linux/lib/find_bit.c
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

217 lines
5.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* bit search implementation
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* Copyright (C) 2008 IBM Corporation
* 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
* (Inspired by David Howell's find_next_bit implementation)
*
* Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
* size and improve performance, 2015.
*/
#include <linux/bitops.h>
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/kernel.h>
#if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
!defined(find_next_and_bit)
/*
* This is a common helper function for find_next_bit, find_next_zero_bit, and
* find_next_and_bit. The differences are:
* - The "invert" argument, which is XORed with each fetched word before
* searching it for one bits.
* - The optional "addr2", which is anded with "addr1" if present.
*/
static inline unsigned long _find_next_bit(const unsigned long *addr1,
const unsigned long *addr2, unsigned long nbits,
unsigned long start, unsigned long invert)
{
unsigned long tmp;
if (unlikely(start >= nbits))
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
/* Handle 1st word. */
tmp &= BITMAP_FIRST_WORD_MASK(start);
start = round_down(start, BITS_PER_LONG);
while (!tmp) {
start += BITS_PER_LONG;
if (start >= nbits)
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
}
return min(start + __ffs(tmp), nbits);
}
#endif
#ifndef find_next_bit
/*
* Find the next set bit in a memory region.
*/
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
return _find_next_bit(addr, NULL, size, offset, 0UL);
}
EXPORT_SYMBOL(find_next_bit);
#endif
#ifndef find_next_zero_bit
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
return _find_next_bit(addr, NULL, size, offset, ~0UL);
}
EXPORT_SYMBOL(find_next_zero_bit);
#endif
#if !defined(find_next_and_bit)
unsigned long find_next_and_bit(const unsigned long *addr1,
const unsigned long *addr2, unsigned long size,
unsigned long offset)
{
return _find_next_bit(addr1, addr2, size, offset, 0UL);
}
EXPORT_SYMBOL(find_next_and_bit);
#endif
#ifndef find_first_bit
/*
* Find the first set bit in a memory region.
*/
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
unsigned long idx;
for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
if (addr[idx])
return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
}
return size;
}
EXPORT_SYMBOL(find_first_bit);
#endif
#ifndef find_first_zero_bit
/*
* Find the first cleared bit in a memory region.
*/
unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
{
unsigned long idx;
for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
if (addr[idx] != ~0UL)
return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
}
return size;
}
EXPORT_SYMBOL(find_first_zero_bit);
#endif
#ifndef find_last_bit
unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
{
if (size) {
unsigned long val = BITMAP_LAST_WORD_MASK(size);
unsigned long idx = (size-1) / BITS_PER_LONG;
do {
val &= addr[idx];
if (val)
return idx * BITS_PER_LONG + __fls(val);
val = ~0ul;
} while (idx--);
}
return size;
}
EXPORT_SYMBOL(find_last_bit);
#endif
#ifdef __BIG_ENDIAN
/* include/linux/byteorder does not support "unsigned long" type */
static inline unsigned long ext2_swab(const unsigned long y)
{
#if BITS_PER_LONG == 64
return (unsigned long) __swab64((u64) y);
#elif BITS_PER_LONG == 32
return (unsigned long) __swab32((u32) y);
#else
#error BITS_PER_LONG not defined
#endif
}
#if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le)
static inline unsigned long _find_next_bit_le(const unsigned long *addr1,
const unsigned long *addr2, unsigned long nbits,
unsigned long start, unsigned long invert)
{
unsigned long tmp;
if (unlikely(start >= nbits))
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
/* Handle 1st word. */
tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start));
start = round_down(start, BITS_PER_LONG);
while (!tmp) {
start += BITS_PER_LONG;
if (start >= nbits)
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
}
return min(start + __ffs(ext2_swab(tmp)), nbits);
}
#endif
#ifndef find_next_zero_bit_le
unsigned long find_next_zero_bit_le(const void *addr, unsigned
long size, unsigned long offset)
{
return _find_next_bit_le(addr, NULL, size, offset, ~0UL);
}
EXPORT_SYMBOL(find_next_zero_bit_le);
#endif
#ifndef find_next_bit_le
unsigned long find_next_bit_le(const void *addr, unsigned
long size, unsigned long offset)
{
return _find_next_bit_le(addr, NULL, size, offset, 0UL);
}
EXPORT_SYMBOL(find_next_bit_le);
#endif
#endif /* __BIG_ENDIAN */