mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 08:31:55 +00:00
1ec0a8aba5
As skcipher spawns may be of the type lskcipher, only the common fields may be accessed. This was already the case but use the correct helpers to make this more obvious. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
430 lines
10 KiB
C
430 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* LRW: as defined by Cyril Guyot in
|
|
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
|
|
*
|
|
* Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
|
|
*
|
|
* Based on ecb.c
|
|
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*/
|
|
/* This implementation is checked against the test vectors in the above
|
|
* document and by a test vector provided by Ken Buchanan at
|
|
* https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
|
|
*
|
|
* The test vectors are included in the testing module tcrypt.[ch] */
|
|
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <crypto/b128ops.h>
|
|
#include <crypto/gf128mul.h>
|
|
|
|
#define LRW_BLOCK_SIZE 16
|
|
|
|
struct lrw_tfm_ctx {
|
|
struct crypto_skcipher *child;
|
|
|
|
/*
|
|
* optimizes multiplying a random (non incrementing, as at the
|
|
* start of a new sector) value with key2, we could also have
|
|
* used 4k optimization tables or no optimization at all. In the
|
|
* latter case we would have to store key2 here
|
|
*/
|
|
struct gf128mul_64k *table;
|
|
|
|
/*
|
|
* stores:
|
|
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
|
|
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
|
|
* key2*{ 0,0,...1,1,1,1,1 }, etc
|
|
* needed for optimized multiplication of incrementing values
|
|
* with key2
|
|
*/
|
|
be128 mulinc[128];
|
|
};
|
|
|
|
struct lrw_request_ctx {
|
|
be128 t;
|
|
struct skcipher_request subreq;
|
|
};
|
|
|
|
static inline void lrw_setbit128_bbe(void *b, int bit)
|
|
{
|
|
__set_bit(bit ^ (0x80 -
|
|
#ifdef __BIG_ENDIAN
|
|
BITS_PER_LONG
|
|
#else
|
|
BITS_PER_BYTE
|
|
#endif
|
|
), b);
|
|
}
|
|
|
|
static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
|
|
struct crypto_skcipher *child = ctx->child;
|
|
int err, bsize = LRW_BLOCK_SIZE;
|
|
const u8 *tweak = key + keylen - bsize;
|
|
be128 tmp = { 0 };
|
|
int i;
|
|
|
|
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
|
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
err = crypto_skcipher_setkey(child, key, keylen - bsize);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ctx->table)
|
|
gf128mul_free_64k(ctx->table);
|
|
|
|
/* initialize multiplication table for Key2 */
|
|
ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
|
|
if (!ctx->table)
|
|
return -ENOMEM;
|
|
|
|
/* initialize optimization table */
|
|
for (i = 0; i < 128; i++) {
|
|
lrw_setbit128_bbe(&tmp, i);
|
|
ctx->mulinc[i] = tmp;
|
|
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of trailing '1' bits in the words of the counter, which is
|
|
* represented by 4 32-bit words, arranged from least to most significant.
|
|
* At the same time, increments the counter by one.
|
|
*
|
|
* For example:
|
|
*
|
|
* u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
|
|
* int i = lrw_next_index(&counter);
|
|
* // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
|
|
*/
|
|
static int lrw_next_index(u32 *counter)
|
|
{
|
|
int i, res = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (counter[i] + 1 != 0)
|
|
return res + ffz(counter[i]++);
|
|
|
|
counter[i] = 0;
|
|
res += 32;
|
|
}
|
|
|
|
/*
|
|
* If we get here, then x == 128 and we are incrementing the counter
|
|
* from all ones to all zeros. This means we must return index 127, i.e.
|
|
* the one corresponding to key2*{ 1,...,1 }.
|
|
*/
|
|
return 127;
|
|
}
|
|
|
|
/*
|
|
* We compute the tweak masks twice (both before and after the ECB encryption or
|
|
* decryption) to avoid having to allocate a temporary buffer and/or make
|
|
* mutliple calls to the 'ecb(..)' instance, which usually would be slower than
|
|
* just doing the lrw_next_index() calls again.
|
|
*/
|
|
static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
|
|
{
|
|
const int bs = LRW_BLOCK_SIZE;
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
|
|
be128 t = rctx->t;
|
|
struct skcipher_walk w;
|
|
__be32 *iv;
|
|
u32 counter[4];
|
|
int err;
|
|
|
|
if (second_pass) {
|
|
req = &rctx->subreq;
|
|
/* set to our TFM to enforce correct alignment: */
|
|
skcipher_request_set_tfm(req, tfm);
|
|
}
|
|
|
|
err = skcipher_walk_virt(&w, req, false);
|
|
if (err)
|
|
return err;
|
|
|
|
iv = (__be32 *)w.iv;
|
|
counter[0] = be32_to_cpu(iv[3]);
|
|
counter[1] = be32_to_cpu(iv[2]);
|
|
counter[2] = be32_to_cpu(iv[1]);
|
|
counter[3] = be32_to_cpu(iv[0]);
|
|
|
|
while (w.nbytes) {
|
|
unsigned int avail = w.nbytes;
|
|
be128 *wsrc;
|
|
be128 *wdst;
|
|
|
|
wsrc = w.src.virt.addr;
|
|
wdst = w.dst.virt.addr;
|
|
|
|
do {
|
|
be128_xor(wdst++, &t, wsrc++);
|
|
|
|
/* T <- I*Key2, using the optimization
|
|
* discussed in the specification */
|
|
be128_xor(&t, &t,
|
|
&ctx->mulinc[lrw_next_index(counter)]);
|
|
} while ((avail -= bs) >= bs);
|
|
|
|
if (second_pass && w.nbytes == w.total) {
|
|
iv[0] = cpu_to_be32(counter[3]);
|
|
iv[1] = cpu_to_be32(counter[2]);
|
|
iv[2] = cpu_to_be32(counter[1]);
|
|
iv[3] = cpu_to_be32(counter[0]);
|
|
}
|
|
|
|
err = skcipher_walk_done(&w, avail);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int lrw_xor_tweak_pre(struct skcipher_request *req)
|
|
{
|
|
return lrw_xor_tweak(req, false);
|
|
}
|
|
|
|
static int lrw_xor_tweak_post(struct skcipher_request *req)
|
|
{
|
|
return lrw_xor_tweak(req, true);
|
|
}
|
|
|
|
static void lrw_crypt_done(void *data, int err)
|
|
{
|
|
struct skcipher_request *req = data;
|
|
|
|
if (!err) {
|
|
struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
|
|
|
|
rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
err = lrw_xor_tweak_post(req);
|
|
}
|
|
|
|
skcipher_request_complete(req, err);
|
|
}
|
|
|
|
static void lrw_init_crypt(struct skcipher_request *req)
|
|
{
|
|
const struct lrw_tfm_ctx *ctx =
|
|
crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
|
|
struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
|
|
struct skcipher_request *subreq = &rctx->subreq;
|
|
|
|
skcipher_request_set_tfm(subreq, ctx->child);
|
|
skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
|
|
req);
|
|
/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
|
|
skcipher_request_set_crypt(subreq, req->dst, req->dst,
|
|
req->cryptlen, req->iv);
|
|
|
|
/* calculate first value of T */
|
|
memcpy(&rctx->t, req->iv, sizeof(rctx->t));
|
|
|
|
/* T <- I*Key2 */
|
|
gf128mul_64k_bbe(&rctx->t, ctx->table);
|
|
}
|
|
|
|
static int lrw_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
|
|
struct skcipher_request *subreq = &rctx->subreq;
|
|
|
|
lrw_init_crypt(req);
|
|
return lrw_xor_tweak_pre(req) ?:
|
|
crypto_skcipher_encrypt(subreq) ?:
|
|
lrw_xor_tweak_post(req);
|
|
}
|
|
|
|
static int lrw_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
|
|
struct skcipher_request *subreq = &rctx->subreq;
|
|
|
|
lrw_init_crypt(req);
|
|
return lrw_xor_tweak_pre(req) ?:
|
|
crypto_skcipher_decrypt(subreq) ?:
|
|
lrw_xor_tweak_post(req);
|
|
}
|
|
|
|
static int lrw_init_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
|
|
struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
|
|
struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct crypto_skcipher *cipher;
|
|
|
|
cipher = crypto_spawn_skcipher(spawn);
|
|
if (IS_ERR(cipher))
|
|
return PTR_ERR(cipher);
|
|
|
|
ctx->child = cipher;
|
|
|
|
crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
|
|
sizeof(struct lrw_request_ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lrw_exit_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
if (ctx->table)
|
|
gf128mul_free_64k(ctx->table);
|
|
crypto_free_skcipher(ctx->child);
|
|
}
|
|
|
|
static void lrw_free_instance(struct skcipher_instance *inst)
|
|
{
|
|
crypto_drop_skcipher(skcipher_instance_ctx(inst));
|
|
kfree(inst);
|
|
}
|
|
|
|
static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
{
|
|
struct crypto_skcipher_spawn *spawn;
|
|
struct skcipher_alg_common *alg;
|
|
struct skcipher_instance *inst;
|
|
const char *cipher_name;
|
|
char ecb_name[CRYPTO_MAX_ALG_NAME];
|
|
u32 mask;
|
|
int err;
|
|
|
|
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
|
|
if (err)
|
|
return err;
|
|
|
|
cipher_name = crypto_attr_alg_name(tb[1]);
|
|
if (IS_ERR(cipher_name))
|
|
return PTR_ERR(cipher_name);
|
|
|
|
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
|
|
if (!inst)
|
|
return -ENOMEM;
|
|
|
|
spawn = skcipher_instance_ctx(inst);
|
|
|
|
err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
|
|
cipher_name, 0, mask);
|
|
if (err == -ENOENT) {
|
|
err = -ENAMETOOLONG;
|
|
if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
|
|
cipher_name) >= CRYPTO_MAX_ALG_NAME)
|
|
goto err_free_inst;
|
|
|
|
err = crypto_grab_skcipher(spawn,
|
|
skcipher_crypto_instance(inst),
|
|
ecb_name, 0, mask);
|
|
}
|
|
|
|
if (err)
|
|
goto err_free_inst;
|
|
|
|
alg = crypto_spawn_skcipher_alg_common(spawn);
|
|
|
|
err = -EINVAL;
|
|
if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
|
|
goto err_free_inst;
|
|
|
|
if (alg->ivsize)
|
|
goto err_free_inst;
|
|
|
|
err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
|
|
&alg->base);
|
|
if (err)
|
|
goto err_free_inst;
|
|
|
|
err = -EINVAL;
|
|
cipher_name = alg->base.cra_name;
|
|
|
|
/* Alas we screwed up the naming so we have to mangle the
|
|
* cipher name.
|
|
*/
|
|
if (!strncmp(cipher_name, "ecb(", 4)) {
|
|
int len;
|
|
|
|
len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
|
|
if (len < 2)
|
|
goto err_free_inst;
|
|
|
|
if (ecb_name[len - 1] != ')')
|
|
goto err_free_inst;
|
|
|
|
ecb_name[len - 1] = 0;
|
|
|
|
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
|
|
"lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
|
|
err = -ENAMETOOLONG;
|
|
goto err_free_inst;
|
|
}
|
|
} else
|
|
goto err_free_inst;
|
|
|
|
inst->alg.base.cra_priority = alg->base.cra_priority;
|
|
inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
|
|
inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
|
|
(__alignof__(be128) - 1);
|
|
|
|
inst->alg.ivsize = LRW_BLOCK_SIZE;
|
|
inst->alg.min_keysize = alg->min_keysize + LRW_BLOCK_SIZE;
|
|
inst->alg.max_keysize = alg->max_keysize + LRW_BLOCK_SIZE;
|
|
|
|
inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
|
|
|
|
inst->alg.init = lrw_init_tfm;
|
|
inst->alg.exit = lrw_exit_tfm;
|
|
|
|
inst->alg.setkey = lrw_setkey;
|
|
inst->alg.encrypt = lrw_encrypt;
|
|
inst->alg.decrypt = lrw_decrypt;
|
|
|
|
inst->free = lrw_free_instance;
|
|
|
|
err = skcipher_register_instance(tmpl, inst);
|
|
if (err) {
|
|
err_free_inst:
|
|
lrw_free_instance(inst);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct crypto_template lrw_tmpl = {
|
|
.name = "lrw",
|
|
.create = lrw_create,
|
|
.module = THIS_MODULE,
|
|
};
|
|
|
|
static int __init lrw_module_init(void)
|
|
{
|
|
return crypto_register_template(&lrw_tmpl);
|
|
}
|
|
|
|
static void __exit lrw_module_exit(void)
|
|
{
|
|
crypto_unregister_template(&lrw_tmpl);
|
|
}
|
|
|
|
subsys_initcall(lrw_module_init);
|
|
module_exit(lrw_module_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("LRW block cipher mode");
|
|
MODULE_ALIAS_CRYPTO("lrw");
|
|
MODULE_SOFTDEP("pre: ecb");
|