linux/fs/proc/fd.c
Linus Torvalds e8fc317dfc vfs-6.12.procfs
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZuQEwAAKCRCRxhvAZXjc
 onI2AQDXa5XhIx0VpLWE9uVImVy3QuUKc/5pI1e1DKMgxLhKCgEAh15a4ETqmVaw
 Zp3ZSzoLD8Ez1WwWb6cWQuHFYRSjtwU=
 =+LKG
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.12.procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull procfs updates from Christian Brauner:
 "This contains the following changes for procfs:

   - Add config options and parameters to block forcing memory writes.

     This adds a Kconfig option and boot param to allow removing the
     FOLL_FORCE flag from /proc/<pid>/mem write calls as this can be
     used in various attacks.

     The traditional forcing behavior is kept as default because it can
     break GDB and some other use cases.

     This is the simpler version that you had requested.

   - Restrict overmounting of ephemeral entities.

     It is currently possible to mount on top of various ephemeral
     entities in procfs. This specifically includes magic links. To
     recap, magic links are links of the form /proc/<pid>/fd/<nr>. They
     serve as references to a target file and during path lookup they
     cause a jump to the target path. Such magic links disappear if the
     corresponding file descriptor is closed.

     Currently it is possible to overmount such magic links. This is
     mostly interesting for an attacker that wants to somehow trick a
     process into e.g., reopening something that it didn't intend to
     reopen or to hide a malicious file descriptor.

     But also it risks leaking mounts for long-running processes. When
     overmounting a magic link like above, the mount will not be
     detached when the file descriptor is closed. Only the target
     mountpoint will disappear. Which has the consequence of making it
     impossible to unmount that mount afterwards. So the mount will
     stick around until the process exits and the /proc/<pid>/ directory
     is cleaned up during proc_flush_pid() when the dentries are pruned
     and invalidated.

     That in turn means it's possible for a program to accidentally leak
     mounts and it's also possible to make a task leak mounts without
     it's knowledge if the attacker just keeps overmounting things under
     /proc/<pid>/fd/<nr>.

     Disallow overmounting of such ephemeral entities.

   - Cleanup the readdir method naming in some procfs file operations.

   - Replace kmalloc() and strcpy() with a simple kmemdup() call"

* tag 'vfs-6.12.procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  proc: fold kmalloc() + strcpy() into kmemdup()
  proc: block mounting on top of /proc/<pid>/fdinfo/*
  proc: block mounting on top of /proc/<pid>/fd/*
  proc: block mounting on top of /proc/<pid>/map_files/*
  proc: add proc_splice_unmountable()
  proc: proc_readfdinfo() -> proc_fdinfo_iterate()
  proc: proc_readfd() -> proc_fd_iterate()
  proc: add config & param to block forcing mem writes
2024-09-16 09:36:59 +02:00

427 lines
9.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/sched/signal.h>
#include <linux/errno.h>
#include <linux/dcache.h>
#include <linux/path.h>
#include <linux/fdtable.h>
#include <linux/namei.h>
#include <linux/pid.h>
#include <linux/ptrace.h>
#include <linux/bitmap.h>
#include <linux/security.h>
#include <linux/file.h>
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/filelock.h>
#include <linux/proc_fs.h>
#include "../mount.h"
#include "internal.h"
#include "fd.h"
static int seq_show(struct seq_file *m, void *v)
{
struct files_struct *files = NULL;
int f_flags = 0, ret = -ENOENT;
struct file *file = NULL;
struct task_struct *task;
task = get_proc_task(m->private);
if (!task)
return -ENOENT;
task_lock(task);
files = task->files;
if (files) {
unsigned int fd = proc_fd(m->private);
spin_lock(&files->file_lock);
file = files_lookup_fd_locked(files, fd);
if (file) {
f_flags = file->f_flags;
if (close_on_exec(fd, files))
f_flags |= O_CLOEXEC;
get_file(file);
ret = 0;
}
spin_unlock(&files->file_lock);
}
task_unlock(task);
put_task_struct(task);
if (ret)
return ret;
seq_printf(m, "pos:\t%lli\nflags:\t0%o\nmnt_id:\t%i\nino:\t%lu\n",
(long long)file->f_pos, f_flags,
real_mount(file->f_path.mnt)->mnt_id,
file_inode(file)->i_ino);
/* show_fd_locks() never dereferences files, so a stale value is safe */
show_fd_locks(m, file, files);
if (seq_has_overflowed(m))
goto out;
if (file->f_op->show_fdinfo)
file->f_op->show_fdinfo(m, file);
out:
fput(file);
return 0;
}
static int seq_fdinfo_open(struct inode *inode, struct file *file)
{
return single_open(file, seq_show, inode);
}
/**
* Shared /proc/pid/fdinfo and /proc/pid/fdinfo/fd permission helper to ensure
* that the current task has PTRACE_MODE_READ in addition to the normal
* POSIX-like checks.
*/
static int proc_fdinfo_permission(struct mnt_idmap *idmap, struct inode *inode,
int mask)
{
bool allowed = false;
struct task_struct *task = get_proc_task(inode);
if (!task)
return -ESRCH;
allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
put_task_struct(task);
if (!allowed)
return -EACCES;
return generic_permission(idmap, inode, mask);
}
static const struct inode_operations proc_fdinfo_file_inode_operations = {
.permission = proc_fdinfo_permission,
.setattr = proc_setattr,
};
static const struct file_operations proc_fdinfo_file_operations = {
.open = seq_fdinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static bool tid_fd_mode(struct task_struct *task, unsigned fd, fmode_t *mode)
{
struct file *file;
rcu_read_lock();
file = task_lookup_fdget_rcu(task, fd);
rcu_read_unlock();
if (file) {
*mode = file->f_mode;
fput(file);
}
return !!file;
}
static void tid_fd_update_inode(struct task_struct *task, struct inode *inode,
fmode_t f_mode)
{
task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
if (S_ISLNK(inode->i_mode)) {
unsigned i_mode = S_IFLNK;
if (f_mode & FMODE_READ)
i_mode |= S_IRUSR | S_IXUSR;
if (f_mode & FMODE_WRITE)
i_mode |= S_IWUSR | S_IXUSR;
inode->i_mode = i_mode;
}
security_task_to_inode(task, inode);
}
static int tid_fd_revalidate(struct dentry *dentry, unsigned int flags)
{
struct task_struct *task;
struct inode *inode;
unsigned int fd;
if (flags & LOOKUP_RCU)
return -ECHILD;
inode = d_inode(dentry);
task = get_proc_task(inode);
fd = proc_fd(inode);
if (task) {
fmode_t f_mode;
if (tid_fd_mode(task, fd, &f_mode)) {
tid_fd_update_inode(task, inode, f_mode);
put_task_struct(task);
return 1;
}
put_task_struct(task);
}
return 0;
}
static const struct dentry_operations tid_fd_dentry_operations = {
.d_revalidate = tid_fd_revalidate,
.d_delete = pid_delete_dentry,
};
static int proc_fd_link(struct dentry *dentry, struct path *path)
{
struct task_struct *task;
int ret = -ENOENT;
task = get_proc_task(d_inode(dentry));
if (task) {
unsigned int fd = proc_fd(d_inode(dentry));
struct file *fd_file;
fd_file = fget_task(task, fd);
if (fd_file) {
*path = fd_file->f_path;
path_get(&fd_file->f_path);
ret = 0;
fput(fd_file);
}
put_task_struct(task);
}
return ret;
}
struct fd_data {
fmode_t mode;
unsigned fd;
};
static struct dentry *proc_fd_instantiate(struct dentry *dentry,
struct task_struct *task, const void *ptr)
{
const struct fd_data *data = ptr;
struct proc_inode *ei;
struct inode *inode;
inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK);
if (!inode)
return ERR_PTR(-ENOENT);
ei = PROC_I(inode);
ei->fd = data->fd;
inode->i_op = &proc_pid_link_inode_operations;
inode->i_size = 64;
ei->op.proc_get_link = proc_fd_link;
tid_fd_update_inode(task, inode, data->mode);
return proc_splice_unmountable(inode, dentry,
&tid_fd_dentry_operations);
}
static struct dentry *proc_lookupfd_common(struct inode *dir,
struct dentry *dentry,
instantiate_t instantiate)
{
struct task_struct *task = get_proc_task(dir);
struct fd_data data = {.fd = name_to_int(&dentry->d_name)};
struct dentry *result = ERR_PTR(-ENOENT);
if (!task)
goto out_no_task;
if (data.fd == ~0U)
goto out;
if (!tid_fd_mode(task, data.fd, &data.mode))
goto out;
result = instantiate(dentry, task, &data);
out:
put_task_struct(task);
out_no_task:
return result;
}
static int proc_readfd_common(struct file *file, struct dir_context *ctx,
instantiate_t instantiate)
{
struct task_struct *p = get_proc_task(file_inode(file));
unsigned int fd;
if (!p)
return -ENOENT;
if (!dir_emit_dots(file, ctx))
goto out;
rcu_read_lock();
for (fd = ctx->pos - 2;; fd++) {
struct file *f;
struct fd_data data;
char name[10 + 1];
unsigned int len;
f = task_lookup_next_fdget_rcu(p, &fd);
ctx->pos = fd + 2LL;
if (!f)
break;
data.mode = f->f_mode;
rcu_read_unlock();
fput(f);
data.fd = fd;
len = snprintf(name, sizeof(name), "%u", fd);
if (!proc_fill_cache(file, ctx,
name, len, instantiate, p,
&data))
goto out;
cond_resched();
rcu_read_lock();
}
rcu_read_unlock();
out:
put_task_struct(p);
return 0;
}
static int proc_readfd_count(struct inode *inode, loff_t *count)
{
struct task_struct *p = get_proc_task(inode);
struct fdtable *fdt;
if (!p)
return -ENOENT;
task_lock(p);
if (p->files) {
rcu_read_lock();
fdt = files_fdtable(p->files);
*count = bitmap_weight(fdt->open_fds, fdt->max_fds);
rcu_read_unlock();
}
task_unlock(p);
put_task_struct(p);
return 0;
}
static int proc_fd_iterate(struct file *file, struct dir_context *ctx)
{
return proc_readfd_common(file, ctx, proc_fd_instantiate);
}
const struct file_operations proc_fd_operations = {
.read = generic_read_dir,
.iterate_shared = proc_fd_iterate,
.llseek = generic_file_llseek,
};
static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
}
/*
* /proc/pid/fd needs a special permission handler so that a process can still
* access /proc/self/fd after it has executed a setuid().
*/
int proc_fd_permission(struct mnt_idmap *idmap,
struct inode *inode, int mask)
{
struct task_struct *p;
int rv;
rv = generic_permission(&nop_mnt_idmap, inode, mask);
if (rv == 0)
return rv;
rcu_read_lock();
p = pid_task(proc_pid(inode), PIDTYPE_PID);
if (p && same_thread_group(p, current))
rv = 0;
rcu_read_unlock();
return rv;
}
static int proc_fd_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
int rv = 0;
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
/* If it's a directory, put the number of open fds there */
if (S_ISDIR(inode->i_mode)) {
rv = proc_readfd_count(inode, &stat->size);
if (rv < 0)
return rv;
}
return rv;
}
const struct inode_operations proc_fd_inode_operations = {
.lookup = proc_lookupfd,
.permission = proc_fd_permission,
.getattr = proc_fd_getattr,
.setattr = proc_setattr,
};
static struct dentry *proc_fdinfo_instantiate(struct dentry *dentry,
struct task_struct *task, const void *ptr)
{
const struct fd_data *data = ptr;
struct proc_inode *ei;
struct inode *inode;
inode = proc_pid_make_inode(dentry->d_sb, task, S_IFREG | S_IRUGO);
if (!inode)
return ERR_PTR(-ENOENT);
ei = PROC_I(inode);
ei->fd = data->fd;
inode->i_op = &proc_fdinfo_file_inode_operations;
inode->i_fop = &proc_fdinfo_file_operations;
tid_fd_update_inode(task, inode, 0);
return proc_splice_unmountable(inode, dentry,
&tid_fd_dentry_operations);
}
static struct dentry *
proc_lookupfdinfo(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
}
static int proc_fdinfo_iterate(struct file *file, struct dir_context *ctx)
{
return proc_readfd_common(file, ctx,
proc_fdinfo_instantiate);
}
const struct inode_operations proc_fdinfo_inode_operations = {
.lookup = proc_lookupfdinfo,
.permission = proc_fdinfo_permission,
.setattr = proc_setattr,
};
const struct file_operations proc_fdinfo_operations = {
.read = generic_read_dir,
.iterate_shared = proc_fdinfo_iterate,
.llseek = generic_file_llseek,
};