linux/arch/x86/kernel/traps.c
Andy Lutomirski 2a41aa4feb x86/entry/32: Add and check a stack canary for the SYSENTER stack
The first instruction of the SYSENTER entry runs on its own tiny
stack.  That stack can be used if a #DB or NMI is delivered before
the SYSENTER prologue switches to a real stack.

We have code in place to prevent us from overflowing the tiny stack.
For added paranoia, add a canary to the stack and check it in
do_debug() -- that way, if something goes wrong with the #DB logic,
we'll eventually notice.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6ff9a806f39098b166dc2c41c1db744df5272f29.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-10 09:48:14 +01:00

949 lines
26 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/context_tracking.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kexec.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/io.h>
#ifdef CONFIG_EISA
#include <linux/ioport.h>
#include <linux/eisa.h>
#endif
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <asm/kmemcheck.h>
#include <asm/stacktrace.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <linux/atomic.h>
#include <asm/ftrace.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/fpu/internal.h>
#include <asm/mce.h>
#include <asm/fixmap.h>
#include <asm/mach_traps.h>
#include <asm/alternative.h>
#include <asm/fpu/xstate.h>
#include <asm/trace/mpx.h>
#include <asm/mpx.h>
#include <asm/vm86.h>
#ifdef CONFIG_X86_64
#include <asm/x86_init.h>
#include <asm/pgalloc.h>
#include <asm/proto.h>
/* No need to be aligned, but done to keep all IDTs defined the same way. */
gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
#else
#include <asm/processor-flags.h>
#include <asm/setup.h>
#include <asm/proto.h>
#endif
/* Must be page-aligned because the real IDT is used in a fixmap. */
gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
DECLARE_BITMAP(used_vectors, NR_VECTORS);
EXPORT_SYMBOL_GPL(used_vectors);
static inline void cond_local_irq_enable(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
}
static inline void cond_local_irq_disable(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_disable();
}
void ist_enter(struct pt_regs *regs)
{
if (user_mode(regs)) {
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
} else {
/*
* We might have interrupted pretty much anything. In
* fact, if we're a machine check, we can even interrupt
* NMI processing. We don't want in_nmi() to return true,
* but we need to notify RCU.
*/
rcu_nmi_enter();
}
/*
* We are atomic because we're on the IST stack; or we're on
* x86_32, in which case we still shouldn't schedule; or we're
* on x86_64 and entered from user mode, in which case we're
* still atomic unless ist_begin_non_atomic is called.
*/
preempt_count_add(HARDIRQ_OFFSET);
/* This code is a bit fragile. Test it. */
RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
}
void ist_exit(struct pt_regs *regs)
{
preempt_count_sub(HARDIRQ_OFFSET);
if (!user_mode(regs))
rcu_nmi_exit();
}
/**
* ist_begin_non_atomic() - begin a non-atomic section in an IST exception
* @regs: regs passed to the IST exception handler
*
* IST exception handlers normally cannot schedule. As a special
* exception, if the exception interrupted userspace code (i.e.
* user_mode(regs) would return true) and the exception was not
* a double fault, it can be safe to schedule. ist_begin_non_atomic()
* begins a non-atomic section within an ist_enter()/ist_exit() region.
* Callers are responsible for enabling interrupts themselves inside
* the non-atomic section, and callers must call ist_end_non_atomic()
* before ist_exit().
*/
void ist_begin_non_atomic(struct pt_regs *regs)
{
BUG_ON(!user_mode(regs));
/*
* Sanity check: we need to be on the normal thread stack. This
* will catch asm bugs and any attempt to use ist_preempt_enable
* from double_fault.
*/
BUG_ON((unsigned long)(current_top_of_stack() -
current_stack_pointer()) >= THREAD_SIZE);
preempt_count_sub(HARDIRQ_OFFSET);
}
/**
* ist_end_non_atomic() - begin a non-atomic section in an IST exception
*
* Ends a non-atomic section started with ist_begin_non_atomic().
*/
void ist_end_non_atomic(void)
{
preempt_count_add(HARDIRQ_OFFSET);
}
static nokprobe_inline int
do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
struct pt_regs *regs, long error_code)
{
if (v8086_mode(regs)) {
/*
* Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
* On nmi (interrupt 2), do_trap should not be called.
*/
if (trapnr < X86_TRAP_UD) {
if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
error_code, trapnr))
return 0;
}
return -1;
}
if (!user_mode(regs)) {
if (!fixup_exception(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
die(str, regs, error_code);
}
return 0;
}
return -1;
}
static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
siginfo_t *info)
{
unsigned long siaddr;
int sicode;
switch (trapnr) {
default:
return SEND_SIG_PRIV;
case X86_TRAP_DE:
sicode = FPE_INTDIV;
siaddr = uprobe_get_trap_addr(regs);
break;
case X86_TRAP_UD:
sicode = ILL_ILLOPN;
siaddr = uprobe_get_trap_addr(regs);
break;
case X86_TRAP_AC:
sicode = BUS_ADRALN;
siaddr = 0;
break;
}
info->si_signo = signr;
info->si_errno = 0;
info->si_code = sicode;
info->si_addr = (void __user *)siaddr;
return info;
}
static void
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
long error_code, siginfo_t *info)
{
struct task_struct *tsk = current;
if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
return;
/*
* We want error_code and trap_nr set for userspace faults and
* kernelspace faults which result in die(), but not
* kernelspace faults which are fixed up. die() gives the
* process no chance to handle the signal and notice the
* kernel fault information, so that won't result in polluting
* the information about previously queued, but not yet
* delivered, faults. See also do_general_protection below.
*/
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
#ifdef CONFIG_X86_64
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
printk_ratelimit()) {
pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
tsk->comm, tsk->pid, str,
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
pr_cont("\n");
}
#endif
force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
}
NOKPROBE_SYMBOL(do_trap);
static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
unsigned long trapnr, int signr)
{
siginfo_t info;
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
NOTIFY_STOP) {
cond_local_irq_enable(regs);
do_trap(trapnr, signr, str, regs, error_code,
fill_trap_info(regs, signr, trapnr, &info));
}
}
#define DO_ERROR(trapnr, signr, str, name) \
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
{ \
do_error_trap(regs, error_code, str, trapnr, signr); \
}
DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
#ifdef CONFIG_X86_64
/* Runs on IST stack */
dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
{
static const char str[] = "double fault";
struct task_struct *tsk = current;
#ifdef CONFIG_X86_ESPFIX64
extern unsigned char native_irq_return_iret[];
/*
* If IRET takes a non-IST fault on the espfix64 stack, then we
* end up promoting it to a doublefault. In that case, modify
* the stack to make it look like we just entered the #GP
* handler from user space, similar to bad_iret.
*
* No need for ist_enter here because we don't use RCU.
*/
if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
regs->cs == __KERNEL_CS &&
regs->ip == (unsigned long)native_irq_return_iret)
{
struct pt_regs *normal_regs = task_pt_regs(current);
/* Fake a #GP(0) from userspace. */
memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
regs->ip = (unsigned long)general_protection;
regs->sp = (unsigned long)&normal_regs->orig_ax;
return;
}
#endif
ist_enter(regs);
notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_DF;
#ifdef CONFIG_DOUBLEFAULT
df_debug(regs, error_code);
#endif
/*
* This is always a kernel trap and never fixable (and thus must
* never return).
*/
for (;;)
die(str, regs, error_code);
}
#endif
dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
{
const struct mpx_bndcsr *bndcsr;
siginfo_t *info;
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
if (notify_die(DIE_TRAP, "bounds", regs, error_code,
X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
return;
cond_local_irq_enable(regs);
if (!user_mode(regs))
die("bounds", regs, error_code);
if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
/* The exception is not from Intel MPX */
goto exit_trap;
}
/*
* We need to look at BNDSTATUS to resolve this exception.
* A NULL here might mean that it is in its 'init state',
* which is all zeros which indicates MPX was not
* responsible for the exception.
*/
bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
if (!bndcsr)
goto exit_trap;
trace_bounds_exception_mpx(bndcsr);
/*
* The error code field of the BNDSTATUS register communicates status
* information of a bound range exception #BR or operation involving
* bound directory.
*/
switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
case 2: /* Bound directory has invalid entry. */
if (mpx_handle_bd_fault())
goto exit_trap;
break; /* Success, it was handled */
case 1: /* Bound violation. */
info = mpx_generate_siginfo(regs);
if (IS_ERR(info)) {
/*
* We failed to decode the MPX instruction. Act as if
* the exception was not caused by MPX.
*/
goto exit_trap;
}
/*
* Success, we decoded the instruction and retrieved
* an 'info' containing the address being accessed
* which caused the exception. This information
* allows and application to possibly handle the
* #BR exception itself.
*/
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
kfree(info);
break;
case 0: /* No exception caused by Intel MPX operations. */
goto exit_trap;
default:
die("bounds", regs, error_code);
}
return;
exit_trap:
/*
* This path out is for all the cases where we could not
* handle the exception in some way (like allocating a
* table or telling userspace about it. We will also end
* up here if the kernel has MPX turned off at compile
* time..
*/
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
}
dotraplinkage void
do_general_protection(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk;
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
cond_local_irq_enable(regs);
if (v8086_mode(regs)) {
local_irq_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
return;
}
tsk = current;
if (!user_mode(regs)) {
if (fixup_exception(regs))
return;
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_GP;
if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
die("general protection fault", regs, error_code);
return;
}
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_GP;
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
printk_ratelimit()) {
pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
tsk->comm, task_pid_nr(tsk),
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
pr_cont("\n");
}
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
}
NOKPROBE_SYMBOL(do_general_protection);
/* May run on IST stack. */
dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
{
#ifdef CONFIG_DYNAMIC_FTRACE
/*
* ftrace must be first, everything else may cause a recursive crash.
* See note by declaration of modifying_ftrace_code in ftrace.c
*/
if (unlikely(atomic_read(&modifying_ftrace_code)) &&
ftrace_int3_handler(regs))
return;
#endif
if (poke_int3_handler(regs))
return;
ist_enter(regs);
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
SIGTRAP) == NOTIFY_STOP)
goto exit;
#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
#ifdef CONFIG_KPROBES
if (kprobe_int3_handler(regs))
goto exit;
#endif
if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
SIGTRAP) == NOTIFY_STOP)
goto exit;
/*
* Let others (NMI) know that the debug stack is in use
* as we may switch to the interrupt stack.
*/
debug_stack_usage_inc();
preempt_disable();
cond_local_irq_enable(regs);
do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
cond_local_irq_disable(regs);
preempt_enable_no_resched();
debug_stack_usage_dec();
exit:
ist_exit(regs);
}
NOKPROBE_SYMBOL(do_int3);
#ifdef CONFIG_X86_64
/*
* Help handler running on IST stack to switch off the IST stack if the
* interrupted code was in user mode. The actual stack switch is done in
* entry_64.S
*/
asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
{
struct pt_regs *regs = task_pt_regs(current);
*regs = *eregs;
return regs;
}
NOKPROBE_SYMBOL(sync_regs);
struct bad_iret_stack {
void *error_entry_ret;
struct pt_regs regs;
};
asmlinkage __visible notrace
struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
{
/*
* This is called from entry_64.S early in handling a fault
* caused by a bad iret to user mode. To handle the fault
* correctly, we want move our stack frame to task_pt_regs
* and we want to pretend that the exception came from the
* iret target.
*/
struct bad_iret_stack *new_stack =
container_of(task_pt_regs(current),
struct bad_iret_stack, regs);
/* Copy the IRET target to the new stack. */
memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
/* Copy the remainder of the stack from the current stack. */
memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
BUG_ON(!user_mode(&new_stack->regs));
return new_stack;
}
NOKPROBE_SYMBOL(fixup_bad_iret);
#endif
static bool is_sysenter_singlestep(struct pt_regs *regs)
{
/*
* We don't try for precision here. If we're anywhere in the region of
* code that can be single-stepped in the SYSENTER entry path, then
* assume that this is a useless single-step trap due to SYSENTER
* being invoked with TF set. (We don't know in advance exactly
* which instructions will be hit because BTF could plausibly
* be set.)
*/
#ifdef CONFIG_X86_32
return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
(unsigned long)__end_SYSENTER_singlestep_region -
(unsigned long)__begin_SYSENTER_singlestep_region;
#elif defined(CONFIG_IA32_EMULATION)
return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
(unsigned long)__end_entry_SYSENTER_compat -
(unsigned long)entry_SYSENTER_compat;
#else
return false;
#endif
}
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*
* May run on IST stack.
*/
dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk = current;
int user_icebp = 0;
unsigned long dr6;
int si_code;
ist_enter(regs);
get_debugreg(dr6, 6);
/*
* The Intel SDM says:
*
* Certain debug exceptions may clear bits 0-3. The remaining
* contents of the DR6 register are never cleared by the
* processor. To avoid confusion in identifying debug
* exceptions, debug handlers should clear the register before
* returning to the interrupted task.
*
* Keep it simple: clear DR6 immediately.
*/
set_debugreg(0, 6);
/* Filter out all the reserved bits which are preset to 1 */
dr6 &= ~DR6_RESERVED;
/*
* The SDM says "The processor clears the BTF flag when it
* generates a debug exception." Clear TIF_BLOCKSTEP to keep
* TIF_BLOCKSTEP in sync with the hardware BTF flag.
*/
clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
is_sysenter_singlestep(regs))) {
dr6 &= ~DR_STEP;
if (!dr6)
goto exit;
/*
* else we might have gotten a single-step trap and hit a
* watchpoint at the same time, in which case we should fall
* through and handle the watchpoint.
*/
}
/*
* If dr6 has no reason to give us about the origin of this trap,
* then it's very likely the result of an icebp/int01 trap.
* User wants a sigtrap for that.
*/
if (!dr6 && user_mode(regs))
user_icebp = 1;
/* Catch kmemcheck conditions! */
if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
goto exit;
/* Store the virtualized DR6 value */
tsk->thread.debugreg6 = dr6;
#ifdef CONFIG_KPROBES
if (kprobe_debug_handler(regs))
goto exit;
#endif
if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
SIGTRAP) == NOTIFY_STOP)
goto exit;
/*
* Let others (NMI) know that the debug stack is in use
* as we may switch to the interrupt stack.
*/
debug_stack_usage_inc();
/* It's safe to allow irq's after DR6 has been saved */
preempt_disable();
cond_local_irq_enable(regs);
if (v8086_mode(regs)) {
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
X86_TRAP_DB);
cond_local_irq_disable(regs);
preempt_enable_no_resched();
debug_stack_usage_dec();
goto exit;
}
if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
/*
* Historical junk that used to handle SYSENTER single-stepping.
* This should be unreachable now. If we survive for a while
* without anyone hitting this warning, we'll turn this into
* an oops.
*/
tsk->thread.debugreg6 &= ~DR_STEP;
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->flags &= ~X86_EFLAGS_TF;
}
si_code = get_si_code(tsk->thread.debugreg6);
if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
send_sigtrap(tsk, regs, error_code, si_code);
cond_local_irq_disable(regs);
preempt_enable_no_resched();
debug_stack_usage_dec();
exit:
#if defined(CONFIG_X86_32)
/*
* This is the most likely code path that involves non-trivial use
* of the SYSENTER stack. Check that we haven't overrun it.
*/
WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
"Overran or corrupted SYSENTER stack\n");
#endif
ist_exit(regs);
}
NOKPROBE_SYMBOL(do_debug);
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
static void math_error(struct pt_regs *regs, int error_code, int trapnr)
{
struct task_struct *task = current;
struct fpu *fpu = &task->thread.fpu;
siginfo_t info;
char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
"simd exception";
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
return;
cond_local_irq_enable(regs);
if (!user_mode(regs)) {
if (!fixup_exception(regs)) {
task->thread.error_code = error_code;
task->thread.trap_nr = trapnr;
die(str, regs, error_code);
}
return;
}
/*
* Save the info for the exception handler and clear the error.
*/
fpu__save(fpu);
task->thread.trap_nr = trapnr;
task->thread.error_code = error_code;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
info.si_code = fpu__exception_code(fpu, trapnr);
/* Retry when we get spurious exceptions: */
if (!info.si_code)
return;
force_sig_info(SIGFPE, &info, task);
}
dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
{
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
math_error(regs, error_code, X86_TRAP_MF);
}
dotraplinkage void
do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
{
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
math_error(regs, error_code, X86_TRAP_XF);
}
dotraplinkage void
do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
{
cond_local_irq_enable(regs);
}
dotraplinkage void
do_device_not_available(struct pt_regs *regs, long error_code)
{
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
BUG_ON(use_eager_fpu());
#ifdef CONFIG_MATH_EMULATION
if (read_cr0() & X86_CR0_EM) {
struct math_emu_info info = { };
cond_local_irq_enable(regs);
info.regs = regs;
math_emulate(&info);
return;
}
#endif
fpu__restore(&current->thread.fpu); /* interrupts still off */
#ifdef CONFIG_X86_32
cond_local_irq_enable(regs);
#endif
}
NOKPROBE_SYMBOL(do_device_not_available);
#ifdef CONFIG_X86_32
dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
{
siginfo_t info;
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
local_irq_enable();
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_BADSTK;
info.si_addr = NULL;
if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
&info);
}
}
#endif
/* Set of traps needed for early debugging. */
void __init early_trap_init(void)
{
/*
* Don't use IST to set DEBUG_STACK as it doesn't work until TSS
* is ready in cpu_init() <-- trap_init(). Before trap_init(),
* CPU runs at ring 0 so it is impossible to hit an invalid
* stack. Using the original stack works well enough at this
* early stage. DEBUG_STACK will be equipped after cpu_init() in
* trap_init().
*
* We don't need to set trace_idt_table like set_intr_gate(),
* since we don't have trace_debug and it will be reset to
* 'debug' in trap_init() by set_intr_gate_ist().
*/
set_intr_gate_notrace(X86_TRAP_DB, debug);
/* int3 can be called from all */
set_system_intr_gate(X86_TRAP_BP, &int3);
#ifdef CONFIG_X86_32
set_intr_gate(X86_TRAP_PF, page_fault);
#endif
load_idt(&idt_descr);
}
void __init early_trap_pf_init(void)
{
#ifdef CONFIG_X86_64
set_intr_gate(X86_TRAP_PF, page_fault);
#endif
}
void __init trap_init(void)
{
int i;
#ifdef CONFIG_EISA
void __iomem *p = early_ioremap(0x0FFFD9, 4);
if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
EISA_bus = 1;
early_iounmap(p, 4);
#endif
set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
/* int4 can be called from all */
set_system_intr_gate(X86_TRAP_OF, &overflow);
set_intr_gate(X86_TRAP_BR, bounds);
set_intr_gate(X86_TRAP_UD, invalid_op);
set_intr_gate(X86_TRAP_NM, device_not_available);
#ifdef CONFIG_X86_32
set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
#else
set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
#endif
set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
set_intr_gate(X86_TRAP_TS, invalid_TSS);
set_intr_gate(X86_TRAP_NP, segment_not_present);
set_intr_gate(X86_TRAP_SS, stack_segment);
set_intr_gate(X86_TRAP_GP, general_protection);
set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
set_intr_gate(X86_TRAP_MF, coprocessor_error);
set_intr_gate(X86_TRAP_AC, alignment_check);
#ifdef CONFIG_X86_MCE
set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
#endif
set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
/* Reserve all the builtin and the syscall vector: */
for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors);
#ifdef CONFIG_IA32_EMULATION
set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);
#endif
#ifdef CONFIG_X86_32
set_system_trap_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);
#endif
/*
* Set the IDT descriptor to a fixed read-only location, so that the
* "sidt" instruction will not leak the location of the kernel, and
* to defend the IDT against arbitrary memory write vulnerabilities.
* It will be reloaded in cpu_init() */
__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
idt_descr.address = fix_to_virt(FIX_RO_IDT);
/*
* Should be a barrier for any external CPU state:
*/
cpu_init();
/*
* X86_TRAP_DB and X86_TRAP_BP have been set
* in early_trap_init(). However, ITS works only after
* cpu_init() loads TSS. See comments in early_trap_init().
*/
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
/* int3 can be called from all */
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
x86_init.irqs.trap_init();
#ifdef CONFIG_X86_64
memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
set_nmi_gate(X86_TRAP_DB, &debug);
set_nmi_gate(X86_TRAP_BP, &int3);
#endif
}