mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 00:21:59 +00:00
ff6c3d81f2
Sanity check that makes sure the nodes cover all memory loops over numa_meminfo to count the pages that have node id assigned by the firmware, then loops again over memblock.memory to find the total amount of memory and in the end checks that the difference between the total memory and memory that covered by nodes is less than some threshold. Worse, the loop over numa_meminfo calls __absent_pages_in_range() that also partially traverses memblock.memory. It's much simpler and more efficient to have a single traversal of memblock.memory that verifies that amount of memory not covered by nodes is less than a threshold. Introduce memblock_validate_numa_coverage() that does exactly that and use it instead of numa_meminfo_cover_memory(). Link: https://lkml.kernel.org/r/20231026020329.327329-1-zhiguangni01@gmail.com Signed-off-by: Liam Ni <zhiguangni01@gmail.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bibo Mao <maobibo@loongson.cn> Cc: Binbin Zhou <zhoubinbin@loongson.cn> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feiyang Chen <chenfeiyang@loongson.cn> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: WANG Xuerui <kernel@xen0n.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2304 lines
65 KiB
C
2304 lines
65 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Procedures for maintaining information about logical memory blocks.
|
|
*
|
|
* Peter Bergner, IBM Corp. June 2001.
|
|
* Copyright (C) 2001 Peter Bergner.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define INIT_MEMBLOCK_REGIONS 128
|
|
#define INIT_PHYSMEM_REGIONS 4
|
|
|
|
#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
|
|
# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
|
|
#endif
|
|
|
|
#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
|
|
#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
|
|
#endif
|
|
|
|
/**
|
|
* DOC: memblock overview
|
|
*
|
|
* Memblock is a method of managing memory regions during the early
|
|
* boot period when the usual kernel memory allocators are not up and
|
|
* running.
|
|
*
|
|
* Memblock views the system memory as collections of contiguous
|
|
* regions. There are several types of these collections:
|
|
*
|
|
* * ``memory`` - describes the physical memory available to the
|
|
* kernel; this may differ from the actual physical memory installed
|
|
* in the system, for instance when the memory is restricted with
|
|
* ``mem=`` command line parameter
|
|
* * ``reserved`` - describes the regions that were allocated
|
|
* * ``physmem`` - describes the actual physical memory available during
|
|
* boot regardless of the possible restrictions and memory hot(un)plug;
|
|
* the ``physmem`` type is only available on some architectures.
|
|
*
|
|
* Each region is represented by struct memblock_region that
|
|
* defines the region extents, its attributes and NUMA node id on NUMA
|
|
* systems. Every memory type is described by the struct memblock_type
|
|
* which contains an array of memory regions along with
|
|
* the allocator metadata. The "memory" and "reserved" types are nicely
|
|
* wrapped with struct memblock. This structure is statically
|
|
* initialized at build time. The region arrays are initially sized to
|
|
* %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
|
|
* %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
|
|
* for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
|
|
* The memblock_allow_resize() enables automatic resizing of the region
|
|
* arrays during addition of new regions. This feature should be used
|
|
* with care so that memory allocated for the region array will not
|
|
* overlap with areas that should be reserved, for example initrd.
|
|
*
|
|
* The early architecture setup should tell memblock what the physical
|
|
* memory layout is by using memblock_add() or memblock_add_node()
|
|
* functions. The first function does not assign the region to a NUMA
|
|
* node and it is appropriate for UMA systems. Yet, it is possible to
|
|
* use it on NUMA systems as well and assign the region to a NUMA node
|
|
* later in the setup process using memblock_set_node(). The
|
|
* memblock_add_node() performs such an assignment directly.
|
|
*
|
|
* Once memblock is setup the memory can be allocated using one of the
|
|
* API variants:
|
|
*
|
|
* * memblock_phys_alloc*() - these functions return the **physical**
|
|
* address of the allocated memory
|
|
* * memblock_alloc*() - these functions return the **virtual** address
|
|
* of the allocated memory.
|
|
*
|
|
* Note, that both API variants use implicit assumptions about allowed
|
|
* memory ranges and the fallback methods. Consult the documentation
|
|
* of memblock_alloc_internal() and memblock_alloc_range_nid()
|
|
* functions for more elaborate description.
|
|
*
|
|
* As the system boot progresses, the architecture specific mem_init()
|
|
* function frees all the memory to the buddy page allocator.
|
|
*
|
|
* Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
|
|
* memblock data structures (except "physmem") will be discarded after the
|
|
* system initialization completes.
|
|
*/
|
|
|
|
#ifndef CONFIG_NUMA
|
|
struct pglist_data __refdata contig_page_data;
|
|
EXPORT_SYMBOL(contig_page_data);
|
|
#endif
|
|
|
|
unsigned long max_low_pfn;
|
|
unsigned long min_low_pfn;
|
|
unsigned long max_pfn;
|
|
unsigned long long max_possible_pfn;
|
|
|
|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
|
|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
|
|
#endif
|
|
|
|
struct memblock memblock __initdata_memblock = {
|
|
.memory.regions = memblock_memory_init_regions,
|
|
.memory.cnt = 1, /* empty dummy entry */
|
|
.memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
|
|
.memory.name = "memory",
|
|
|
|
.reserved.regions = memblock_reserved_init_regions,
|
|
.reserved.cnt = 1, /* empty dummy entry */
|
|
.reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
|
|
.reserved.name = "reserved",
|
|
|
|
.bottom_up = false,
|
|
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
|
|
};
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
struct memblock_type physmem = {
|
|
.regions = memblock_physmem_init_regions,
|
|
.cnt = 1, /* empty dummy entry */
|
|
.max = INIT_PHYSMEM_REGIONS,
|
|
.name = "physmem",
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* keep a pointer to &memblock.memory in the text section to use it in
|
|
* __next_mem_range() and its helpers.
|
|
* For architectures that do not keep memblock data after init, this
|
|
* pointer will be reset to NULL at memblock_discard()
|
|
*/
|
|
static __refdata struct memblock_type *memblock_memory = &memblock.memory;
|
|
|
|
#define for_each_memblock_type(i, memblock_type, rgn) \
|
|
for (i = 0, rgn = &memblock_type->regions[0]; \
|
|
i < memblock_type->cnt; \
|
|
i++, rgn = &memblock_type->regions[i])
|
|
|
|
#define memblock_dbg(fmt, ...) \
|
|
do { \
|
|
if (memblock_debug) \
|
|
pr_info(fmt, ##__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static int memblock_debug __initdata_memblock;
|
|
static bool system_has_some_mirror __initdata_memblock;
|
|
static int memblock_can_resize __initdata_memblock;
|
|
static int memblock_memory_in_slab __initdata_memblock;
|
|
static int memblock_reserved_in_slab __initdata_memblock;
|
|
|
|
bool __init_memblock memblock_has_mirror(void)
|
|
{
|
|
return system_has_some_mirror;
|
|
}
|
|
|
|
static enum memblock_flags __init_memblock choose_memblock_flags(void)
|
|
{
|
|
return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
|
|
}
|
|
|
|
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
|
|
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
|
|
{
|
|
return *size = min(*size, PHYS_ADDR_MAX - base);
|
|
}
|
|
|
|
/*
|
|
* Address comparison utilities
|
|
*/
|
|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
|
|
phys_addr_t base2, phys_addr_t size2)
|
|
{
|
|
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
|
|
}
|
|
|
|
bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
unsigned long i;
|
|
|
|
memblock_cap_size(base, &size);
|
|
|
|
for (i = 0; i < type->cnt; i++)
|
|
if (memblock_addrs_overlap(base, size, type->regions[i].base,
|
|
type->regions[i].size))
|
|
break;
|
|
return i < type->cnt;
|
|
}
|
|
|
|
/**
|
|
* __memblock_find_range_bottom_up - find free area utility in bottom-up
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @flags: pick from blocks based on memory attributes
|
|
*
|
|
* Utility called from memblock_find_in_range_node(), find free area bottom-up.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock
|
|
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
|
|
phys_addr_t size, phys_addr_t align, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
cand = round_up(this_start, align);
|
|
if (cand < this_end && this_end - cand >= size)
|
|
return cand;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __memblock_find_range_top_down - find free area utility, in top-down
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @flags: pick from blocks based on memory attributes
|
|
*
|
|
* Utility called from memblock_find_in_range_node(), find free area top-down.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock
|
|
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
|
|
phys_addr_t size, phys_addr_t align, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
|
|
NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
if (this_end < size)
|
|
continue;
|
|
|
|
cand = round_down(this_end - size, align);
|
|
if (cand >= this_start)
|
|
return cand;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range_node - find free area in given range and node
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @flags: pick from blocks based on memory attributes
|
|
*
|
|
* Find @size free area aligned to @align in the specified range and node.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start,
|
|
phys_addr_t end, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
/* pump up @end */
|
|
if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
|
|
end == MEMBLOCK_ALLOC_NOLEAKTRACE)
|
|
end = memblock.current_limit;
|
|
|
|
/* avoid allocating the first page */
|
|
start = max_t(phys_addr_t, start, PAGE_SIZE);
|
|
end = max(start, end);
|
|
|
|
if (memblock_bottom_up())
|
|
return __memblock_find_range_bottom_up(start, end, size, align,
|
|
nid, flags);
|
|
else
|
|
return __memblock_find_range_top_down(start, end, size, align,
|
|
nid, flags);
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range - find free area in given range
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
*
|
|
* Find @size free area aligned to @align in the specified range.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
|
|
phys_addr_t end, phys_addr_t size,
|
|
phys_addr_t align)
|
|
{
|
|
phys_addr_t ret;
|
|
enum memblock_flags flags = choose_memblock_flags();
|
|
|
|
again:
|
|
ret = memblock_find_in_range_node(size, align, start, end,
|
|
NUMA_NO_NODE, flags);
|
|
|
|
if (!ret && (flags & MEMBLOCK_MIRROR)) {
|
|
pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
|
|
&size);
|
|
flags &= ~MEMBLOCK_MIRROR;
|
|
goto again;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
|
|
{
|
|
type->total_size -= type->regions[r].size;
|
|
memmove(&type->regions[r], &type->regions[r + 1],
|
|
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
|
|
type->cnt--;
|
|
|
|
/* Special case for empty arrays */
|
|
if (type->cnt == 0) {
|
|
WARN_ON(type->total_size != 0);
|
|
type->cnt = 1;
|
|
type->regions[0].base = 0;
|
|
type->regions[0].size = 0;
|
|
type->regions[0].flags = 0;
|
|
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
|
|
/**
|
|
* memblock_discard - discard memory and reserved arrays if they were allocated
|
|
*/
|
|
void __init memblock_discard(void)
|
|
{
|
|
phys_addr_t addr, size;
|
|
|
|
if (memblock.reserved.regions != memblock_reserved_init_regions) {
|
|
addr = __pa(memblock.reserved.regions);
|
|
size = PAGE_ALIGN(sizeof(struct memblock_region) *
|
|
memblock.reserved.max);
|
|
if (memblock_reserved_in_slab)
|
|
kfree(memblock.reserved.regions);
|
|
else
|
|
memblock_free_late(addr, size);
|
|
}
|
|
|
|
if (memblock.memory.regions != memblock_memory_init_regions) {
|
|
addr = __pa(memblock.memory.regions);
|
|
size = PAGE_ALIGN(sizeof(struct memblock_region) *
|
|
memblock.memory.max);
|
|
if (memblock_memory_in_slab)
|
|
kfree(memblock.memory.regions);
|
|
else
|
|
memblock_free_late(addr, size);
|
|
}
|
|
|
|
memblock_memory = NULL;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* memblock_double_array - double the size of the memblock regions array
|
|
* @type: memblock type of the regions array being doubled
|
|
* @new_area_start: starting address of memory range to avoid overlap with
|
|
* @new_area_size: size of memory range to avoid overlap with
|
|
*
|
|
* Double the size of the @type regions array. If memblock is being used to
|
|
* allocate memory for a new reserved regions array and there is a previously
|
|
* allocated memory range [@new_area_start, @new_area_start + @new_area_size]
|
|
* waiting to be reserved, ensure the memory used by the new array does
|
|
* not overlap.
|
|
*
|
|
* Return:
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int __init_memblock memblock_double_array(struct memblock_type *type,
|
|
phys_addr_t new_area_start,
|
|
phys_addr_t new_area_size)
|
|
{
|
|
struct memblock_region *new_array, *old_array;
|
|
phys_addr_t old_alloc_size, new_alloc_size;
|
|
phys_addr_t old_size, new_size, addr, new_end;
|
|
int use_slab = slab_is_available();
|
|
int *in_slab;
|
|
|
|
/* We don't allow resizing until we know about the reserved regions
|
|
* of memory that aren't suitable for allocation
|
|
*/
|
|
if (!memblock_can_resize)
|
|
panic("memblock: cannot resize %s array\n", type->name);
|
|
|
|
/* Calculate new doubled size */
|
|
old_size = type->max * sizeof(struct memblock_region);
|
|
new_size = old_size << 1;
|
|
/*
|
|
* We need to allocated new one align to PAGE_SIZE,
|
|
* so we can free them completely later.
|
|
*/
|
|
old_alloc_size = PAGE_ALIGN(old_size);
|
|
new_alloc_size = PAGE_ALIGN(new_size);
|
|
|
|
/* Retrieve the slab flag */
|
|
if (type == &memblock.memory)
|
|
in_slab = &memblock_memory_in_slab;
|
|
else
|
|
in_slab = &memblock_reserved_in_slab;
|
|
|
|
/* Try to find some space for it */
|
|
if (use_slab) {
|
|
new_array = kmalloc(new_size, GFP_KERNEL);
|
|
addr = new_array ? __pa(new_array) : 0;
|
|
} else {
|
|
/* only exclude range when trying to double reserved.regions */
|
|
if (type != &memblock.reserved)
|
|
new_area_start = new_area_size = 0;
|
|
|
|
addr = memblock_find_in_range(new_area_start + new_area_size,
|
|
memblock.current_limit,
|
|
new_alloc_size, PAGE_SIZE);
|
|
if (!addr && new_area_size)
|
|
addr = memblock_find_in_range(0,
|
|
min(new_area_start, memblock.current_limit),
|
|
new_alloc_size, PAGE_SIZE);
|
|
|
|
new_array = addr ? __va(addr) : NULL;
|
|
}
|
|
if (!addr) {
|
|
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
|
|
type->name, type->max, type->max * 2);
|
|
return -1;
|
|
}
|
|
|
|
new_end = addr + new_size - 1;
|
|
memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
|
|
type->name, type->max * 2, &addr, &new_end);
|
|
|
|
/*
|
|
* Found space, we now need to move the array over before we add the
|
|
* reserved region since it may be our reserved array itself that is
|
|
* full.
|
|
*/
|
|
memcpy(new_array, type->regions, old_size);
|
|
memset(new_array + type->max, 0, old_size);
|
|
old_array = type->regions;
|
|
type->regions = new_array;
|
|
type->max <<= 1;
|
|
|
|
/* Free old array. We needn't free it if the array is the static one */
|
|
if (*in_slab)
|
|
kfree(old_array);
|
|
else if (old_array != memblock_memory_init_regions &&
|
|
old_array != memblock_reserved_init_regions)
|
|
memblock_free(old_array, old_alloc_size);
|
|
|
|
/*
|
|
* Reserve the new array if that comes from the memblock. Otherwise, we
|
|
* needn't do it
|
|
*/
|
|
if (!use_slab)
|
|
BUG_ON(memblock_reserve(addr, new_alloc_size));
|
|
|
|
/* Update slab flag */
|
|
*in_slab = use_slab;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_merge_regions - merge neighboring compatible regions
|
|
* @type: memblock type to scan
|
|
* @start_rgn: start scanning from (@start_rgn - 1)
|
|
* @end_rgn: end scanning at (@end_rgn - 1)
|
|
* Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
|
|
*/
|
|
static void __init_memblock memblock_merge_regions(struct memblock_type *type,
|
|
unsigned long start_rgn,
|
|
unsigned long end_rgn)
|
|
{
|
|
int i = 0;
|
|
if (start_rgn)
|
|
i = start_rgn - 1;
|
|
end_rgn = min(end_rgn, type->cnt - 1);
|
|
while (i < end_rgn) {
|
|
struct memblock_region *this = &type->regions[i];
|
|
struct memblock_region *next = &type->regions[i + 1];
|
|
|
|
if (this->base + this->size != next->base ||
|
|
memblock_get_region_node(this) !=
|
|
memblock_get_region_node(next) ||
|
|
this->flags != next->flags) {
|
|
BUG_ON(this->base + this->size > next->base);
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
this->size += next->size;
|
|
/* move forward from next + 1, index of which is i + 2 */
|
|
memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
|
|
type->cnt--;
|
|
end_rgn--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* memblock_insert_region - insert new memblock region
|
|
* @type: memblock type to insert into
|
|
* @idx: index for the insertion point
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: node id of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Insert new memblock region [@base, @base + @size) into @type at @idx.
|
|
* @type must already have extra room to accommodate the new region.
|
|
*/
|
|
static void __init_memblock memblock_insert_region(struct memblock_type *type,
|
|
int idx, phys_addr_t base,
|
|
phys_addr_t size,
|
|
int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
struct memblock_region *rgn = &type->regions[idx];
|
|
|
|
BUG_ON(type->cnt >= type->max);
|
|
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
|
|
rgn->base = base;
|
|
rgn->size = size;
|
|
rgn->flags = flags;
|
|
memblock_set_region_node(rgn, nid);
|
|
type->cnt++;
|
|
type->total_size += size;
|
|
}
|
|
|
|
/**
|
|
* memblock_add_range - add new memblock region
|
|
* @type: memblock type to add new region into
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: nid of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Add new memblock region [@base, @base + @size) into @type. The new region
|
|
* is allowed to overlap with existing ones - overlaps don't affect already
|
|
* existing regions. @type is guaranteed to be minimal (all neighbouring
|
|
* compatible regions are merged) after the addition.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_add_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int nid, enum memblock_flags flags)
|
|
{
|
|
bool insert = false;
|
|
phys_addr_t obase = base;
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int idx, nr_new, start_rgn = -1, end_rgn;
|
|
struct memblock_region *rgn;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
/* special case for empty array */
|
|
if (type->regions[0].size == 0) {
|
|
WARN_ON(type->cnt != 1 || type->total_size);
|
|
type->regions[0].base = base;
|
|
type->regions[0].size = size;
|
|
type->regions[0].flags = flags;
|
|
memblock_set_region_node(&type->regions[0], nid);
|
|
type->total_size = size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The worst case is when new range overlaps all existing regions,
|
|
* then we'll need type->cnt + 1 empty regions in @type. So if
|
|
* type->cnt * 2 + 1 is less than or equal to type->max, we know
|
|
* that there is enough empty regions in @type, and we can insert
|
|
* regions directly.
|
|
*/
|
|
if (type->cnt * 2 + 1 <= type->max)
|
|
insert = true;
|
|
|
|
repeat:
|
|
/*
|
|
* The following is executed twice. Once with %false @insert and
|
|
* then with %true. The first counts the number of regions needed
|
|
* to accommodate the new area. The second actually inserts them.
|
|
*/
|
|
base = obase;
|
|
nr_new = 0;
|
|
|
|
for_each_memblock_type(idx, type, rgn) {
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
/*
|
|
* @rgn overlaps. If it separates the lower part of new
|
|
* area, insert that portion.
|
|
*/
|
|
if (rbase > base) {
|
|
#ifdef CONFIG_NUMA
|
|
WARN_ON(nid != memblock_get_region_node(rgn));
|
|
#endif
|
|
WARN_ON(flags != rgn->flags);
|
|
nr_new++;
|
|
if (insert) {
|
|
if (start_rgn == -1)
|
|
start_rgn = idx;
|
|
end_rgn = idx + 1;
|
|
memblock_insert_region(type, idx++, base,
|
|
rbase - base, nid,
|
|
flags);
|
|
}
|
|
}
|
|
/* area below @rend is dealt with, forget about it */
|
|
base = min(rend, end);
|
|
}
|
|
|
|
/* insert the remaining portion */
|
|
if (base < end) {
|
|
nr_new++;
|
|
if (insert) {
|
|
if (start_rgn == -1)
|
|
start_rgn = idx;
|
|
end_rgn = idx + 1;
|
|
memblock_insert_region(type, idx, base, end - base,
|
|
nid, flags);
|
|
}
|
|
}
|
|
|
|
if (!nr_new)
|
|
return 0;
|
|
|
|
/*
|
|
* If this was the first round, resize array and repeat for actual
|
|
* insertions; otherwise, merge and return.
|
|
*/
|
|
if (!insert) {
|
|
while (type->cnt + nr_new > type->max)
|
|
if (memblock_double_array(type, obase, size) < 0)
|
|
return -ENOMEM;
|
|
insert = true;
|
|
goto repeat;
|
|
} else {
|
|
memblock_merge_regions(type, start_rgn, end_rgn);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* memblock_add_node - add new memblock region within a NUMA node
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: nid of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Add new memblock region [@base, @base + @size) to the "memory"
|
|
* type. See memblock_add_range() description for mode details
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
|
|
int nid, enum memblock_flags flags)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
|
|
&base, &end, nid, flags, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(&memblock.memory, base, size, nid, flags);
|
|
}
|
|
|
|
/**
|
|
* memblock_add - add new memblock region
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
*
|
|
* Add new memblock region [@base, @base + @size) to the "memory"
|
|
* type. See memblock_add_range() description for mode details
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
|
|
}
|
|
|
|
/**
|
|
* memblock_validate_numa_coverage - check if amount of memory with
|
|
* no node ID assigned is less than a threshold
|
|
* @threshold_bytes: maximal number of pages that can have unassigned node
|
|
* ID (in bytes).
|
|
*
|
|
* A buggy firmware may report memory that does not belong to any node.
|
|
* Check if amount of such memory is below @threshold_bytes.
|
|
*
|
|
* Return: true on success, false on failure.
|
|
*/
|
|
bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
|
|
{
|
|
unsigned long nr_pages = 0;
|
|
unsigned long start_pfn, end_pfn, mem_size_mb;
|
|
int nid, i;
|
|
|
|
/* calculate lose page */
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
|
|
if (nid == NUMA_NO_NODE)
|
|
nr_pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
|
|
mem_size_mb = memblock_phys_mem_size() >> 20;
|
|
pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
|
|
(nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* memblock_isolate_range - isolate given range into disjoint memblocks
|
|
* @type: memblock type to isolate range for
|
|
* @base: base of range to isolate
|
|
* @size: size of range to isolate
|
|
* @start_rgn: out parameter for the start of isolated region
|
|
* @end_rgn: out parameter for the end of isolated region
|
|
*
|
|
* Walk @type and ensure that regions don't cross the boundaries defined by
|
|
* [@base, @base + @size). Crossing regions are split at the boundaries,
|
|
* which may create at most two more regions. The index of the first
|
|
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int *start_rgn, int *end_rgn)
|
|
{
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int idx;
|
|
struct memblock_region *rgn;
|
|
|
|
*start_rgn = *end_rgn = 0;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
/* we'll create at most two more regions */
|
|
while (type->cnt + 2 > type->max)
|
|
if (memblock_double_array(type, base, size) < 0)
|
|
return -ENOMEM;
|
|
|
|
for_each_memblock_type(idx, type, rgn) {
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
|
|
if (rbase < base) {
|
|
/*
|
|
* @rgn intersects from below. Split and continue
|
|
* to process the next region - the new top half.
|
|
*/
|
|
rgn->base = base;
|
|
rgn->size -= base - rbase;
|
|
type->total_size -= base - rbase;
|
|
memblock_insert_region(type, idx, rbase, base - rbase,
|
|
memblock_get_region_node(rgn),
|
|
rgn->flags);
|
|
} else if (rend > end) {
|
|
/*
|
|
* @rgn intersects from above. Split and redo the
|
|
* current region - the new bottom half.
|
|
*/
|
|
rgn->base = end;
|
|
rgn->size -= end - rbase;
|
|
type->total_size -= end - rbase;
|
|
memblock_insert_region(type, idx--, rbase, end - rbase,
|
|
memblock_get_region_node(rgn),
|
|
rgn->flags);
|
|
} else {
|
|
/* @rgn is fully contained, record it */
|
|
if (!*end_rgn)
|
|
*start_rgn = idx;
|
|
*end_rgn = idx + 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init_memblock memblock_remove_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = end_rgn - 1; i >= start_rgn; i--)
|
|
memblock_remove_region(type, i);
|
|
return 0;
|
|
}
|
|
|
|
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_remove_range(&memblock.memory, base, size);
|
|
}
|
|
|
|
/**
|
|
* memblock_free - free boot memory allocation
|
|
* @ptr: starting address of the boot memory allocation
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* Free boot memory block previously allocated by memblock_alloc_xx() API.
|
|
* The freeing memory will not be released to the buddy allocator.
|
|
*/
|
|
void __init_memblock memblock_free(void *ptr, size_t size)
|
|
{
|
|
if (ptr)
|
|
memblock_phys_free(__pa(ptr), size);
|
|
}
|
|
|
|
/**
|
|
* memblock_phys_free - free boot memory block
|
|
* @base: phys starting address of the boot memory block
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
|
|
* The freeing memory will not be released to the buddy allocator.
|
|
*/
|
|
int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
kmemleak_free_part_phys(base, size);
|
|
return memblock_remove_range(&memblock.reserved, base, size);
|
|
}
|
|
|
|
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* memblock_setclr_flag - set or clear flag for a memory region
|
|
* @type: memblock type to set/clear flag for
|
|
* @base: base address of the region
|
|
* @size: size of the region
|
|
* @set: set or clear the flag
|
|
* @flag: the flag to update
|
|
*
|
|
* This function isolates region [@base, @base + @size), and sets/clears flag
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size, int set, int flag)
|
|
{
|
|
int i, ret, start_rgn, end_rgn;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++) {
|
|
struct memblock_region *r = &type->regions[i];
|
|
|
|
if (set)
|
|
r->flags |= flag;
|
|
else
|
|
r->flags &= ~flag;
|
|
}
|
|
|
|
memblock_merge_regions(type, start_rgn, end_rgn);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
|
|
}
|
|
|
|
/**
|
|
* memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
if (!mirrored_kernelcore)
|
|
return 0;
|
|
|
|
system_has_some_mirror = true;
|
|
|
|
return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
|
|
* direct mapping of the physical memory. These regions will still be
|
|
* covered by the memory map. The struct page representing NOMAP memory
|
|
* frames in the memory map will be PageReserved()
|
|
*
|
|
* Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
|
|
* memblock, the caller must inform kmemleak to ignore that memory
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
|
|
}
|
|
|
|
/**
|
|
* memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
|
|
}
|
|
|
|
/**
|
|
* memblock_reserved_mark_noinit - Mark a reserved memory region with flag
|
|
* MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
|
|
* for this region.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* struct pages will not be initialized for reserved memory regions marked with
|
|
* %MEMBLOCK_RSRV_NOINIT.
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(&memblock.reserved, base, size, 1,
|
|
MEMBLOCK_RSRV_NOINIT);
|
|
}
|
|
|
|
static bool should_skip_region(struct memblock_type *type,
|
|
struct memblock_region *m,
|
|
int nid, int flags)
|
|
{
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
/* we never skip regions when iterating memblock.reserved or physmem */
|
|
if (type != memblock_memory)
|
|
return false;
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
|
return true;
|
|
|
|
/* skip hotpluggable memory regions if needed */
|
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
|
|
!(flags & MEMBLOCK_HOTPLUG))
|
|
return true;
|
|
|
|
/* if we want mirror memory skip non-mirror memory regions */
|
|
if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
|
|
return true;
|
|
|
|
/* skip nomap memory unless we were asked for it explicitly */
|
|
if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
|
|
return true;
|
|
|
|
/* skip driver-managed memory unless we were asked for it explicitly */
|
|
if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* __next_mem_range - next function for for_each_free_mem_range() etc.
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
|
* @flags: pick from blocks based on memory attributes
|
|
* @type_a: pointer to memblock_type from where the range is taken
|
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Find the first area from *@idx which matches @nid, fill the out
|
|
* parameters, and update *@idx for the next iteration. The lower 32bit of
|
|
* *@idx contains index into type_a and the upper 32bit indexes the
|
|
* areas before each region in type_b. For example, if type_b regions
|
|
* look like the following,
|
|
*
|
|
* 0:[0-16), 1:[32-48), 2:[128-130)
|
|
*
|
|
* The upper 32bit indexes the following regions.
|
|
*
|
|
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
|
|
*
|
|
* As both region arrays are sorted, the function advances the two indices
|
|
* in lockstep and returns each intersection.
|
|
*/
|
|
void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
|
|
struct memblock_type *type_a,
|
|
struct memblock_type *type_b, phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
int idx_a = *idx & 0xffffffff;
|
|
int idx_b = *idx >> 32;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES,
|
|
"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
for (; idx_a < type_a->cnt; idx_a++) {
|
|
struct memblock_region *m = &type_a->regions[idx_a];
|
|
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
if (should_skip_region(type_a, m, nid, flags))
|
|
continue;
|
|
|
|
if (!type_b) {
|
|
if (out_start)
|
|
*out_start = m_start;
|
|
if (out_end)
|
|
*out_end = m_end;
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
idx_a++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
|
|
/* scan areas before each reservation */
|
|
for (; idx_b < type_b->cnt + 1; idx_b++) {
|
|
struct memblock_region *r;
|
|
phys_addr_t r_start;
|
|
phys_addr_t r_end;
|
|
|
|
r = &type_b->regions[idx_b];
|
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
|
r_end = idx_b < type_b->cnt ?
|
|
r->base : PHYS_ADDR_MAX;
|
|
|
|
/*
|
|
* if idx_b advanced past idx_a,
|
|
* break out to advance idx_a
|
|
*/
|
|
if (r_start >= m_end)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_start < r_end) {
|
|
if (out_start)
|
|
*out_start =
|
|
max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
/*
|
|
* The region which ends first is
|
|
* advanced for the next iteration.
|
|
*/
|
|
if (m_end <= r_end)
|
|
idx_a++;
|
|
else
|
|
idx_b++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* __next_mem_range_rev - generic next function for for_each_*_range_rev()
|
|
*
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
|
* @flags: pick from blocks based on memory attributes
|
|
* @type_a: pointer to memblock_type from where the range is taken
|
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Finds the next range from type_a which is not marked as unsuitable
|
|
* in type_b.
|
|
*
|
|
* Reverse of __next_mem_range().
|
|
*/
|
|
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
|
|
enum memblock_flags flags,
|
|
struct memblock_type *type_a,
|
|
struct memblock_type *type_b,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
int idx_a = *idx & 0xffffffff;
|
|
int idx_b = *idx >> 32;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
if (*idx == (u64)ULLONG_MAX) {
|
|
idx_a = type_a->cnt - 1;
|
|
if (type_b != NULL)
|
|
idx_b = type_b->cnt;
|
|
else
|
|
idx_b = 0;
|
|
}
|
|
|
|
for (; idx_a >= 0; idx_a--) {
|
|
struct memblock_region *m = &type_a->regions[idx_a];
|
|
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
if (should_skip_region(type_a, m, nid, flags))
|
|
continue;
|
|
|
|
if (!type_b) {
|
|
if (out_start)
|
|
*out_start = m_start;
|
|
if (out_end)
|
|
*out_end = m_end;
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
idx_a--;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
|
|
/* scan areas before each reservation */
|
|
for (; idx_b >= 0; idx_b--) {
|
|
struct memblock_region *r;
|
|
phys_addr_t r_start;
|
|
phys_addr_t r_end;
|
|
|
|
r = &type_b->regions[idx_b];
|
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
|
r_end = idx_b < type_b->cnt ?
|
|
r->base : PHYS_ADDR_MAX;
|
|
/*
|
|
* if idx_b advanced past idx_a,
|
|
* break out to advance idx_a
|
|
*/
|
|
|
|
if (r_end <= m_start)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_end > r_start) {
|
|
if (out_start)
|
|
*out_start = max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
if (m_start >= r_start)
|
|
idx_a--;
|
|
else
|
|
idx_b--;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
/*
|
|
* Common iterator interface used to define for_each_mem_pfn_range().
|
|
*/
|
|
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
|
|
unsigned long *out_start_pfn,
|
|
unsigned long *out_end_pfn, int *out_nid)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
struct memblock_region *r;
|
|
int r_nid;
|
|
|
|
while (++*idx < type->cnt) {
|
|
r = &type->regions[*idx];
|
|
r_nid = memblock_get_region_node(r);
|
|
|
|
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
|
|
continue;
|
|
if (nid == MAX_NUMNODES || nid == r_nid)
|
|
break;
|
|
}
|
|
if (*idx >= type->cnt) {
|
|
*idx = -1;
|
|
return;
|
|
}
|
|
|
|
if (out_start_pfn)
|
|
*out_start_pfn = PFN_UP(r->base);
|
|
if (out_end_pfn)
|
|
*out_end_pfn = PFN_DOWN(r->base + r->size);
|
|
if (out_nid)
|
|
*out_nid = r_nid;
|
|
}
|
|
|
|
/**
|
|
* memblock_set_node - set node ID on memblock regions
|
|
* @base: base of area to set node ID for
|
|
* @size: size of area to set node ID for
|
|
* @type: memblock type to set node ID for
|
|
* @nid: node ID to set
|
|
*
|
|
* Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
|
|
* Regions which cross the area boundaries are split as necessary.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
|
|
struct memblock_type *type, int nid)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
memblock_set_region_node(&type->regions[i], nid);
|
|
|
|
memblock_merge_regions(type, start_rgn, end_rgn);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
/**
|
|
* __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
|
|
*
|
|
* @idx: pointer to u64 loop variable
|
|
* @zone: zone in which all of the memory blocks reside
|
|
* @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
|
|
* @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
|
|
*
|
|
* This function is meant to be a zone/pfn specific wrapper for the
|
|
* for_each_mem_range type iterators. Specifically they are used in the
|
|
* deferred memory init routines and as such we were duplicating much of
|
|
* this logic throughout the code. So instead of having it in multiple
|
|
* locations it seemed like it would make more sense to centralize this to
|
|
* one new iterator that does everything they need.
|
|
*/
|
|
void __init_memblock
|
|
__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
|
|
unsigned long *out_spfn, unsigned long *out_epfn)
|
|
{
|
|
int zone_nid = zone_to_nid(zone);
|
|
phys_addr_t spa, epa;
|
|
|
|
__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
|
|
&memblock.memory, &memblock.reserved,
|
|
&spa, &epa, NULL);
|
|
|
|
while (*idx != U64_MAX) {
|
|
unsigned long epfn = PFN_DOWN(epa);
|
|
unsigned long spfn = PFN_UP(spa);
|
|
|
|
/*
|
|
* Verify the end is at least past the start of the zone and
|
|
* that we have at least one PFN to initialize.
|
|
*/
|
|
if (zone->zone_start_pfn < epfn && spfn < epfn) {
|
|
/* if we went too far just stop searching */
|
|
if (zone_end_pfn(zone) <= spfn) {
|
|
*idx = U64_MAX;
|
|
break;
|
|
}
|
|
|
|
if (out_spfn)
|
|
*out_spfn = max(zone->zone_start_pfn, spfn);
|
|
if (out_epfn)
|
|
*out_epfn = min(zone_end_pfn(zone), epfn);
|
|
|
|
return;
|
|
}
|
|
|
|
__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
|
|
&memblock.memory, &memblock.reserved,
|
|
&spa, &epa, NULL);
|
|
}
|
|
|
|
/* signal end of iteration */
|
|
if (out_spfn)
|
|
*out_spfn = ULONG_MAX;
|
|
if (out_epfn)
|
|
*out_epfn = 0;
|
|
}
|
|
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
|
|
|
/**
|
|
* memblock_alloc_range_nid - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @start: the lower bound of the memory region to allocate (phys address)
|
|
* @end: the upper bound of the memory region to allocate (phys address)
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @exact_nid: control the allocation fall back to other nodes
|
|
*
|
|
* The allocation is performed from memory region limited by
|
|
* memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
|
|
*
|
|
* If the specified node can not hold the requested memory and @exact_nid
|
|
* is false, the allocation falls back to any node in the system.
|
|
*
|
|
* For systems with memory mirroring, the allocation is attempted first
|
|
* from the regions with mirroring enabled and then retried from any
|
|
* memory region.
|
|
*
|
|
* In addition, function using kmemleak_alloc_phys for allocated boot
|
|
* memory block, it is never reported as leaks.
|
|
*
|
|
* Return:
|
|
* Physical address of allocated memory block on success, %0 on failure.
|
|
*/
|
|
phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start,
|
|
phys_addr_t end, int nid,
|
|
bool exact_nid)
|
|
{
|
|
enum memblock_flags flags = choose_memblock_flags();
|
|
phys_addr_t found;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
if (!align) {
|
|
/* Can't use WARNs this early in boot on powerpc */
|
|
dump_stack();
|
|
align = SMP_CACHE_BYTES;
|
|
}
|
|
|
|
again:
|
|
found = memblock_find_in_range_node(size, align, start, end, nid,
|
|
flags);
|
|
if (found && !memblock_reserve(found, size))
|
|
goto done;
|
|
|
|
if (nid != NUMA_NO_NODE && !exact_nid) {
|
|
found = memblock_find_in_range_node(size, align, start,
|
|
end, NUMA_NO_NODE,
|
|
flags);
|
|
if (found && !memblock_reserve(found, size))
|
|
goto done;
|
|
}
|
|
|
|
if (flags & MEMBLOCK_MIRROR) {
|
|
flags &= ~MEMBLOCK_MIRROR;
|
|
pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
|
|
&size);
|
|
goto again;
|
|
}
|
|
|
|
return 0;
|
|
|
|
done:
|
|
/*
|
|
* Skip kmemleak for those places like kasan_init() and
|
|
* early_pgtable_alloc() due to high volume.
|
|
*/
|
|
if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
|
|
/*
|
|
* Memblock allocated blocks are never reported as
|
|
* leaks. This is because many of these blocks are
|
|
* only referred via the physical address which is
|
|
* not looked up by kmemleak.
|
|
*/
|
|
kmemleak_alloc_phys(found, size, 0);
|
|
|
|
/*
|
|
* Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
|
|
* require memory to be accepted before it can be used by the
|
|
* guest.
|
|
*
|
|
* Accept the memory of the allocated buffer.
|
|
*/
|
|
accept_memory(found, found + size);
|
|
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* memblock_phys_alloc_range - allocate a memory block inside specified range
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @start: the lower bound of the memory region to allocate (physical address)
|
|
* @end: the upper bound of the memory region to allocate (physical address)
|
|
*
|
|
* Allocate @size bytes in the between @start and @end.
|
|
*
|
|
* Return: physical address of the allocated memory block on success,
|
|
* %0 on failure.
|
|
*/
|
|
phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
|
|
phys_addr_t align,
|
|
phys_addr_t start,
|
|
phys_addr_t end)
|
|
{
|
|
memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
|
|
__func__, (u64)size, (u64)align, &start, &end,
|
|
(void *)_RET_IP_);
|
|
return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Allocates memory block from the specified NUMA node. If the node
|
|
* has no available memory, attempts to allocated from any node in the
|
|
* system.
|
|
*
|
|
* Return: physical address of the allocated memory block on success,
|
|
* %0 on failure.
|
|
*/
|
|
phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
return memblock_alloc_range_nid(size, align, 0,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_internal - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region to allocate (phys address)
|
|
* @max_addr: the upper bound of the memory region to allocate (phys address)
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @exact_nid: control the allocation fall back to other nodes
|
|
*
|
|
* Allocates memory block using memblock_alloc_range_nid() and
|
|
* converts the returned physical address to virtual.
|
|
*
|
|
* The @min_addr limit is dropped if it can not be satisfied and the allocation
|
|
* will fall back to memory below @min_addr. Other constraints, such
|
|
* as node and mirrored memory will be handled again in
|
|
* memblock_alloc_range_nid().
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
static void * __init memblock_alloc_internal(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid, bool exact_nid)
|
|
{
|
|
phys_addr_t alloc;
|
|
|
|
/*
|
|
* Detect any accidental use of these APIs after slab is ready, as at
|
|
* this moment memblock may be deinitialized already and its
|
|
* internal data may be destroyed (after execution of memblock_free_all)
|
|
*/
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc_node(size, GFP_NOWAIT, nid);
|
|
|
|
if (max_addr > memblock.current_limit)
|
|
max_addr = memblock.current_limit;
|
|
|
|
alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
|
|
exact_nid);
|
|
|
|
/* retry allocation without lower limit */
|
|
if (!alloc && min_addr)
|
|
alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
|
|
exact_nid);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
return phys_to_virt(alloc);
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
|
|
* without zeroing memory
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public function, provides additional debug information (including caller
|
|
* info), if enabled. Does not zero allocated memory.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_alloc_exact_nid_raw(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
|
&max_addr, (void *)_RET_IP_);
|
|
|
|
return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
|
|
true);
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
|
|
* memory and without panicking
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public function, provides additional debug information (including caller
|
|
* info), if enabled. Does not zero allocated memory, does not panic if request
|
|
* cannot be satisfied.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_alloc_try_nid_raw(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
|
&max_addr, (void *)_RET_IP_);
|
|
|
|
return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_try_nid - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public function, provides additional debug information (including caller
|
|
* info), if enabled. This function zeroes the allocated memory.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_alloc_try_nid(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
void *ptr;
|
|
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
|
&max_addr, (void *)_RET_IP_);
|
|
ptr = memblock_alloc_internal(size, align,
|
|
min_addr, max_addr, nid, false);
|
|
if (ptr)
|
|
memset(ptr, 0, size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* memblock_free_late - free pages directly to buddy allocator
|
|
* @base: phys starting address of the boot memory block
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* This is only useful when the memblock allocator has already been torn
|
|
* down, but we are still initializing the system. Pages are released directly
|
|
* to the buddy allocator.
|
|
*/
|
|
void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t cursor, end;
|
|
|
|
end = base + size - 1;
|
|
memblock_dbg("%s: [%pa-%pa] %pS\n",
|
|
__func__, &base, &end, (void *)_RET_IP_);
|
|
kmemleak_free_part_phys(base, size);
|
|
cursor = PFN_UP(base);
|
|
end = PFN_DOWN(base + size);
|
|
|
|
for (; cursor < end; cursor++) {
|
|
memblock_free_pages(pfn_to_page(cursor), cursor, 0);
|
|
totalram_pages_inc();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remaining API functions
|
|
*/
|
|
|
|
phys_addr_t __init_memblock memblock_phys_mem_size(void)
|
|
{
|
|
return memblock.memory.total_size;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_reserved_size(void)
|
|
{
|
|
return memblock.reserved.total_size;
|
|
}
|
|
|
|
/* lowest address */
|
|
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
|
|
{
|
|
return memblock.memory.regions[0].base;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
|
|
{
|
|
int idx = memblock.memory.cnt - 1;
|
|
|
|
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
|
|
}
|
|
|
|
static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr = PHYS_ADDR_MAX;
|
|
struct memblock_region *r;
|
|
|
|
/*
|
|
* translate the memory @limit size into the max address within one of
|
|
* the memory memblock regions, if the @limit exceeds the total size
|
|
* of those regions, max_addr will keep original value PHYS_ADDR_MAX
|
|
*/
|
|
for_each_mem_region(r) {
|
|
if (limit <= r->size) {
|
|
max_addr = r->base + limit;
|
|
break;
|
|
}
|
|
limit -= r->size;
|
|
}
|
|
|
|
return max_addr;
|
|
}
|
|
|
|
void __init memblock_enforce_memory_limit(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr;
|
|
|
|
if (!limit)
|
|
return;
|
|
|
|
max_addr = __find_max_addr(limit);
|
|
|
|
/* @limit exceeds the total size of the memory, do nothing */
|
|
if (max_addr == PHYS_ADDR_MAX)
|
|
return;
|
|
|
|
/* truncate both memory and reserved regions */
|
|
memblock_remove_range(&memblock.memory, max_addr,
|
|
PHYS_ADDR_MAX);
|
|
memblock_remove_range(&memblock.reserved, max_addr,
|
|
PHYS_ADDR_MAX);
|
|
}
|
|
|
|
void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
if (!memblock_memory->total_size) {
|
|
pr_warn("%s: No memory registered yet\n", __func__);
|
|
return;
|
|
}
|
|
|
|
ret = memblock_isolate_range(&memblock.memory, base, size,
|
|
&start_rgn, &end_rgn);
|
|
if (ret)
|
|
return;
|
|
|
|
/* remove all the MAP regions */
|
|
for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
|
|
if (!memblock_is_nomap(&memblock.memory.regions[i]))
|
|
memblock_remove_region(&memblock.memory, i);
|
|
|
|
for (i = start_rgn - 1; i >= 0; i--)
|
|
if (!memblock_is_nomap(&memblock.memory.regions[i]))
|
|
memblock_remove_region(&memblock.memory, i);
|
|
|
|
/* truncate the reserved regions */
|
|
memblock_remove_range(&memblock.reserved, 0, base);
|
|
memblock_remove_range(&memblock.reserved,
|
|
base + size, PHYS_ADDR_MAX);
|
|
}
|
|
|
|
void __init memblock_mem_limit_remove_map(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr;
|
|
|
|
if (!limit)
|
|
return;
|
|
|
|
max_addr = __find_max_addr(limit);
|
|
|
|
/* @limit exceeds the total size of the memory, do nothing */
|
|
if (max_addr == PHYS_ADDR_MAX)
|
|
return;
|
|
|
|
memblock_cap_memory_range(0, max_addr);
|
|
}
|
|
|
|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
|
|
{
|
|
unsigned int left = 0, right = type->cnt;
|
|
|
|
do {
|
|
unsigned int mid = (right + left) / 2;
|
|
|
|
if (addr < type->regions[mid].base)
|
|
right = mid;
|
|
else if (addr >= (type->regions[mid].base +
|
|
type->regions[mid].size))
|
|
left = mid + 1;
|
|
else
|
|
return mid;
|
|
} while (left < right);
|
|
return -1;
|
|
}
|
|
|
|
bool __init_memblock memblock_is_reserved(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.reserved, addr) != -1;
|
|
}
|
|
|
|
bool __init_memblock memblock_is_memory(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.memory, addr) != -1;
|
|
}
|
|
|
|
bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
|
|
{
|
|
int i = memblock_search(&memblock.memory, addr);
|
|
|
|
if (i == -1)
|
|
return false;
|
|
return !memblock_is_nomap(&memblock.memory.regions[i]);
|
|
}
|
|
|
|
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int mid = memblock_search(type, PFN_PHYS(pfn));
|
|
|
|
if (mid == -1)
|
|
return -1;
|
|
|
|
*start_pfn = PFN_DOWN(type->regions[mid].base);
|
|
*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
|
|
|
|
return memblock_get_region_node(&type->regions[mid]);
|
|
}
|
|
|
|
/**
|
|
* memblock_is_region_memory - check if a region is a subset of memory
|
|
* @base: base of region to check
|
|
* @size: size of region to check
|
|
*
|
|
* Check if the region [@base, @base + @size) is a subset of a memory block.
|
|
*
|
|
* Return:
|
|
* 0 if false, non-zero if true
|
|
*/
|
|
bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int idx = memblock_search(&memblock.memory, base);
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
|
|
if (idx == -1)
|
|
return false;
|
|
return (memblock.memory.regions[idx].base +
|
|
memblock.memory.regions[idx].size) >= end;
|
|
}
|
|
|
|
/**
|
|
* memblock_is_region_reserved - check if a region intersects reserved memory
|
|
* @base: base of region to check
|
|
* @size: size of region to check
|
|
*
|
|
* Check if the region [@base, @base + @size) intersects a reserved
|
|
* memory block.
|
|
*
|
|
* Return:
|
|
* True if they intersect, false if not.
|
|
*/
|
|
bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_overlaps_region(&memblock.reserved, base, size);
|
|
}
|
|
|
|
void __init_memblock memblock_trim_memory(phys_addr_t align)
|
|
{
|
|
phys_addr_t start, end, orig_start, orig_end;
|
|
struct memblock_region *r;
|
|
|
|
for_each_mem_region(r) {
|
|
orig_start = r->base;
|
|
orig_end = r->base + r->size;
|
|
start = round_up(orig_start, align);
|
|
end = round_down(orig_end, align);
|
|
|
|
if (start == orig_start && end == orig_end)
|
|
continue;
|
|
|
|
if (start < end) {
|
|
r->base = start;
|
|
r->size = end - start;
|
|
} else {
|
|
memblock_remove_region(&memblock.memory,
|
|
r - memblock.memory.regions);
|
|
r--;
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
|
|
{
|
|
memblock.current_limit = limit;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_get_current_limit(void)
|
|
{
|
|
return memblock.current_limit;
|
|
}
|
|
|
|
static void __init_memblock memblock_dump(struct memblock_type *type)
|
|
{
|
|
phys_addr_t base, end, size;
|
|
enum memblock_flags flags;
|
|
int idx;
|
|
struct memblock_region *rgn;
|
|
|
|
pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
|
|
|
|
for_each_memblock_type(idx, type, rgn) {
|
|
char nid_buf[32] = "";
|
|
|
|
base = rgn->base;
|
|
size = rgn->size;
|
|
end = base + size - 1;
|
|
flags = rgn->flags;
|
|
#ifdef CONFIG_NUMA
|
|
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
|
|
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
|
|
memblock_get_region_node(rgn));
|
|
#endif
|
|
pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
|
|
type->name, idx, &base, &end, &size, nid_buf, flags);
|
|
}
|
|
}
|
|
|
|
static void __init_memblock __memblock_dump_all(void)
|
|
{
|
|
pr_info("MEMBLOCK configuration:\n");
|
|
pr_info(" memory size = %pa reserved size = %pa\n",
|
|
&memblock.memory.total_size,
|
|
&memblock.reserved.total_size);
|
|
|
|
memblock_dump(&memblock.memory);
|
|
memblock_dump(&memblock.reserved);
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
memblock_dump(&physmem);
|
|
#endif
|
|
}
|
|
|
|
void __init_memblock memblock_dump_all(void)
|
|
{
|
|
if (memblock_debug)
|
|
__memblock_dump_all();
|
|
}
|
|
|
|
void __init memblock_allow_resize(void)
|
|
{
|
|
memblock_can_resize = 1;
|
|
}
|
|
|
|
static int __init early_memblock(char *p)
|
|
{
|
|
if (p && strstr(p, "debug"))
|
|
memblock_debug = 1;
|
|
return 0;
|
|
}
|
|
early_param("memblock", early_memblock);
|
|
|
|
static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct page *start_pg, *end_pg;
|
|
phys_addr_t pg, pgend;
|
|
|
|
/*
|
|
* Convert start_pfn/end_pfn to a struct page pointer.
|
|
*/
|
|
start_pg = pfn_to_page(start_pfn - 1) + 1;
|
|
end_pg = pfn_to_page(end_pfn - 1) + 1;
|
|
|
|
/*
|
|
* Convert to physical addresses, and round start upwards and end
|
|
* downwards.
|
|
*/
|
|
pg = PAGE_ALIGN(__pa(start_pg));
|
|
pgend = __pa(end_pg) & PAGE_MASK;
|
|
|
|
/*
|
|
* If there are free pages between these, free the section of the
|
|
* memmap array.
|
|
*/
|
|
if (pg < pgend)
|
|
memblock_phys_free(pg, pgend - pg);
|
|
}
|
|
|
|
/*
|
|
* The mem_map array can get very big. Free the unused area of the memory map.
|
|
*/
|
|
static void __init free_unused_memmap(void)
|
|
{
|
|
unsigned long start, end, prev_end = 0;
|
|
int i;
|
|
|
|
if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
|
|
IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
|
|
return;
|
|
|
|
/*
|
|
* This relies on each bank being in address order.
|
|
* The banks are sorted previously in bootmem_init().
|
|
*/
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
|
|
#ifdef CONFIG_SPARSEMEM
|
|
/*
|
|
* Take care not to free memmap entries that don't exist
|
|
* due to SPARSEMEM sections which aren't present.
|
|
*/
|
|
start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
|
|
#endif
|
|
/*
|
|
* Align down here since many operations in VM subsystem
|
|
* presume that there are no holes in the memory map inside
|
|
* a pageblock
|
|
*/
|
|
start = pageblock_start_pfn(start);
|
|
|
|
/*
|
|
* If we had a previous bank, and there is a space
|
|
* between the current bank and the previous, free it.
|
|
*/
|
|
if (prev_end && prev_end < start)
|
|
free_memmap(prev_end, start);
|
|
|
|
/*
|
|
* Align up here since many operations in VM subsystem
|
|
* presume that there are no holes in the memory map inside
|
|
* a pageblock
|
|
*/
|
|
prev_end = pageblock_align(end);
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
|
|
prev_end = pageblock_align(end);
|
|
free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __init __free_pages_memory(unsigned long start, unsigned long end)
|
|
{
|
|
int order;
|
|
|
|
while (start < end) {
|
|
/*
|
|
* Free the pages in the largest chunks alignment allows.
|
|
*
|
|
* __ffs() behaviour is undefined for 0. start == 0 is
|
|
* MAX_ORDER-aligned, set order to MAX_ORDER for the case.
|
|
*/
|
|
if (start)
|
|
order = min_t(int, MAX_ORDER, __ffs(start));
|
|
else
|
|
order = MAX_ORDER;
|
|
|
|
while (start + (1UL << order) > end)
|
|
order--;
|
|
|
|
memblock_free_pages(pfn_to_page(start), start, order);
|
|
|
|
start += (1UL << order);
|
|
}
|
|
}
|
|
|
|
static unsigned long __init __free_memory_core(phys_addr_t start,
|
|
phys_addr_t end)
|
|
{
|
|
unsigned long start_pfn = PFN_UP(start);
|
|
unsigned long end_pfn = min_t(unsigned long,
|
|
PFN_DOWN(end), max_low_pfn);
|
|
|
|
if (start_pfn >= end_pfn)
|
|
return 0;
|
|
|
|
__free_pages_memory(start_pfn, end_pfn);
|
|
|
|
return end_pfn - start_pfn;
|
|
}
|
|
|
|
static void __init memmap_init_reserved_pages(void)
|
|
{
|
|
struct memblock_region *region;
|
|
phys_addr_t start, end;
|
|
int nid;
|
|
|
|
/*
|
|
* set nid on all reserved pages and also treat struct
|
|
* pages for the NOMAP regions as PageReserved
|
|
*/
|
|
for_each_mem_region(region) {
|
|
nid = memblock_get_region_node(region);
|
|
start = region->base;
|
|
end = start + region->size;
|
|
|
|
if (memblock_is_nomap(region))
|
|
reserve_bootmem_region(start, end, nid);
|
|
|
|
memblock_set_node(start, end, &memblock.reserved, nid);
|
|
}
|
|
|
|
/*
|
|
* initialize struct pages for reserved regions that don't have
|
|
* the MEMBLOCK_RSRV_NOINIT flag set
|
|
*/
|
|
for_each_reserved_mem_region(region) {
|
|
if (!memblock_is_reserved_noinit(region)) {
|
|
nid = memblock_get_region_node(region);
|
|
start = region->base;
|
|
end = start + region->size;
|
|
|
|
reserve_bootmem_region(start, end, nid);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned long __init free_low_memory_core_early(void)
|
|
{
|
|
unsigned long count = 0;
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
memblock_clear_hotplug(0, -1);
|
|
|
|
memmap_init_reserved_pages();
|
|
|
|
/*
|
|
* We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
|
|
* because in some case like Node0 doesn't have RAM installed
|
|
* low ram will be on Node1
|
|
*/
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
|
|
NULL)
|
|
count += __free_memory_core(start, end);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int reset_managed_pages_done __initdata;
|
|
|
|
static void __init reset_node_managed_pages(pg_data_t *pgdat)
|
|
{
|
|
struct zone *z;
|
|
|
|
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
|
|
atomic_long_set(&z->managed_pages, 0);
|
|
}
|
|
|
|
void __init reset_all_zones_managed_pages(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
|
|
if (reset_managed_pages_done)
|
|
return;
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
reset_node_managed_pages(pgdat);
|
|
|
|
reset_managed_pages_done = 1;
|
|
}
|
|
|
|
/**
|
|
* memblock_free_all - release free pages to the buddy allocator
|
|
*/
|
|
void __init memblock_free_all(void)
|
|
{
|
|
unsigned long pages;
|
|
|
|
free_unused_memmap();
|
|
reset_all_zones_managed_pages();
|
|
|
|
pages = free_low_memory_core_early();
|
|
totalram_pages_add(pages);
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
|
|
static const char * const flagname[] = {
|
|
[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
|
|
[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
|
|
[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
|
|
[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
|
|
};
|
|
|
|
static int memblock_debug_show(struct seq_file *m, void *private)
|
|
{
|
|
struct memblock_type *type = m->private;
|
|
struct memblock_region *reg;
|
|
int i, j, nid;
|
|
unsigned int count = ARRAY_SIZE(flagname);
|
|
phys_addr_t end;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
reg = &type->regions[i];
|
|
end = reg->base + reg->size - 1;
|
|
nid = memblock_get_region_node(reg);
|
|
|
|
seq_printf(m, "%4d: ", i);
|
|
seq_printf(m, "%pa..%pa ", ®->base, &end);
|
|
if (nid != MAX_NUMNODES)
|
|
seq_printf(m, "%4d ", nid);
|
|
else
|
|
seq_printf(m, "%4c ", 'x');
|
|
if (reg->flags) {
|
|
for (j = 0; j < count; j++) {
|
|
if (reg->flags & (1U << j)) {
|
|
seq_printf(m, "%s\n", flagname[j]);
|
|
break;
|
|
}
|
|
}
|
|
if (j == count)
|
|
seq_printf(m, "%s\n", "UNKNOWN");
|
|
} else {
|
|
seq_printf(m, "%s\n", "NONE");
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(memblock_debug);
|
|
|
|
static int __init memblock_init_debugfs(void)
|
|
{
|
|
struct dentry *root = debugfs_create_dir("memblock", NULL);
|
|
|
|
debugfs_create_file("memory", 0444, root,
|
|
&memblock.memory, &memblock_debug_fops);
|
|
debugfs_create_file("reserved", 0444, root,
|
|
&memblock.reserved, &memblock_debug_fops);
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
debugfs_create_file("physmem", 0444, root, &physmem,
|
|
&memblock_debug_fops);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
__initcall(memblock_init_debugfs);
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|