linux/kernel/scftorture.c
Paul E. McKenney 4a71be9387 scftorture: Pause testing after memory-allocation failure
The scftorture test can quickly execute a large number of calls to no-wait
smp_call_function(), each of which holds a block of memory until the
corresponding handler is invoked.  Especially when the longwait module
parameter is specified, this can chew up an arbitrarily large amount
of memory.  This commit therefore blocks after each memory-allocation
failure, with the duration a function of longwait.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:02:57 -07:00

667 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Torture test for smp_call_function() and friends.
//
// Copyright (C) Facebook, 2020.
//
// Author: Paul E. McKenney <paulmck@kernel.org>
#define pr_fmt(fmt) fmt
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/notifier.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/rcupdate_trace.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/stat.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/torture.h>
#include <linux/types.h>
#define SCFTORT_STRING "scftorture"
#define SCFTORT_FLAG SCFTORT_STRING ": "
#define VERBOSE_SCFTORTOUT(s, x...) \
do { if (verbose) pr_alert(SCFTORT_FLAG s "\n", ## x); } while (0)
#define SCFTORTOUT_ERRSTRING(s, x...) pr_alert(SCFTORT_FLAG "!!! " s "\n", ## x)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@kernel.org>");
// Wait until there are multiple CPUs before starting test.
torture_param(int, holdoff, IS_BUILTIN(CONFIG_SCF_TORTURE_TEST) ? 10 : 0,
"Holdoff time before test start (s)");
torture_param(int, longwait, 0, "Include ridiculously long waits? (seconds)");
torture_param(int, nthreads, -1, "# threads, defaults to -1 for all CPUs.");
torture_param(int, onoff_holdoff, 0, "Time after boot before CPU hotplugs (s)");
torture_param(int, onoff_interval, 0, "Time between CPU hotplugs (s), 0=disable");
torture_param(int, shutdown_secs, 0, "Shutdown time (ms), <= zero to disable.");
torture_param(int, stat_interval, 60, "Number of seconds between stats printk()s.");
torture_param(int, stutter, 5, "Number of jiffies to run/halt test, 0=disable");
torture_param(bool, use_cpus_read_lock, 0, "Use cpus_read_lock() to exclude CPU hotplug.");
torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
torture_param(int, weight_resched, -1, "Testing weight for resched_cpu() operations.");
torture_param(int, weight_single, -1, "Testing weight for single-CPU no-wait operations.");
torture_param(int, weight_single_rpc, -1, "Testing weight for single-CPU RPC operations.");
torture_param(int, weight_single_wait, -1, "Testing weight for single-CPU operations.");
torture_param(int, weight_many, -1, "Testing weight for multi-CPU no-wait operations.");
torture_param(int, weight_many_wait, -1, "Testing weight for multi-CPU operations.");
torture_param(int, weight_all, -1, "Testing weight for all-CPU no-wait operations.");
torture_param(int, weight_all_wait, -1, "Testing weight for all-CPU operations.");
char *torture_type = "";
#ifdef MODULE
# define SCFTORT_SHUTDOWN 0
#else
# define SCFTORT_SHUTDOWN 1
#endif
torture_param(bool, shutdown, SCFTORT_SHUTDOWN, "Shutdown at end of torture test.");
struct scf_statistics {
struct task_struct *task;
int cpu;
long long n_resched;
long long n_single;
long long n_single_ofl;
long long n_single_rpc;
long long n_single_rpc_ofl;
long long n_single_wait;
long long n_single_wait_ofl;
long long n_many;
long long n_many_wait;
long long n_all;
long long n_all_wait;
};
static struct scf_statistics *scf_stats_p;
static struct task_struct *scf_torture_stats_task;
static DEFINE_PER_CPU(long long, scf_invoked_count);
// Data for random primitive selection
#define SCF_PRIM_RESCHED 0
#define SCF_PRIM_SINGLE 1
#define SCF_PRIM_SINGLE_RPC 2
#define SCF_PRIM_MANY 3
#define SCF_PRIM_ALL 4
#define SCF_NPRIMS 8 // Need wait and no-wait versions of each,
// except for SCF_PRIM_RESCHED and
// SCF_PRIM_SINGLE_RPC.
static char *scf_prim_name[] = {
"resched_cpu",
"smp_call_function_single",
"smp_call_function_single_rpc",
"smp_call_function_many",
"smp_call_function",
};
struct scf_selector {
unsigned long scfs_weight;
int scfs_prim;
bool scfs_wait;
};
static struct scf_selector scf_sel_array[SCF_NPRIMS];
static int scf_sel_array_len;
static unsigned long scf_sel_totweight;
// Communicate between caller and handler.
struct scf_check {
bool scfc_in;
bool scfc_out;
int scfc_cpu; // -1 for not _single().
bool scfc_wait;
bool scfc_rpc;
struct completion scfc_completion;
};
// Use to wait for all threads to start.
static atomic_t n_started;
static atomic_t n_errs;
static atomic_t n_mb_in_errs;
static atomic_t n_mb_out_errs;
static atomic_t n_alloc_errs;
static bool scfdone;
static char *bangstr = "";
static DEFINE_TORTURE_RANDOM_PERCPU(scf_torture_rand);
extern void resched_cpu(int cpu); // An alternative IPI vector.
// Print torture statistics. Caller must ensure serialization.
static void scf_torture_stats_print(void)
{
int cpu;
int i;
long long invoked_count = 0;
bool isdone = READ_ONCE(scfdone);
struct scf_statistics scfs = {};
for_each_possible_cpu(cpu)
invoked_count += data_race(per_cpu(scf_invoked_count, cpu));
for (i = 0; i < nthreads; i++) {
scfs.n_resched += scf_stats_p[i].n_resched;
scfs.n_single += scf_stats_p[i].n_single;
scfs.n_single_ofl += scf_stats_p[i].n_single_ofl;
scfs.n_single_rpc += scf_stats_p[i].n_single_rpc;
scfs.n_single_wait += scf_stats_p[i].n_single_wait;
scfs.n_single_wait_ofl += scf_stats_p[i].n_single_wait_ofl;
scfs.n_many += scf_stats_p[i].n_many;
scfs.n_many_wait += scf_stats_p[i].n_many_wait;
scfs.n_all += scf_stats_p[i].n_all;
scfs.n_all_wait += scf_stats_p[i].n_all_wait;
}
if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) ||
atomic_read(&n_mb_out_errs) ||
(!IS_ENABLED(CONFIG_KASAN) && atomic_read(&n_alloc_errs)))
bangstr = "!!! ";
pr_alert("%s %sscf_invoked_count %s: %lld resched: %lld single: %lld/%lld single_ofl: %lld/%lld single_rpc: %lld single_rpc_ofl: %lld many: %lld/%lld all: %lld/%lld ",
SCFTORT_FLAG, bangstr, isdone ? "VER" : "ver", invoked_count, scfs.n_resched,
scfs.n_single, scfs.n_single_wait, scfs.n_single_ofl, scfs.n_single_wait_ofl,
scfs.n_single_rpc, scfs.n_single_rpc_ofl,
scfs.n_many, scfs.n_many_wait, scfs.n_all, scfs.n_all_wait);
torture_onoff_stats();
pr_cont("ste: %d stnmie: %d stnmoe: %d staf: %d\n", atomic_read(&n_errs),
atomic_read(&n_mb_in_errs), atomic_read(&n_mb_out_errs),
atomic_read(&n_alloc_errs));
}
// Periodically prints torture statistics, if periodic statistics printing
// was specified via the stat_interval module parameter.
static int
scf_torture_stats(void *arg)
{
VERBOSE_TOROUT_STRING("scf_torture_stats task started");
do {
schedule_timeout_interruptible(stat_interval * HZ);
scf_torture_stats_print();
torture_shutdown_absorb("scf_torture_stats");
} while (!torture_must_stop());
torture_kthread_stopping("scf_torture_stats");
return 0;
}
// Add a primitive to the scf_sel_array[].
static void scf_sel_add(unsigned long weight, int prim, bool wait)
{
struct scf_selector *scfsp = &scf_sel_array[scf_sel_array_len];
// If no weight, if array would overflow, if computing three-place
// percentages would overflow, or if the scf_prim_name[] array would
// overflow, don't bother. In the last three two cases, complain.
if (!weight ||
WARN_ON_ONCE(scf_sel_array_len >= ARRAY_SIZE(scf_sel_array)) ||
WARN_ON_ONCE(0 - 100000 * weight <= 100000 * scf_sel_totweight) ||
WARN_ON_ONCE(prim >= ARRAY_SIZE(scf_prim_name)))
return;
scf_sel_totweight += weight;
scfsp->scfs_weight = scf_sel_totweight;
scfsp->scfs_prim = prim;
scfsp->scfs_wait = wait;
scf_sel_array_len++;
}
// Dump out weighting percentages for scf_prim_name[] array.
static void scf_sel_dump(void)
{
int i;
unsigned long oldw = 0;
struct scf_selector *scfsp;
unsigned long w;
for (i = 0; i < scf_sel_array_len; i++) {
scfsp = &scf_sel_array[i];
w = (scfsp->scfs_weight - oldw) * 100000 / scf_sel_totweight;
pr_info("%s: %3lu.%03lu %s(%s)\n", __func__, w / 1000, w % 1000,
scf_prim_name[scfsp->scfs_prim],
scfsp->scfs_wait ? "wait" : "nowait");
oldw = scfsp->scfs_weight;
}
}
// Randomly pick a primitive and wait/nowait, based on weightings.
static struct scf_selector *scf_sel_rand(struct torture_random_state *trsp)
{
int i;
unsigned long w = torture_random(trsp) % (scf_sel_totweight + 1);
for (i = 0; i < scf_sel_array_len; i++)
if (scf_sel_array[i].scfs_weight >= w)
return &scf_sel_array[i];
WARN_ON_ONCE(1);
return &scf_sel_array[0];
}
// Update statistics and occasionally burn up mass quantities of CPU time,
// if told to do so via scftorture.longwait. Otherwise, occasionally burn
// a little bit.
static void scf_handler(void *scfc_in)
{
int i;
int j;
unsigned long r = torture_random(this_cpu_ptr(&scf_torture_rand));
struct scf_check *scfcp = scfc_in;
if (likely(scfcp)) {
WRITE_ONCE(scfcp->scfc_out, false); // For multiple receivers.
if (WARN_ON_ONCE(unlikely(!READ_ONCE(scfcp->scfc_in))))
atomic_inc(&n_mb_in_errs);
}
this_cpu_inc(scf_invoked_count);
if (longwait <= 0) {
if (!(r & 0xffc0)) {
udelay(r & 0x3f);
goto out;
}
}
if (r & 0xfff)
goto out;
r = (r >> 12);
if (longwait <= 0) {
udelay((r & 0xff) + 1);
goto out;
}
r = r % longwait + 1;
for (i = 0; i < r; i++) {
for (j = 0; j < 1000; j++) {
udelay(1000);
cpu_relax();
}
}
out:
if (unlikely(!scfcp))
return;
if (scfcp->scfc_wait) {
WRITE_ONCE(scfcp->scfc_out, true);
if (scfcp->scfc_rpc)
complete(&scfcp->scfc_completion);
} else {
kfree(scfcp);
}
}
// As above, but check for correct CPU.
static void scf_handler_1(void *scfc_in)
{
struct scf_check *scfcp = scfc_in;
if (likely(scfcp) && WARN_ONCE(smp_processor_id() != scfcp->scfc_cpu, "%s: Wanted CPU %d got CPU %d\n", __func__, scfcp->scfc_cpu, smp_processor_id())) {
atomic_inc(&n_errs);
}
scf_handler(scfcp);
}
// Randomly do an smp_call_function*() invocation.
static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_random_state *trsp)
{
bool allocfail = false;
uintptr_t cpu;
int ret = 0;
struct scf_check *scfcp = NULL;
struct scf_selector *scfsp = scf_sel_rand(trsp);
if (use_cpus_read_lock)
cpus_read_lock();
else
preempt_disable();
if (scfsp->scfs_prim == SCF_PRIM_SINGLE || scfsp->scfs_wait) {
scfcp = kmalloc(sizeof(*scfcp), GFP_ATOMIC);
if (!scfcp) {
WARN_ON_ONCE(!IS_ENABLED(CONFIG_KASAN));
atomic_inc(&n_alloc_errs);
allocfail = true;
} else {
scfcp->scfc_cpu = -1;
scfcp->scfc_wait = scfsp->scfs_wait;
scfcp->scfc_out = false;
scfcp->scfc_rpc = false;
}
}
switch (scfsp->scfs_prim) {
case SCF_PRIM_RESCHED:
if (IS_BUILTIN(CONFIG_SCF_TORTURE_TEST)) {
cpu = torture_random(trsp) % nr_cpu_ids;
scfp->n_resched++;
resched_cpu(cpu);
this_cpu_inc(scf_invoked_count);
}
break;
case SCF_PRIM_SINGLE:
cpu = torture_random(trsp) % nr_cpu_ids;
if (scfsp->scfs_wait)
scfp->n_single_wait++;
else
scfp->n_single++;
if (scfcp) {
scfcp->scfc_cpu = cpu;
barrier(); // Prevent race-reduction compiler optimizations.
scfcp->scfc_in = true;
}
ret = smp_call_function_single(cpu, scf_handler_1, (void *)scfcp, scfsp->scfs_wait);
if (ret) {
if (scfsp->scfs_wait)
scfp->n_single_wait_ofl++;
else
scfp->n_single_ofl++;
kfree(scfcp);
scfcp = NULL;
}
break;
case SCF_PRIM_SINGLE_RPC:
if (!scfcp)
break;
cpu = torture_random(trsp) % nr_cpu_ids;
scfp->n_single_rpc++;
scfcp->scfc_cpu = cpu;
scfcp->scfc_wait = true;
init_completion(&scfcp->scfc_completion);
scfcp->scfc_rpc = true;
barrier(); // Prevent race-reduction compiler optimizations.
scfcp->scfc_in = true;
ret = smp_call_function_single(cpu, scf_handler_1, (void *)scfcp, 0);
if (!ret) {
if (use_cpus_read_lock)
cpus_read_unlock();
else
preempt_enable();
wait_for_completion(&scfcp->scfc_completion);
if (use_cpus_read_lock)
cpus_read_lock();
else
preempt_disable();
} else {
scfp->n_single_rpc_ofl++;
kfree(scfcp);
scfcp = NULL;
}
break;
case SCF_PRIM_MANY:
if (scfsp->scfs_wait)
scfp->n_many_wait++;
else
scfp->n_many++;
if (scfcp) {
barrier(); // Prevent race-reduction compiler optimizations.
scfcp->scfc_in = true;
}
smp_call_function_many(cpu_online_mask, scf_handler, scfcp, scfsp->scfs_wait);
break;
case SCF_PRIM_ALL:
if (scfsp->scfs_wait)
scfp->n_all_wait++;
else
scfp->n_all++;
if (scfcp) {
barrier(); // Prevent race-reduction compiler optimizations.
scfcp->scfc_in = true;
}
smp_call_function(scf_handler, scfcp, scfsp->scfs_wait);
break;
default:
WARN_ON_ONCE(1);
if (scfcp)
scfcp->scfc_out = true;
}
if (scfcp && scfsp->scfs_wait) {
if (WARN_ON_ONCE((num_online_cpus() > 1 || scfsp->scfs_prim == SCF_PRIM_SINGLE) &&
!scfcp->scfc_out)) {
pr_warn("%s: Memory-ordering failure, scfs_prim: %d.\n", __func__, scfsp->scfs_prim);
atomic_inc(&n_mb_out_errs); // Leak rather than trash!
} else {
kfree(scfcp);
}
barrier(); // Prevent race-reduction compiler optimizations.
}
if (use_cpus_read_lock)
cpus_read_unlock();
else
preempt_enable();
if (allocfail)
schedule_timeout_idle((1 + longwait) * HZ); // Let no-wait handlers complete.
else if (!(torture_random(trsp) & 0xfff))
schedule_timeout_uninterruptible(1);
}
// SCF test kthread. Repeatedly does calls to members of the
// smp_call_function() family of functions.
static int scftorture_invoker(void *arg)
{
int cpu;
int curcpu;
DEFINE_TORTURE_RANDOM(rand);
struct scf_statistics *scfp = (struct scf_statistics *)arg;
bool was_offline = false;
VERBOSE_SCFTORTOUT("scftorture_invoker %d: task started", scfp->cpu);
cpu = scfp->cpu % nr_cpu_ids;
WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(cpu)));
set_user_nice(current, MAX_NICE);
if (holdoff)
schedule_timeout_interruptible(holdoff * HZ);
VERBOSE_SCFTORTOUT("scftorture_invoker %d: Waiting for all SCF torturers from cpu %d", scfp->cpu, raw_smp_processor_id());
// Make sure that the CPU is affinitized appropriately during testing.
curcpu = raw_smp_processor_id();
WARN_ONCE(curcpu != scfp->cpu % nr_cpu_ids,
"%s: Wanted CPU %d, running on %d, nr_cpu_ids = %d\n",
__func__, scfp->cpu, curcpu, nr_cpu_ids);
if (!atomic_dec_return(&n_started))
while (atomic_read_acquire(&n_started)) {
if (torture_must_stop()) {
VERBOSE_SCFTORTOUT("scftorture_invoker %d ended before starting", scfp->cpu);
goto end;
}
schedule_timeout_uninterruptible(1);
}
VERBOSE_SCFTORTOUT("scftorture_invoker %d started", scfp->cpu);
do {
scftorture_invoke_one(scfp, &rand);
while (cpu_is_offline(cpu) && !torture_must_stop()) {
schedule_timeout_interruptible(HZ / 5);
was_offline = true;
}
if (was_offline) {
set_cpus_allowed_ptr(current, cpumask_of(cpu));
was_offline = false;
}
cond_resched();
stutter_wait("scftorture_invoker");
} while (!torture_must_stop());
VERBOSE_SCFTORTOUT("scftorture_invoker %d ended", scfp->cpu);
end:
torture_kthread_stopping("scftorture_invoker");
return 0;
}
static void
scftorture_print_module_parms(const char *tag)
{
pr_alert(SCFTORT_FLAG
"--- %s: verbose=%d holdoff=%d longwait=%d nthreads=%d onoff_holdoff=%d onoff_interval=%d shutdown_secs=%d stat_interval=%d stutter=%d use_cpus_read_lock=%d, weight_resched=%d, weight_single=%d, weight_single_rpc=%d, weight_single_wait=%d, weight_many=%d, weight_many_wait=%d, weight_all=%d, weight_all_wait=%d\n", tag,
verbose, holdoff, longwait, nthreads, onoff_holdoff, onoff_interval, shutdown, stat_interval, stutter, use_cpus_read_lock, weight_resched, weight_single, weight_single_rpc, weight_single_wait, weight_many, weight_many_wait, weight_all, weight_all_wait);
}
static void scf_cleanup_handler(void *unused)
{
}
static void scf_torture_cleanup(void)
{
int i;
if (torture_cleanup_begin())
return;
WRITE_ONCE(scfdone, true);
if (nthreads && scf_stats_p)
for (i = 0; i < nthreads; i++)
torture_stop_kthread("scftorture_invoker", scf_stats_p[i].task);
else
goto end;
smp_call_function(scf_cleanup_handler, NULL, 0);
torture_stop_kthread(scf_torture_stats, scf_torture_stats_task);
scf_torture_stats_print(); // -After- the stats thread is stopped!
kfree(scf_stats_p); // -After- the last stats print has completed!
scf_stats_p = NULL;
if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) || atomic_read(&n_mb_out_errs))
scftorture_print_module_parms("End of test: FAILURE");
else if (torture_onoff_failures())
scftorture_print_module_parms("End of test: LOCK_HOTPLUG");
else
scftorture_print_module_parms("End of test: SUCCESS");
end:
torture_cleanup_end();
}
static int __init scf_torture_init(void)
{
long i;
int firsterr = 0;
unsigned long weight_resched1 = weight_resched;
unsigned long weight_single1 = weight_single;
unsigned long weight_single_rpc1 = weight_single_rpc;
unsigned long weight_single_wait1 = weight_single_wait;
unsigned long weight_many1 = weight_many;
unsigned long weight_many_wait1 = weight_many_wait;
unsigned long weight_all1 = weight_all;
unsigned long weight_all_wait1 = weight_all_wait;
if (!torture_init_begin(SCFTORT_STRING, verbose))
return -EBUSY;
scftorture_print_module_parms("Start of test");
if (weight_resched <= 0 &&
weight_single <= 0 && weight_single_rpc <= 0 && weight_single_wait <= 0 &&
weight_many <= 0 && weight_many_wait <= 0 &&
weight_all <= 0 && weight_all_wait <= 0) {
weight_resched1 = weight_resched == 0 ? 0 : 2 * nr_cpu_ids;
weight_single1 = weight_single == 0 ? 0 : 2 * nr_cpu_ids;
weight_single_rpc1 = weight_single_rpc == 0 ? 0 : 2 * nr_cpu_ids;
weight_single_wait1 = weight_single_wait == 0 ? 0 : 2 * nr_cpu_ids;
weight_many1 = weight_many == 0 ? 0 : 2;
weight_many_wait1 = weight_many_wait == 0 ? 0 : 2;
weight_all1 = weight_all == 0 ? 0 : 1;
weight_all_wait1 = weight_all_wait == 0 ? 0 : 1;
} else {
if (weight_resched == -1)
weight_resched1 = 0;
if (weight_single == -1)
weight_single1 = 0;
if (weight_single_rpc == -1)
weight_single_rpc1 = 0;
if (weight_single_wait == -1)
weight_single_wait1 = 0;
if (weight_many == -1)
weight_many1 = 0;
if (weight_many_wait == -1)
weight_many_wait1 = 0;
if (weight_all == -1)
weight_all1 = 0;
if (weight_all_wait == -1)
weight_all_wait1 = 0;
}
if (weight_resched1 == 0 && weight_single1 == 0 && weight_single_rpc1 == 0 &&
weight_single_wait1 == 0 && weight_many1 == 0 && weight_many_wait1 == 0 &&
weight_all1 == 0 && weight_all_wait1 == 0) {
SCFTORTOUT_ERRSTRING("all zero weights makes no sense");
firsterr = -EINVAL;
goto unwind;
}
if (IS_BUILTIN(CONFIG_SCF_TORTURE_TEST))
scf_sel_add(weight_resched1, SCF_PRIM_RESCHED, false);
else if (weight_resched1)
SCFTORTOUT_ERRSTRING("built as module, weight_resched ignored");
scf_sel_add(weight_single1, SCF_PRIM_SINGLE, false);
scf_sel_add(weight_single_rpc1, SCF_PRIM_SINGLE_RPC, true);
scf_sel_add(weight_single_wait1, SCF_PRIM_SINGLE, true);
scf_sel_add(weight_many1, SCF_PRIM_MANY, false);
scf_sel_add(weight_many_wait1, SCF_PRIM_MANY, true);
scf_sel_add(weight_all1, SCF_PRIM_ALL, false);
scf_sel_add(weight_all_wait1, SCF_PRIM_ALL, true);
scf_sel_dump();
if (onoff_interval > 0) {
firsterr = torture_onoff_init(onoff_holdoff * HZ, onoff_interval, NULL);
if (torture_init_error(firsterr))
goto unwind;
}
if (shutdown_secs > 0) {
firsterr = torture_shutdown_init(shutdown_secs, scf_torture_cleanup);
if (torture_init_error(firsterr))
goto unwind;
}
if (stutter > 0) {
firsterr = torture_stutter_init(stutter, stutter);
if (torture_init_error(firsterr))
goto unwind;
}
// Worker tasks invoking smp_call_function().
if (nthreads < 0)
nthreads = num_online_cpus();
scf_stats_p = kcalloc(nthreads, sizeof(scf_stats_p[0]), GFP_KERNEL);
if (!scf_stats_p) {
SCFTORTOUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
VERBOSE_SCFTORTOUT("Starting %d smp_call_function() threads", nthreads);
atomic_set(&n_started, nthreads);
for (i = 0; i < nthreads; i++) {
scf_stats_p[i].cpu = i;
firsterr = torture_create_kthread(scftorture_invoker, (void *)&scf_stats_p[i],
scf_stats_p[i].task);
if (torture_init_error(firsterr))
goto unwind;
}
if (stat_interval > 0) {
firsterr = torture_create_kthread(scf_torture_stats, NULL, scf_torture_stats_task);
if (torture_init_error(firsterr))
goto unwind;
}
torture_init_end();
return 0;
unwind:
torture_init_end();
scf_torture_cleanup();
if (shutdown_secs) {
WARN_ON(!IS_MODULE(CONFIG_SCF_TORTURE_TEST));
kernel_power_off();
}
return firsterr;
}
module_init(scf_torture_init);
module_exit(scf_torture_cleanup);