linux/kernel/locking/test-ww_mutex.c
Michal Hocko 0ee931c4e3 mm: treewide: remove GFP_TEMPORARY allocation flag
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE.  It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation.  As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag.  How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.

The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory.  So
this is rather misleading and hard to evaluate for any benefits.

I have checked some random users and none of them has added the flag
with a specific justification.  I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring.  This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.

I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse.  Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL.  Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.

I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.

This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic.  It
seems to be a heuristic without any measured advantage for most (if not
all) its current users.  The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers.  So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.

[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org

[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
  Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-13 18:53:16 -07:00

646 lines
13 KiB
C

/*
* Module-based API test facility for ww_mutexes
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*/
#include <linux/kernel.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/ww_mutex.h>
static DEFINE_WW_CLASS(ww_class);
struct workqueue_struct *wq;
struct test_mutex {
struct work_struct work;
struct ww_mutex mutex;
struct completion ready, go, done;
unsigned int flags;
};
#define TEST_MTX_SPIN BIT(0)
#define TEST_MTX_TRY BIT(1)
#define TEST_MTX_CTX BIT(2)
#define __TEST_MTX_LAST BIT(3)
static void test_mutex_work(struct work_struct *work)
{
struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
complete(&mtx->ready);
wait_for_completion(&mtx->go);
if (mtx->flags & TEST_MTX_TRY) {
while (!ww_mutex_trylock(&mtx->mutex))
cond_resched();
} else {
ww_mutex_lock(&mtx->mutex, NULL);
}
complete(&mtx->done);
ww_mutex_unlock(&mtx->mutex);
}
static int __test_mutex(unsigned int flags)
{
#define TIMEOUT (HZ / 16)
struct test_mutex mtx;
struct ww_acquire_ctx ctx;
int ret;
ww_mutex_init(&mtx.mutex, &ww_class);
ww_acquire_init(&ctx, &ww_class);
INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
init_completion(&mtx.ready);
init_completion(&mtx.go);
init_completion(&mtx.done);
mtx.flags = flags;
schedule_work(&mtx.work);
wait_for_completion(&mtx.ready);
ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
complete(&mtx.go);
if (flags & TEST_MTX_SPIN) {
unsigned long timeout = jiffies + TIMEOUT;
ret = 0;
do {
if (completion_done(&mtx.done)) {
ret = -EINVAL;
break;
}
cond_resched();
} while (time_before(jiffies, timeout));
} else {
ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
}
ww_mutex_unlock(&mtx.mutex);
ww_acquire_fini(&ctx);
if (ret) {
pr_err("%s(flags=%x): mutual exclusion failure\n",
__func__, flags);
ret = -EINVAL;
}
flush_work(&mtx.work);
destroy_work_on_stack(&mtx.work);
return ret;
#undef TIMEOUT
}
static int test_mutex(void)
{
int ret;
int i;
for (i = 0; i < __TEST_MTX_LAST; i++) {
ret = __test_mutex(i);
if (ret)
return ret;
}
return 0;
}
static int test_aa(void)
{
struct ww_mutex mutex;
struct ww_acquire_ctx ctx;
int ret;
ww_mutex_init(&mutex, &ww_class);
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&mutex, &ctx);
if (ww_mutex_trylock(&mutex)) {
pr_err("%s: trylocked itself!\n", __func__);
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
ret = ww_mutex_lock(&mutex, &ctx);
if (ret != -EALREADY) {
pr_err("%s: missed deadlock for recursing, ret=%d\n",
__func__, ret);
if (!ret)
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
ret = 0;
out:
ww_mutex_unlock(&mutex);
ww_acquire_fini(&ctx);
return ret;
}
struct test_abba {
struct work_struct work;
struct ww_mutex a_mutex;
struct ww_mutex b_mutex;
struct completion a_ready;
struct completion b_ready;
bool resolve;
int result;
};
static void test_abba_work(struct work_struct *work)
{
struct test_abba *abba = container_of(work, typeof(*abba), work);
struct ww_acquire_ctx ctx;
int err;
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&abba->b_mutex, &ctx);
complete(&abba->b_ready);
wait_for_completion(&abba->a_ready);
err = ww_mutex_lock(&abba->a_mutex, &ctx);
if (abba->resolve && err == -EDEADLK) {
ww_mutex_unlock(&abba->b_mutex);
ww_mutex_lock_slow(&abba->a_mutex, &ctx);
err = ww_mutex_lock(&abba->b_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(&abba->a_mutex);
ww_mutex_unlock(&abba->b_mutex);
ww_acquire_fini(&ctx);
abba->result = err;
}
static int test_abba(bool resolve)
{
struct test_abba abba;
struct ww_acquire_ctx ctx;
int err, ret;
ww_mutex_init(&abba.a_mutex, &ww_class);
ww_mutex_init(&abba.b_mutex, &ww_class);
INIT_WORK_ONSTACK(&abba.work, test_abba_work);
init_completion(&abba.a_ready);
init_completion(&abba.b_ready);
abba.resolve = resolve;
schedule_work(&abba.work);
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&abba.a_mutex, &ctx);
complete(&abba.a_ready);
wait_for_completion(&abba.b_ready);
err = ww_mutex_lock(&abba.b_mutex, &ctx);
if (resolve && err == -EDEADLK) {
ww_mutex_unlock(&abba.a_mutex);
ww_mutex_lock_slow(&abba.b_mutex, &ctx);
err = ww_mutex_lock(&abba.a_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(&abba.b_mutex);
ww_mutex_unlock(&abba.a_mutex);
ww_acquire_fini(&ctx);
flush_work(&abba.work);
destroy_work_on_stack(&abba.work);
ret = 0;
if (resolve) {
if (err || abba.result) {
pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
__func__, err, abba.result);
ret = -EINVAL;
}
} else {
if (err != -EDEADLK && abba.result != -EDEADLK) {
pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
__func__, err, abba.result);
ret = -EINVAL;
}
}
return ret;
}
struct test_cycle {
struct work_struct work;
struct ww_mutex a_mutex;
struct ww_mutex *b_mutex;
struct completion *a_signal;
struct completion b_signal;
int result;
};
static void test_cycle_work(struct work_struct *work)
{
struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
struct ww_acquire_ctx ctx;
int err;
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&cycle->a_mutex, &ctx);
complete(cycle->a_signal);
wait_for_completion(&cycle->b_signal);
err = ww_mutex_lock(cycle->b_mutex, &ctx);
if (err == -EDEADLK) {
ww_mutex_unlock(&cycle->a_mutex);
ww_mutex_lock_slow(cycle->b_mutex, &ctx);
err = ww_mutex_lock(&cycle->a_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(cycle->b_mutex);
ww_mutex_unlock(&cycle->a_mutex);
ww_acquire_fini(&ctx);
cycle->result = err;
}
static int __test_cycle(unsigned int nthreads)
{
struct test_cycle *cycles;
unsigned int n, last = nthreads - 1;
int ret;
cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
if (!cycles)
return -ENOMEM;
for (n = 0; n < nthreads; n++) {
struct test_cycle *cycle = &cycles[n];
ww_mutex_init(&cycle->a_mutex, &ww_class);
if (n == last)
cycle->b_mutex = &cycles[0].a_mutex;
else
cycle->b_mutex = &cycles[n + 1].a_mutex;
if (n == 0)
cycle->a_signal = &cycles[last].b_signal;
else
cycle->a_signal = &cycles[n - 1].b_signal;
init_completion(&cycle->b_signal);
INIT_WORK(&cycle->work, test_cycle_work);
cycle->result = 0;
}
for (n = 0; n < nthreads; n++)
queue_work(wq, &cycles[n].work);
flush_workqueue(wq);
ret = 0;
for (n = 0; n < nthreads; n++) {
struct test_cycle *cycle = &cycles[n];
if (!cycle->result)
continue;
pr_err("cylic deadlock not resolved, ret[%d/%d] = %d\n",
n, nthreads, cycle->result);
ret = -EINVAL;
break;
}
for (n = 0; n < nthreads; n++)
ww_mutex_destroy(&cycles[n].a_mutex);
kfree(cycles);
return ret;
}
static int test_cycle(unsigned int ncpus)
{
unsigned int n;
int ret;
for (n = 2; n <= ncpus + 1; n++) {
ret = __test_cycle(n);
if (ret)
return ret;
}
return 0;
}
struct stress {
struct work_struct work;
struct ww_mutex *locks;
unsigned long timeout;
int nlocks;
};
static int *get_random_order(int count)
{
int *order;
int n, r, tmp;
order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
if (!order)
return order;
for (n = 0; n < count; n++)
order[n] = n;
for (n = count - 1; n > 1; n--) {
r = get_random_int() % (n + 1);
if (r != n) {
tmp = order[n];
order[n] = order[r];
order[r] = tmp;
}
}
return order;
}
static void dummy_load(struct stress *stress)
{
usleep_range(1000, 2000);
}
static void stress_inorder_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
const int nlocks = stress->nlocks;
struct ww_mutex *locks = stress->locks;
struct ww_acquire_ctx ctx;
int *order;
order = get_random_order(nlocks);
if (!order)
return;
do {
int contended = -1;
int n, err;
ww_acquire_init(&ctx, &ww_class);
retry:
err = 0;
for (n = 0; n < nlocks; n++) {
if (n == contended)
continue;
err = ww_mutex_lock(&locks[order[n]], &ctx);
if (err < 0)
break;
}
if (!err)
dummy_load(stress);
if (contended > n)
ww_mutex_unlock(&locks[order[contended]]);
contended = n;
while (n--)
ww_mutex_unlock(&locks[order[n]]);
if (err == -EDEADLK) {
ww_mutex_lock_slow(&locks[order[contended]], &ctx);
goto retry;
}
if (err) {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
ww_acquire_fini(&ctx);
} while (!time_after(jiffies, stress->timeout));
kfree(order);
kfree(stress);
}
struct reorder_lock {
struct list_head link;
struct ww_mutex *lock;
};
static void stress_reorder_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
LIST_HEAD(locks);
struct ww_acquire_ctx ctx;
struct reorder_lock *ll, *ln;
int *order;
int n, err;
order = get_random_order(stress->nlocks);
if (!order)
return;
for (n = 0; n < stress->nlocks; n++) {
ll = kmalloc(sizeof(*ll), GFP_KERNEL);
if (!ll)
goto out;
ll->lock = &stress->locks[order[n]];
list_add(&ll->link, &locks);
}
kfree(order);
order = NULL;
do {
ww_acquire_init(&ctx, &ww_class);
list_for_each_entry(ll, &locks, link) {
err = ww_mutex_lock(ll->lock, &ctx);
if (!err)
continue;
ln = ll;
list_for_each_entry_continue_reverse(ln, &locks, link)
ww_mutex_unlock(ln->lock);
if (err != -EDEADLK) {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
ww_mutex_lock_slow(ll->lock, &ctx);
list_move(&ll->link, &locks); /* restarts iteration */
}
dummy_load(stress);
list_for_each_entry(ll, &locks, link)
ww_mutex_unlock(ll->lock);
ww_acquire_fini(&ctx);
} while (!time_after(jiffies, stress->timeout));
out:
list_for_each_entry_safe(ll, ln, &locks, link)
kfree(ll);
kfree(order);
kfree(stress);
}
static void stress_one_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
const int nlocks = stress->nlocks;
struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks);
int err;
do {
err = ww_mutex_lock(lock, NULL);
if (!err) {
dummy_load(stress);
ww_mutex_unlock(lock);
} else {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
} while (!time_after(jiffies, stress->timeout));
kfree(stress);
}
#define STRESS_INORDER BIT(0)
#define STRESS_REORDER BIT(1)
#define STRESS_ONE BIT(2)
#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
static int stress(int nlocks, int nthreads, unsigned int flags)
{
struct ww_mutex *locks;
int n;
locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
if (!locks)
return -ENOMEM;
for (n = 0; n < nlocks; n++)
ww_mutex_init(&locks[n], &ww_class);
for (n = 0; nthreads; n++) {
struct stress *stress;
void (*fn)(struct work_struct *work);
fn = NULL;
switch (n & 3) {
case 0:
if (flags & STRESS_INORDER)
fn = stress_inorder_work;
break;
case 1:
if (flags & STRESS_REORDER)
fn = stress_reorder_work;
break;
case 2:
if (flags & STRESS_ONE)
fn = stress_one_work;
break;
}
if (!fn)
continue;
stress = kmalloc(sizeof(*stress), GFP_KERNEL);
if (!stress)
break;
INIT_WORK(&stress->work, fn);
stress->locks = locks;
stress->nlocks = nlocks;
stress->timeout = jiffies + 2*HZ;
queue_work(wq, &stress->work);
nthreads--;
}
flush_workqueue(wq);
for (n = 0; n < nlocks; n++)
ww_mutex_destroy(&locks[n]);
kfree(locks);
return 0;
}
static int __init test_ww_mutex_init(void)
{
int ncpus = num_online_cpus();
int ret;
wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
if (!wq)
return -ENOMEM;
ret = test_mutex();
if (ret)
return ret;
ret = test_aa();
if (ret)
return ret;
ret = test_abba(false);
if (ret)
return ret;
ret = test_abba(true);
if (ret)
return ret;
ret = test_cycle(ncpus);
if (ret)
return ret;
ret = stress(16, 2*ncpus, STRESS_INORDER);
if (ret)
return ret;
ret = stress(16, 2*ncpus, STRESS_REORDER);
if (ret)
return ret;
ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
if (ret)
return ret;
return 0;
}
static void __exit test_ww_mutex_exit(void)
{
destroy_workqueue(wq);
}
module_init(test_ww_mutex_init);
module_exit(test_ww_mutex_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Intel Corporation");