALARM, pcf2127->rtc->features);
}
if (pcf2127->cfg->has_int_a_b) {
/* Configure int A/B pins, independently of alarm_irq. */
ret = pcf2127_configure_interrupt_pins(dev);
if (ret) {
dev_err(dev, "failed to configure interrupt pins\n");
return ret;
}
}
if (pcf2127->cfg->has_nvmem) {
struct nvmem_config nvmem_cfg = {
.priv = pcf2127,
.reg_read = pcf2127_nvmem_read,
.reg_write = pcf2127_nvmem_write,
.size = 512,
};
ret = devm_rtc_nvmem_register(pcf2127->rtc, &nvmem_cfg);
}
/*
* The "Power-On Reset Override" facility prevents the RTC to do a reset
* after power on. For normal operation the PORO must be disabled.
*/
regmap_clear_bits(pcf2127->regmap, PCF2127_REG_CTRL1,
PCF2127_BIT_CTRL1_POR_OVRD);
ret = regmap_read(pcf2127->regmap, pcf2127->cfg->reg_clkout, &val);
if (ret < 0)
return ret;
if (!(val & PCF2127_BIT_CLKOUT_OTPR)) {
ret = regmap_set_bits(pcf2127->regmap, pcf2127->cfg->reg_clkout,
PCF2127_BIT_CLKOUT_OTPR);
if (ret < 0)
return ret;
msleep(100);
}
/*
* Watchdog timer enabled and reset pin /RST activated when timed out.
* Select 1Hz clock source for watchdog timer (1/4Hz for PCF2131).
* Note: Countdown timer disabled and not available.
* For pca2129, pcf2129 and pcf2131, only bit[7] is for Symbol WD_CD
* of register watchdg_tim_ctl. The bit[6] is labeled
* as T. Bits labeled as T must always be written with
* logic 0.
*/
ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->reg_wd_ctl,
PCF2127_BIT_WD_CTL_CD1 |
PCF2127_BIT_WD_CTL_CD0 |
PCF2127_BIT_WD_CTL_TF1 |
PCF2127_BIT_WD_CTL_TF0,
PCF2127_BIT_WD_CTL_CD1 |
(pcf2127->cfg->has_bit_wd_ctl_cd0 ? PCF2127_BIT_WD_CTL_CD0 : 0) |
PCF2127_BIT_WD_CTL_TF1);
if (ret) {
dev_err(dev, "%s: watchdog config (wd_ctl) failed\n", __func__);
return ret;
}
pcf2127_watchdog_init(dev, pcf2127);
/*
* Disable battery low/switch-over timestamp and interrupts.
* Clear battery interrupt flags which can block new trigger events.
* Note: This is the default chip behaviour but added to ensure
* correct tamper timestamp and interrupt function.
*/
ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL3,
PCF2127_BIT_CTRL3_BTSE |
PCF2127_BIT_CTRL3_BIE |
PCF2127_BIT_CTRL3_BLIE, 0);
if (ret) {
dev_err(dev, "%s: interrupt config (ctrl3) failed\n",
__func__);
return ret;
}
/*
* Enable timestamp functions 1 to 4.
*/
for (int i = 0; i < pcf2127->cfg->ts_count; i++) {
ret = pcf2127_enable_ts(dev, i);
if (ret)
return ret;
}
ret = rtc_add_group(pcf2127->rtc, &pcf2127->cfg->attribute_group);
if (ret) {
dev_err(dev, "%s: tamper sysfs registering failed\n",
__func__);
return ret;
}
return devm_rtc_register_device(pcf2127->rtc);
}
#ifdef CONFIG_OF
static const struct of_device_id pcf2127_of_match[] = {
{ .compatible = "nxp,pcf2127", .data = &pcf21xx_cfg[PCF2127] },
{ .compatible = "nxp,pcf2129", .data = &pcf21xx_cfg[PCF2129] },
{ .compatible = "nxp,pca2129", .data = &pcf21xx_cfg[PCF2129] },
{ .compatible = "nxp,pcf2131", .data = &pcf21xx_cfg[PCF2131] },
{}
};
MODULE_DEVICE_TABLE(of, pcf2127_of_match);
#endif
#if IS_ENABLED(CONFIG_I2C)
static int pcf2127_i2c_write(void *context, const void *data, size_t count)
{
struct device *dev = context;
struct i2c_client *client = to_i2c_client(dev);
int ret;
ret = i2c_master_send(client, data, count);
if (ret != count)
return ret < 0 ? ret : -EIO;
return 0;
}
static int pcf2127_i2c_gather_write(void *context,
const void *reg, size_t reg_size,
const void *val, size_t val_size)
{
struct device *dev = context;
struct i2c_client *client = to_i2c_client(dev);
int ret;
void *buf;
if (WARN_ON(reg_size != 1))
return -EINVAL;
buf = kmalloc(val_size + 1, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, reg, 1);
memcpy(buf + 1, val, val_size);
ret = i2c_master_send(client, buf, val_size + 1);
kfree(buf);
if (ret != val_size + 1)
return ret < 0 ? ret : -EIO;
return 0;
}
static int pcf2127_i2c_read(void *context, const void *reg, size_t reg_size,
void *val, size_t val_size)
{
struct device *dev = context;
struct i2c_client *client = to_i2c_client(dev);
int ret;
if (WARN_ON(reg_size != 1))
return -EINVAL;
ret = i2c_master_send(client, reg, 1);
if (ret != 1)
return ret < 0 ? ret : -EIO;
ret = i2c_master_recv(client, val, val_size);
if (ret != val_size)
return ret < 0 ? ret : -EIO;
return 0;
}
/*
* The reason we need this custom regmap_bus instead of using regmap_init_i2c()
* is that the STOP condition is required between set register address and
* read register data when reading from registers.
*/
static const struct regmap_bus pcf2127_i2c_regmap = {
.write = pcf2127_i2c_write,
.gather_write = pcf2127_i2c_gather_write,
.read = pcf2127_i2c_read,
};
static struct i2c_driver pcf2127_i2c_driver;
static const struct i2c_device_id pcf2127_i2c_id[] = {
{ "pcf2127", PCF2127 },
{ "pcf2129", PCF2129 },
{ "pca2129", PCF2129 },
{ "pcf2131", PCF2131 },
{ }
};
MODULE_DEVICE_TABLE(i2c, pcf2127_i2c_id);
static int pcf2127_i2c_probe(struct i2c_client *client)
{
struct regmap *regmap;
static struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
};
const struct pcf21xx_config *variant;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -ENODEV;
if (client->dev.of_node) {
variant = of_device_get_match_data(&client->dev);
if (!variant)
return -ENODEV;
} else {
enum pcf21xx_type type =
i2c_match_id(pcf2127_i2c_id, client)->driver_data;
if (type >= PCF21XX_LAST_ID)
return -ENODEV;
variant = &pcf21xx_cfg[type];
}
config.max_register = variant->max_register,
regmap = devm_regmap_init(&client->dev, &pcf2127_i2c_regmap,
&client->dev, &config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "%s: regmap allocation failed: %ld\n",
__func__, PTR_ERR(regmap));
return PTR_ERR(regmap);
}
return pcf2127_probe(&client->dev, regmap, client->irq,
pcf2127_i2c_driver.driver.name, variant);
}
static struct i2c_driver pcf2127_i2c_driver = {
.driver = {
.name = "rtc-pcf2127-i2c",
.of_match_table = of_match_ptr(pcf2127_of_match),
},
.probe = pcf2127_i2c_probe,
.id_table = pcf2127_i2c_id,
};
static int pcf2127_i2c_register_driver(void)
{
return i2c_add_driver(&pcf2127_i2c_driver);
}
static void pcf2127_i2c_unregister_driver(void)
{
i2c_del_driver(&pcf2127_i2c_driver);
}
#else
static int pcf2127_i2c_register_driver(void)
{
return 0;
}
static void pcf2127_i2c_unregister_driver(void)
{
}
#endif
#if IS_ENABLED(CONFIG_SPI_MASTER)
static struct spi_driver pcf2127_spi_driver;
static const struct spi_device_id pcf2127_spi_id[];
static int pcf2127_spi_probe(struct spi_device *spi)
{
static struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
.read_flag_mask = 0xa0,
.write_flag_mask = 0x20,
};
struct regmap *regmap;
const struct pcf21xx_config *variant;
if (spi->dev.of_node) {
variant = of_device_get_match_data(&spi->dev);
if (!variant)
return -ENODEV;
} else {
enum pcf21xx_type type = spi_get_device_id(spi)->driver_data;
if (type >= PCF21XX_LAST_ID)
return -ENODEV;
variant = &pcf21xx_cfg[type];
}
config.max_register = variant->max_register,
regmap = devm_regmap_init_spi(spi, &config);
if (IS_ERR(regmap)) {
dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n",
__func__, PTR_ERR(regmap));
return PTR_ERR(regmap);
}
return pcf2127_probe(&spi->dev, regmap, spi->irq,
pcf2127_spi_driver.driver.name,
variant);
}
static const struct spi_device_id pcf2127_spi_id[] = {
{ "pcf2127", PCF2127 },
{ "pcf2129", PCF2129 },
{ "pca2129", PCF2129 },
{ "pcf2131", PCF2131 },
{ }
};
MODULE_DEVICE_TABLE(spi, pcf2127_spi_id);
static struct spi_driver pcf2127_spi_driver = {
.driver = {
.name = "rtc-pcf2127-spi",
.of_match_table = of_match_ptr(pcf2127_of_match),
},
.probe = pcf2127_spi_probe,
.id_table = pcf2127_spi_id,
};
static int pcf2127_spi_register_driver(void)
{
return spi_register_driver(&pcf2127_spi_driver);
}
static void pcf2127_spi_unregister_driver(void)
{
spi_unregister_driver(&pcf2127_spi_driver);
}
#else
static int pcf2127_spi_register_driver(void)
{
return 0;
}
static void pcf2127_spi_unregister_driver(void)
{
}
#endif
static int __init pcf2127_init(void)
{
int ret;
ret = pcf2127_i2c_register_driver();
if (ret) {
pr_err("Failed to register pcf2127 i2c driver: %d\n", ret);
return ret;
}
ret = pcf2127_spi_register_driver();
if (ret) {
pr_err("Failed to register pcf2127 spi driver: %d\n", ret);
pcf2127_i2c_unregister_driver();
}
return ret;
}
module_init(pcf2127_init)
static void __exit pcf2127_exit(void)
{
pcf2127_spi_unregister_driver();
pcf2127_i2c_unregister_driver();
}
module_exit(pcf2127_exit)
MODULE_AUTHOR("Renaud Cerrato <r.cerrato@til-technologies.fr>");
MODULE_DESCRIPTION("NXP PCF2127/29/31 RTC driver");
MODULE_LICENSE("GPL v2");