mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 18:11:56 +00:00
a408e4a86b
Open a new file instance as opposed to changing file->f_mode when the file is not readable. This is done to accomodate overlayfs stacked file operations change. The real struct file is hidden behind the overlays struct file. So, any file->f_mode manipulations are not reflected on the real struct file. Open the file again in read mode if original file cannot be read, read and calculate the hash. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Cc: stable@vger.kernel.org (linux-4.19) Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
699 lines
16 KiB
C
699 lines
16 KiB
C
/*
|
|
* Copyright (C) 2005,2006,2007,2008 IBM Corporation
|
|
*
|
|
* Authors:
|
|
* Mimi Zohar <zohar@us.ibm.com>
|
|
* Kylene Hall <kjhall@us.ibm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 2 of the License.
|
|
*
|
|
* File: ima_crypto.c
|
|
* Calculates md5/sha1 file hash, template hash, boot-aggreate hash
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/file.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <crypto/hash.h>
|
|
|
|
#include "ima.h"
|
|
|
|
/* minimum file size for ahash use */
|
|
static unsigned long ima_ahash_minsize;
|
|
module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
|
|
MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
|
|
|
|
/* default is 0 - 1 page. */
|
|
static int ima_maxorder;
|
|
static unsigned int ima_bufsize = PAGE_SIZE;
|
|
|
|
static int param_set_bufsize(const char *val, const struct kernel_param *kp)
|
|
{
|
|
unsigned long long size;
|
|
int order;
|
|
|
|
size = memparse(val, NULL);
|
|
order = get_order(size);
|
|
if (order >= MAX_ORDER)
|
|
return -EINVAL;
|
|
ima_maxorder = order;
|
|
ima_bufsize = PAGE_SIZE << order;
|
|
return 0;
|
|
}
|
|
|
|
static const struct kernel_param_ops param_ops_bufsize = {
|
|
.set = param_set_bufsize,
|
|
.get = param_get_uint,
|
|
};
|
|
#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
|
|
|
|
module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
|
|
MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
|
|
|
|
static struct crypto_shash *ima_shash_tfm;
|
|
static struct crypto_ahash *ima_ahash_tfm;
|
|
|
|
int __init ima_init_crypto(void)
|
|
{
|
|
long rc;
|
|
|
|
ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
|
|
if (IS_ERR(ima_shash_tfm)) {
|
|
rc = PTR_ERR(ima_shash_tfm);
|
|
pr_err("Can not allocate %s (reason: %ld)\n",
|
|
hash_algo_name[ima_hash_algo], rc);
|
|
return rc;
|
|
}
|
|
pr_info("Allocated hash algorithm: %s\n",
|
|
hash_algo_name[ima_hash_algo]);
|
|
return 0;
|
|
}
|
|
|
|
static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
|
|
{
|
|
struct crypto_shash *tfm = ima_shash_tfm;
|
|
int rc;
|
|
|
|
if (algo < 0 || algo >= HASH_ALGO__LAST)
|
|
algo = ima_hash_algo;
|
|
|
|
if (algo != ima_hash_algo) {
|
|
tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
rc = PTR_ERR(tfm);
|
|
pr_err("Can not allocate %s (reason: %d)\n",
|
|
hash_algo_name[algo], rc);
|
|
}
|
|
}
|
|
return tfm;
|
|
}
|
|
|
|
static void ima_free_tfm(struct crypto_shash *tfm)
|
|
{
|
|
if (tfm != ima_shash_tfm)
|
|
crypto_free_shash(tfm);
|
|
}
|
|
|
|
/**
|
|
* ima_alloc_pages() - Allocate contiguous pages.
|
|
* @max_size: Maximum amount of memory to allocate.
|
|
* @allocated_size: Returned size of actual allocation.
|
|
* @last_warn: Should the min_size allocation warn or not.
|
|
*
|
|
* Tries to do opportunistic allocation for memory first trying to allocate
|
|
* max_size amount of memory and then splitting that until zero order is
|
|
* reached. Allocation is tried without generating allocation warnings unless
|
|
* last_warn is set. Last_warn set affects only last allocation of zero order.
|
|
*
|
|
* By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
|
|
*
|
|
* Return pointer to allocated memory, or NULL on failure.
|
|
*/
|
|
static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
|
|
int last_warn)
|
|
{
|
|
void *ptr;
|
|
int order = ima_maxorder;
|
|
gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
|
|
|
|
if (order)
|
|
order = min(get_order(max_size), order);
|
|
|
|
for (; order; order--) {
|
|
ptr = (void *)__get_free_pages(gfp_mask, order);
|
|
if (ptr) {
|
|
*allocated_size = PAGE_SIZE << order;
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
/* order is zero - one page */
|
|
|
|
gfp_mask = GFP_KERNEL;
|
|
|
|
if (!last_warn)
|
|
gfp_mask |= __GFP_NOWARN;
|
|
|
|
ptr = (void *)__get_free_pages(gfp_mask, 0);
|
|
if (ptr) {
|
|
*allocated_size = PAGE_SIZE;
|
|
return ptr;
|
|
}
|
|
|
|
*allocated_size = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ima_free_pages() - Free pages allocated by ima_alloc_pages().
|
|
* @ptr: Pointer to allocated pages.
|
|
* @size: Size of allocated buffer.
|
|
*/
|
|
static void ima_free_pages(void *ptr, size_t size)
|
|
{
|
|
if (!ptr)
|
|
return;
|
|
free_pages((unsigned long)ptr, get_order(size));
|
|
}
|
|
|
|
static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
|
|
{
|
|
struct crypto_ahash *tfm = ima_ahash_tfm;
|
|
int rc;
|
|
|
|
if (algo < 0 || algo >= HASH_ALGO__LAST)
|
|
algo = ima_hash_algo;
|
|
|
|
if (algo != ima_hash_algo || !tfm) {
|
|
tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
|
|
if (!IS_ERR(tfm)) {
|
|
if (algo == ima_hash_algo)
|
|
ima_ahash_tfm = tfm;
|
|
} else {
|
|
rc = PTR_ERR(tfm);
|
|
pr_err("Can not allocate %s (reason: %d)\n",
|
|
hash_algo_name[algo], rc);
|
|
}
|
|
}
|
|
return tfm;
|
|
}
|
|
|
|
static void ima_free_atfm(struct crypto_ahash *tfm)
|
|
{
|
|
if (tfm != ima_ahash_tfm)
|
|
crypto_free_ahash(tfm);
|
|
}
|
|
|
|
static inline int ahash_wait(int err, struct crypto_wait *wait)
|
|
{
|
|
|
|
err = crypto_wait_req(err, wait);
|
|
|
|
if (err)
|
|
pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ima_calc_file_hash_atfm(struct file *file,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_ahash *tfm)
|
|
{
|
|
loff_t i_size, offset;
|
|
char *rbuf[2] = { NULL, };
|
|
int rc, rbuf_len, active = 0, ahash_rc = 0;
|
|
struct ahash_request *req;
|
|
struct scatterlist sg[1];
|
|
struct crypto_wait wait;
|
|
size_t rbuf_size[2];
|
|
|
|
hash->length = crypto_ahash_digestsize(tfm);
|
|
|
|
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
crypto_init_wait(&wait);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
|
|
CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
crypto_req_done, &wait);
|
|
|
|
rc = ahash_wait(crypto_ahash_init(req), &wait);
|
|
if (rc)
|
|
goto out1;
|
|
|
|
i_size = i_size_read(file_inode(file));
|
|
|
|
if (i_size == 0)
|
|
goto out2;
|
|
|
|
/*
|
|
* Try to allocate maximum size of memory.
|
|
* Fail if even a single page cannot be allocated.
|
|
*/
|
|
rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
|
|
if (!rbuf[0]) {
|
|
rc = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
/* Only allocate one buffer if that is enough. */
|
|
if (i_size > rbuf_size[0]) {
|
|
/*
|
|
* Try to allocate secondary buffer. If that fails fallback to
|
|
* using single buffering. Use previous memory allocation size
|
|
* as baseline for possible allocation size.
|
|
*/
|
|
rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
|
|
&rbuf_size[1], 0);
|
|
}
|
|
|
|
for (offset = 0; offset < i_size; offset += rbuf_len) {
|
|
if (!rbuf[1] && offset) {
|
|
/* Not using two buffers, and it is not the first
|
|
* read/request, wait for the completion of the
|
|
* previous ahash_update() request.
|
|
*/
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
if (rc)
|
|
goto out3;
|
|
}
|
|
/* read buffer */
|
|
rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
|
|
rc = integrity_kernel_read(file, offset, rbuf[active],
|
|
rbuf_len);
|
|
if (rc != rbuf_len)
|
|
goto out3;
|
|
|
|
if (rbuf[1] && offset) {
|
|
/* Using two buffers, and it is not the first
|
|
* read/request, wait for the completion of the
|
|
* previous ahash_update() request.
|
|
*/
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
if (rc)
|
|
goto out3;
|
|
}
|
|
|
|
sg_init_one(&sg[0], rbuf[active], rbuf_len);
|
|
ahash_request_set_crypt(req, sg, NULL, rbuf_len);
|
|
|
|
ahash_rc = crypto_ahash_update(req);
|
|
|
|
if (rbuf[1])
|
|
active = !active; /* swap buffers, if we use two */
|
|
}
|
|
/* wait for the last update request to complete */
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
out3:
|
|
ima_free_pages(rbuf[0], rbuf_size[0]);
|
|
ima_free_pages(rbuf[1], rbuf_size[1]);
|
|
out2:
|
|
if (!rc) {
|
|
ahash_request_set_crypt(req, NULL, hash->digest, 0);
|
|
rc = ahash_wait(crypto_ahash_final(req), &wait);
|
|
}
|
|
out1:
|
|
ahash_request_free(req);
|
|
return rc;
|
|
}
|
|
|
|
static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_atfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = ima_calc_file_hash_atfm(file, hash, tfm);
|
|
|
|
ima_free_atfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int ima_calc_file_hash_tfm(struct file *file,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
loff_t i_size, offset = 0;
|
|
char *rbuf;
|
|
int rc;
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
|
|
shash->tfm = tfm;
|
|
shash->flags = 0;
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
i_size = i_size_read(file_inode(file));
|
|
|
|
if (i_size == 0)
|
|
goto out;
|
|
|
|
rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!rbuf)
|
|
return -ENOMEM;
|
|
|
|
while (offset < i_size) {
|
|
int rbuf_len;
|
|
|
|
rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
|
|
if (rbuf_len < 0) {
|
|
rc = rbuf_len;
|
|
break;
|
|
}
|
|
if (rbuf_len == 0)
|
|
break;
|
|
offset += rbuf_len;
|
|
|
|
rc = crypto_shash_update(shash, rbuf, rbuf_len);
|
|
if (rc)
|
|
break;
|
|
}
|
|
kfree(rbuf);
|
|
out:
|
|
if (!rc)
|
|
rc = crypto_shash_final(shash, hash->digest);
|
|
return rc;
|
|
}
|
|
|
|
static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = ima_calc_file_hash_tfm(file, hash, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* ima_calc_file_hash - calculate file hash
|
|
*
|
|
* Asynchronous hash (ahash) allows using HW acceleration for calculating
|
|
* a hash. ahash performance varies for different data sizes on different
|
|
* crypto accelerators. shash performance might be better for smaller files.
|
|
* The 'ima.ahash_minsize' module parameter allows specifying the best
|
|
* minimum file size for using ahash on the system.
|
|
*
|
|
* If the ima.ahash_minsize parameter is not specified, this function uses
|
|
* shash for the hash calculation. If ahash fails, it falls back to using
|
|
* shash.
|
|
*/
|
|
int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
|
|
{
|
|
loff_t i_size;
|
|
int rc;
|
|
struct file *f = file;
|
|
bool new_file_instance = false, modified_flags = false;
|
|
|
|
/*
|
|
* For consistency, fail file's opened with the O_DIRECT flag on
|
|
* filesystems mounted with/without DAX option.
|
|
*/
|
|
if (file->f_flags & O_DIRECT) {
|
|
hash->length = hash_digest_size[ima_hash_algo];
|
|
hash->algo = ima_hash_algo;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Open a new file instance in O_RDONLY if we cannot read */
|
|
if (!(file->f_mode & FMODE_READ)) {
|
|
int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
|
|
O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
|
|
flags |= O_RDONLY;
|
|
f = dentry_open(&file->f_path, flags, file->f_cred);
|
|
if (IS_ERR(f)) {
|
|
/*
|
|
* Cannot open the file again, lets modify f_flags
|
|
* of original and continue
|
|
*/
|
|
pr_info_ratelimited("Unable to reopen file for reading.\n");
|
|
f = file;
|
|
f->f_flags |= FMODE_READ;
|
|
modified_flags = true;
|
|
} else {
|
|
new_file_instance = true;
|
|
}
|
|
}
|
|
|
|
i_size = i_size_read(file_inode(f));
|
|
|
|
if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
|
|
rc = ima_calc_file_ahash(f, hash);
|
|
if (!rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = ima_calc_file_shash(f, hash);
|
|
out:
|
|
if (new_file_instance)
|
|
fput(f);
|
|
else if (modified_flags)
|
|
f->f_flags &= ~FMODE_READ;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Calculate the hash of template data
|
|
*/
|
|
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
|
|
struct ima_template_desc *td,
|
|
int num_fields,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
int rc, i;
|
|
|
|
shash->tfm = tfm;
|
|
shash->flags = 0;
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
for (i = 0; i < num_fields; i++) {
|
|
u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
|
|
u8 *data_to_hash = field_data[i].data;
|
|
u32 datalen = field_data[i].len;
|
|
u32 datalen_to_hash =
|
|
!ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
|
|
|
|
if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
|
|
rc = crypto_shash_update(shash,
|
|
(const u8 *) &datalen_to_hash,
|
|
sizeof(datalen_to_hash));
|
|
if (rc)
|
|
break;
|
|
} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
|
|
memcpy(buffer, data_to_hash, datalen);
|
|
data_to_hash = buffer;
|
|
datalen = IMA_EVENT_NAME_LEN_MAX + 1;
|
|
}
|
|
rc = crypto_shash_update(shash, data_to_hash, datalen);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
if (!rc)
|
|
rc = crypto_shash_final(shash, hash->digest);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int ima_calc_field_array_hash(struct ima_field_data *field_data,
|
|
struct ima_template_desc *desc, int num_fields,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
|
|
hash, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_ahash *tfm)
|
|
{
|
|
struct ahash_request *req;
|
|
struct scatterlist sg;
|
|
struct crypto_wait wait;
|
|
int rc, ahash_rc = 0;
|
|
|
|
hash->length = crypto_ahash_digestsize(tfm);
|
|
|
|
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
crypto_init_wait(&wait);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
|
|
CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
crypto_req_done, &wait);
|
|
|
|
rc = ahash_wait(crypto_ahash_init(req), &wait);
|
|
if (rc)
|
|
goto out;
|
|
|
|
sg_init_one(&sg, buf, len);
|
|
ahash_request_set_crypt(req, &sg, NULL, len);
|
|
|
|
ahash_rc = crypto_ahash_update(req);
|
|
|
|
/* wait for the update request to complete */
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
if (!rc) {
|
|
ahash_request_set_crypt(req, NULL, hash->digest, 0);
|
|
rc = ahash_wait(crypto_ahash_final(req), &wait);
|
|
}
|
|
out:
|
|
ahash_request_free(req);
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_ahash(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_atfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
|
|
|
|
ima_free_atfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_shash_tfm(const void *buf, loff_t size,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
unsigned int len;
|
|
int rc;
|
|
|
|
shash->tfm = tfm;
|
|
shash->flags = 0;
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
while (size) {
|
|
len = size < PAGE_SIZE ? size : PAGE_SIZE;
|
|
rc = crypto_shash_update(shash, buf, len);
|
|
if (rc)
|
|
break;
|
|
buf += len;
|
|
size -= len;
|
|
}
|
|
|
|
if (!rc)
|
|
rc = crypto_shash_final(shash, hash->digest);
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_shash(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
return rc;
|
|
}
|
|
|
|
int ima_calc_buffer_hash(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
int rc;
|
|
|
|
if (ima_ahash_minsize && len >= ima_ahash_minsize) {
|
|
rc = calc_buffer_ahash(buf, len, hash);
|
|
if (!rc)
|
|
return 0;
|
|
}
|
|
|
|
return calc_buffer_shash(buf, len, hash);
|
|
}
|
|
|
|
static void __init ima_pcrread(int idx, u8 *pcr)
|
|
{
|
|
if (!ima_tpm_chip)
|
|
return;
|
|
|
|
if (tpm_pcr_read(ima_tpm_chip, idx, pcr) != 0)
|
|
pr_err("Error Communicating to TPM chip\n");
|
|
}
|
|
|
|
/*
|
|
* Calculate the boot aggregate hash
|
|
*/
|
|
static int __init ima_calc_boot_aggregate_tfm(char *digest,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
u8 pcr_i[TPM_DIGEST_SIZE];
|
|
int rc, i;
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
|
|
shash->tfm = tfm;
|
|
shash->flags = 0;
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* cumulative sha1 over tpm registers 0-7 */
|
|
for (i = TPM_PCR0; i < TPM_PCR8; i++) {
|
|
ima_pcrread(i, pcr_i);
|
|
/* now accumulate with current aggregate */
|
|
rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
|
|
}
|
|
if (!rc)
|
|
crypto_shash_final(shash, digest);
|
|
return rc;
|
|
}
|
|
|
|
int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
|
|
return rc;
|
|
}
|