mirror of
https://github.com/torvalds/linux.git
synced 2024-12-30 14:52:05 +00:00
103c19723c
The code used by btrfs_submit_bio only interacts with the rest of volumes.c through __btrfs_map_block (which itself is a more generic version of two exported helpers) and does not really have anything to do with volumes.c. Create a new bio.c file and a bio.h header going along with it for the btrfs_bio-based storage layer, which will grow even more going forward. Also update the file with my copyright notice given that a large part of the moved code was written or rewritten by me. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1452 lines
40 KiB
C
1452 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/bio.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <crypto/hash.h>
|
|
#include "messages.h"
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "bio.h"
|
|
#include "print-tree.h"
|
|
#include "compression.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "file-item.h"
|
|
#include "super.h"
|
|
|
|
#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
|
|
sizeof(struct btrfs_item) * 2) / \
|
|
size) - 1))
|
|
|
|
#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
|
|
PAGE_SIZE))
|
|
|
|
/*
|
|
* Set inode's size according to filesystem options.
|
|
*
|
|
* @inode: inode we want to update the disk_i_size for
|
|
* @new_i_size: i_size we want to set to, 0 if we use i_size
|
|
*
|
|
* With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
|
|
* returns as it is perfectly fine with a file that has holes without hole file
|
|
* extent items.
|
|
*
|
|
* However without NO_HOLES we need to only return the area that is contiguous
|
|
* from the 0 offset of the file. Otherwise we could end up adjust i_size up
|
|
* to an extent that has a gap in between.
|
|
*
|
|
* Finally new_i_size should only be set in the case of truncate where we're not
|
|
* ready to use i_size_read() as the limiter yet.
|
|
*/
|
|
void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
u64 start, end, i_size;
|
|
int ret;
|
|
|
|
i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
|
|
if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
|
|
inode->disk_i_size = i_size;
|
|
return;
|
|
}
|
|
|
|
spin_lock(&inode->lock);
|
|
ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
|
|
&end, EXTENT_DIRTY);
|
|
if (!ret && start == 0)
|
|
i_size = min(i_size, end + 1);
|
|
else
|
|
i_size = 0;
|
|
inode->disk_i_size = i_size;
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
/*
|
|
* Mark range within a file as having a new extent inserted.
|
|
*
|
|
* @inode: inode being modified
|
|
* @start: start file offset of the file extent we've inserted
|
|
* @len: logical length of the file extent item
|
|
*
|
|
* Call when we are inserting a new file extent where there was none before.
|
|
* Does not need to call this in the case where we're replacing an existing file
|
|
* extent, however if not sure it's fine to call this multiple times.
|
|
*
|
|
* The start and len must match the file extent item, so thus must be sectorsize
|
|
* aligned.
|
|
*/
|
|
int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
|
|
u64 len)
|
|
{
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
|
|
|
|
if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
|
|
return 0;
|
|
return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
|
|
EXTENT_DIRTY);
|
|
}
|
|
|
|
/*
|
|
* Mark an inode range as not having a backing extent.
|
|
*
|
|
* @inode: inode being modified
|
|
* @start: start file offset of the file extent we've inserted
|
|
* @len: logical length of the file extent item
|
|
*
|
|
* Called when we drop a file extent, for example when we truncate. Doesn't
|
|
* need to be called for cases where we're replacing a file extent, like when
|
|
* we've COWed a file extent.
|
|
*
|
|
* The start and len must match the file extent item, so thus must be sectorsize
|
|
* aligned.
|
|
*/
|
|
int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
|
|
u64 len)
|
|
{
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
|
|
len == (u64)-1);
|
|
|
|
if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
|
|
return 0;
|
|
return clear_extent_bit(&inode->file_extent_tree, start,
|
|
start + len - 1, EXTENT_DIRTY, NULL);
|
|
}
|
|
|
|
static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
|
|
{
|
|
ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
|
|
|
|
return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
|
|
}
|
|
|
|
static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
|
|
{
|
|
ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
|
|
|
|
return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
|
|
}
|
|
|
|
static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
|
|
{
|
|
u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
|
|
fs_info->csum_size);
|
|
|
|
return csum_size_to_bytes(fs_info, max_csum_size);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total size needed to allocate for an ordered sum structure
|
|
* spanning @bytes in the file.
|
|
*/
|
|
static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
|
|
{
|
|
return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
|
|
}
|
|
|
|
int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 objectid, u64 pos, u64 num_bytes)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_file_extent_item *item;
|
|
struct btrfs_key file_key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
file_key.objectid = objectid;
|
|
file_key.offset = pos;
|
|
file_key.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
|
|
sizeof(*item));
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret); /* Can't happen */
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
|
|
btrfs_set_file_extent_offset(leaf, item, 0);
|
|
btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
|
|
btrfs_set_file_extent_generation(leaf, item, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_compression(leaf, item, 0);
|
|
btrfs_set_file_extent_encryption(leaf, item, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, item, 0);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_csum_item *
|
|
btrfs_lookup_csum(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, int cow)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
struct btrfs_key file_key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_csum_item *item;
|
|
struct extent_buffer *leaf;
|
|
u64 csum_offset = 0;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
int csums_in_item;
|
|
|
|
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
file_key.offset = bytenr;
|
|
file_key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
|
|
if (ret < 0)
|
|
goto fail;
|
|
leaf = path->nodes[0];
|
|
if (ret > 0) {
|
|
ret = 1;
|
|
if (path->slots[0] == 0)
|
|
goto fail;
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
|
|
goto fail;
|
|
|
|
csum_offset = (bytenr - found_key.offset) >>
|
|
fs_info->sectorsize_bits;
|
|
csums_in_item = btrfs_item_size(leaf, path->slots[0]);
|
|
csums_in_item /= csum_size;
|
|
|
|
if (csum_offset == csums_in_item) {
|
|
ret = -EFBIG;
|
|
goto fail;
|
|
} else if (csum_offset > csums_in_item) {
|
|
goto fail;
|
|
}
|
|
}
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
|
|
item = (struct btrfs_csum_item *)((unsigned char *)item +
|
|
csum_offset * csum_size);
|
|
return item;
|
|
fail:
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 objectid,
|
|
u64 offset, int mod)
|
|
{
|
|
struct btrfs_key file_key;
|
|
int ins_len = mod < 0 ? -1 : 0;
|
|
int cow = mod != 0;
|
|
|
|
file_key.objectid = objectid;
|
|
file_key.offset = offset;
|
|
file_key.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
|
|
}
|
|
|
|
/*
|
|
* Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
|
|
* store the result to @dst.
|
|
*
|
|
* Return >0 for the number of sectors we found.
|
|
* Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
|
|
* for it. Caller may want to try next sector until one range is hit.
|
|
* Return <0 for fatal error.
|
|
*/
|
|
static int search_csum_tree(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 disk_bytenr,
|
|
u64 len, u8 *dst)
|
|
{
|
|
struct btrfs_root *csum_root;
|
|
struct btrfs_csum_item *item = NULL;
|
|
struct btrfs_key key;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u32 itemsize;
|
|
int ret;
|
|
u64 csum_start;
|
|
u64 csum_len;
|
|
|
|
ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
|
|
IS_ALIGNED(len, sectorsize));
|
|
|
|
/* Check if the current csum item covers disk_bytenr */
|
|
if (path->nodes[0]) {
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_csum_item);
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
|
|
|
|
csum_start = key.offset;
|
|
csum_len = (itemsize / csum_size) * sectorsize;
|
|
|
|
if (in_range(disk_bytenr, csum_start, csum_len))
|
|
goto found;
|
|
}
|
|
|
|
/* Current item doesn't contain the desired range, search again */
|
|
btrfs_release_path(path);
|
|
csum_root = btrfs_csum_root(fs_info, disk_bytenr);
|
|
item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
|
|
if (IS_ERR(item)) {
|
|
ret = PTR_ERR(item);
|
|
goto out;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
|
|
|
|
csum_start = key.offset;
|
|
csum_len = (itemsize / csum_size) * sectorsize;
|
|
ASSERT(in_range(disk_bytenr, csum_start, csum_len));
|
|
|
|
found:
|
|
ret = (min(csum_start + csum_len, disk_bytenr + len) -
|
|
disk_bytenr) >> fs_info->sectorsize_bits;
|
|
read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
|
|
ret * csum_size);
|
|
out:
|
|
if (ret == -ENOENT || ret == -EFBIG)
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Locate the file_offset of @cur_disk_bytenr of a @bio.
|
|
*
|
|
* Bio of btrfs represents read range of
|
|
* [bi_sector << 9, bi_sector << 9 + bi_size).
|
|
* Knowing this, we can iterate through each bvec to locate the page belong to
|
|
* @cur_disk_bytenr and get the file offset.
|
|
*
|
|
* @inode is used to determine if the bvec page really belongs to @inode.
|
|
*
|
|
* Return 0 if we can't find the file offset
|
|
* Return >0 if we find the file offset and restore it to @file_offset_ret
|
|
*/
|
|
static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
|
|
u64 disk_bytenr, u64 *file_offset_ret)
|
|
{
|
|
struct bvec_iter iter;
|
|
struct bio_vec bvec;
|
|
u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
int ret = 0;
|
|
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
struct page *page = bvec.bv_page;
|
|
|
|
if (cur > disk_bytenr)
|
|
break;
|
|
if (cur + bvec.bv_len <= disk_bytenr) {
|
|
cur += bvec.bv_len;
|
|
continue;
|
|
}
|
|
ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
|
|
if (page->mapping && page->mapping->host &&
|
|
page->mapping->host == inode) {
|
|
ret = 1;
|
|
*file_offset_ret = page_offset(page) + bvec.bv_offset +
|
|
disk_bytenr - cur;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Lookup the checksum for the read bio in csum tree.
|
|
*
|
|
* @inode: inode that the bio is for.
|
|
* @bio: bio to look up.
|
|
* @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
|
|
* checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
|
|
* NULL, the checksum buffer is allocated and returned in
|
|
* btrfs_bio(bio)->csum instead.
|
|
*
|
|
* Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
|
|
*/
|
|
blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_bio *bbio = NULL;
|
|
struct btrfs_path *path;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u32 orig_len = bio->bi_iter.bi_size;
|
|
u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 cur_disk_bytenr;
|
|
u8 *csum;
|
|
const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
|
|
int count = 0;
|
|
blk_status_t ret = BLK_STS_OK;
|
|
|
|
if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
|
|
test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
|
|
return BLK_STS_OK;
|
|
|
|
/*
|
|
* This function is only called for read bio.
|
|
*
|
|
* This means two things:
|
|
* - All our csums should only be in csum tree
|
|
* No ordered extents csums, as ordered extents are only for write
|
|
* path.
|
|
* - No need to bother any other info from bvec
|
|
* Since we're looking up csums, the only important info is the
|
|
* disk_bytenr and the length, which can be extracted from bi_iter
|
|
* directly.
|
|
*/
|
|
ASSERT(bio_op(bio) == REQ_OP_READ);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
if (!dst) {
|
|
bbio = btrfs_bio(bio);
|
|
|
|
if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
|
|
bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
|
|
if (!bbio->csum) {
|
|
btrfs_free_path(path);
|
|
return BLK_STS_RESOURCE;
|
|
}
|
|
} else {
|
|
bbio->csum = bbio->csum_inline;
|
|
}
|
|
csum = bbio->csum;
|
|
} else {
|
|
csum = dst;
|
|
}
|
|
|
|
/*
|
|
* If requested number of sectors is larger than one leaf can contain,
|
|
* kick the readahead for csum tree.
|
|
*/
|
|
if (nblocks > fs_info->csums_per_leaf)
|
|
path->reada = READA_FORWARD;
|
|
|
|
/*
|
|
* the free space stuff is only read when it hasn't been
|
|
* updated in the current transaction. So, we can safely
|
|
* read from the commit root and sidestep a nasty deadlock
|
|
* between reading the free space cache and updating the csum tree.
|
|
*/
|
|
if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
}
|
|
|
|
for (cur_disk_bytenr = orig_disk_bytenr;
|
|
cur_disk_bytenr < orig_disk_bytenr + orig_len;
|
|
cur_disk_bytenr += (count * sectorsize)) {
|
|
u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
|
|
unsigned int sector_offset;
|
|
u8 *csum_dst;
|
|
|
|
/*
|
|
* Although both cur_disk_bytenr and orig_disk_bytenr is u64,
|
|
* we're calculating the offset to the bio start.
|
|
*
|
|
* Bio size is limited to UINT_MAX, thus unsigned int is large
|
|
* enough to contain the raw result, not to mention the right
|
|
* shifted result.
|
|
*/
|
|
ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
|
|
sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
|
|
fs_info->sectorsize_bits;
|
|
csum_dst = csum + sector_offset * csum_size;
|
|
|
|
count = search_csum_tree(fs_info, path, cur_disk_bytenr,
|
|
search_len, csum_dst);
|
|
if (count < 0) {
|
|
ret = errno_to_blk_status(count);
|
|
if (bbio)
|
|
btrfs_bio_free_csum(bbio);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We didn't find a csum for this range. We need to make sure
|
|
* we complain loudly about this, because we are not NODATASUM.
|
|
*
|
|
* However for the DATA_RELOC inode we could potentially be
|
|
* relocating data extents for a NODATASUM inode, so the inode
|
|
* itself won't be marked with NODATASUM, but the extent we're
|
|
* copying is in fact NODATASUM. If we don't find a csum we
|
|
* assume this is the case.
|
|
*/
|
|
if (count == 0) {
|
|
memset(csum_dst, 0, csum_size);
|
|
count = 1;
|
|
|
|
if (BTRFS_I(inode)->root->root_key.objectid ==
|
|
BTRFS_DATA_RELOC_TREE_OBJECTID) {
|
|
u64 file_offset;
|
|
int ret;
|
|
|
|
ret = search_file_offset_in_bio(bio, inode,
|
|
cur_disk_bytenr, &file_offset);
|
|
if (ret)
|
|
set_extent_bits(io_tree, file_offset,
|
|
file_offset + sectorsize - 1,
|
|
EXTENT_NODATASUM);
|
|
} else {
|
|
btrfs_warn_rl(fs_info,
|
|
"csum hole found for disk bytenr range [%llu, %llu)",
|
|
cur_disk_bytenr, cur_disk_bytenr + sectorsize);
|
|
}
|
|
}
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
|
|
struct list_head *list, int search_commit,
|
|
bool nowait)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_ordered_sum *sums;
|
|
struct btrfs_csum_item *item;
|
|
LIST_HEAD(tmplist);
|
|
int ret;
|
|
|
|
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
|
|
IS_ALIGNED(end + 1, fs_info->sectorsize));
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->nowait = nowait;
|
|
if (search_commit) {
|
|
path->skip_locking = 1;
|
|
path->reada = READA_FORWARD;
|
|
path->search_commit_root = 1;
|
|
}
|
|
|
|
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key.offset = start;
|
|
key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0 && path->slots[0] > 0) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
|
|
|
|
/*
|
|
* There are two cases we can hit here for the previous csum
|
|
* item:
|
|
*
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Or
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Check if the previous csum item covers the leading part of
|
|
* the search range. If so we have to start from previous csum
|
|
* item.
|
|
*/
|
|
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
|
|
key.type == BTRFS_EXTENT_CSUM_KEY) {
|
|
if (bytes_to_csum_size(fs_info, start - key.offset) <
|
|
btrfs_item_size(leaf, path->slots[0] - 1))
|
|
path->slots[0]--;
|
|
}
|
|
}
|
|
|
|
while (start <= end) {
|
|
u64 csum_end;
|
|
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
key.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
key.offset > end)
|
|
break;
|
|
|
|
if (key.offset > start)
|
|
start = key.offset;
|
|
|
|
csum_end = key.offset + csum_size_to_bytes(fs_info,
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
if (csum_end <= start) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
csum_end = min(csum_end, end + 1);
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_csum_item);
|
|
while (start < csum_end) {
|
|
unsigned long offset;
|
|
size_t size;
|
|
|
|
size = min_t(size_t, csum_end - start,
|
|
max_ordered_sum_bytes(fs_info));
|
|
sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
|
|
GFP_NOFS);
|
|
if (!sums) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
sums->bytenr = start;
|
|
sums->len = (int)size;
|
|
|
|
offset = bytes_to_csum_size(fs_info, start - key.offset);
|
|
|
|
read_extent_buffer(path->nodes[0],
|
|
sums->sums,
|
|
((unsigned long)item) + offset,
|
|
bytes_to_csum_size(fs_info, size));
|
|
|
|
start += size;
|
|
list_add_tail(&sums->list, &tmplist);
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
fail:
|
|
while (ret < 0 && !list_empty(&tmplist)) {
|
|
sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
list_splice_tail(&tmplist, list);
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do the same work as btrfs_lookup_csums_list(), the difference is in how
|
|
* we return the result.
|
|
*
|
|
* This version will set the corresponding bits in @csum_bitmap to represent
|
|
* that there is a csum found.
|
|
* Each bit represents a sector. Thus caller should ensure @csum_buf passed
|
|
* in is large enough to contain all csums.
|
|
*/
|
|
int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
|
|
u8 *csum_buf, unsigned long *csum_bitmap)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_csum_item *item;
|
|
const u64 orig_start = start;
|
|
int ret;
|
|
|
|
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
|
|
IS_ALIGNED(end + 1, fs_info->sectorsize));
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
key.offset = start;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0 && path->slots[0] > 0) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
|
|
|
|
/*
|
|
* There are two cases we can hit here for the previous csum
|
|
* item:
|
|
*
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Or
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Check if the previous csum item covers the leading part of
|
|
* the search range. If so we have to start from previous csum
|
|
* item.
|
|
*/
|
|
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
|
|
key.type == BTRFS_EXTENT_CSUM_KEY) {
|
|
if (bytes_to_csum_size(fs_info, start - key.offset) <
|
|
btrfs_item_size(leaf, path->slots[0] - 1))
|
|
path->slots[0]--;
|
|
}
|
|
}
|
|
|
|
while (start <= end) {
|
|
u64 csum_end;
|
|
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
key.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
key.offset > end)
|
|
break;
|
|
|
|
if (key.offset > start)
|
|
start = key.offset;
|
|
|
|
csum_end = key.offset + csum_size_to_bytes(fs_info,
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
if (csum_end <= start) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
csum_end = min(csum_end, end + 1);
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_csum_item);
|
|
while (start < csum_end) {
|
|
unsigned long offset;
|
|
size_t size;
|
|
u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
|
|
start - orig_start);
|
|
|
|
size = min_t(size_t, csum_end - start, end + 1 - start);
|
|
|
|
offset = bytes_to_csum_size(fs_info, start - key.offset);
|
|
|
|
read_extent_buffer(path->nodes[0], csum_dest,
|
|
((unsigned long)item) + offset,
|
|
bytes_to_csum_size(fs_info, size));
|
|
|
|
bitmap_set(csum_bitmap,
|
|
(start - orig_start) >> fs_info->sectorsize_bits,
|
|
size >> fs_info->sectorsize_bits);
|
|
|
|
start += size;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
fail:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate checksums of the data contained inside a bio.
|
|
*
|
|
* @inode: Owner of the data inside the bio
|
|
* @bio: Contains the data to be checksummed
|
|
* @offset: If (u64)-1, @bio may contain discontiguous bio vecs, so the
|
|
* file offsets are determined from the page offsets in the bio.
|
|
* Otherwise, this is the starting file offset of the bio vecs in
|
|
* @bio, which must be contiguous.
|
|
* @one_ordered: If true, @bio only refers to one ordered extent.
|
|
*/
|
|
blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
|
|
u64 offset, bool one_ordered)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
struct btrfs_ordered_sum *sums;
|
|
struct btrfs_ordered_extent *ordered = NULL;
|
|
const bool use_page_offsets = (offset == (u64)-1);
|
|
char *data;
|
|
struct bvec_iter iter;
|
|
struct bio_vec bvec;
|
|
int index;
|
|
unsigned int blockcount;
|
|
unsigned long total_bytes = 0;
|
|
unsigned long this_sum_bytes = 0;
|
|
int i;
|
|
unsigned nofs_flag;
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
|
|
GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
|
|
if (!sums)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
sums->len = bio->bi_iter.bi_size;
|
|
INIT_LIST_HEAD(&sums->list);
|
|
|
|
sums->bytenr = bio->bi_iter.bi_sector << 9;
|
|
index = 0;
|
|
|
|
shash->tfm = fs_info->csum_shash;
|
|
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
if (use_page_offsets)
|
|
offset = page_offset(bvec.bv_page) + bvec.bv_offset;
|
|
|
|
if (!ordered) {
|
|
ordered = btrfs_lookup_ordered_extent(inode, offset);
|
|
/*
|
|
* The bio range is not covered by any ordered extent,
|
|
* must be a code logic error.
|
|
*/
|
|
if (unlikely(!ordered)) {
|
|
WARN(1, KERN_WARNING
|
|
"no ordered extent for root %llu ino %llu offset %llu\n",
|
|
inode->root->root_key.objectid,
|
|
btrfs_ino(inode), offset);
|
|
kvfree(sums);
|
|
return BLK_STS_IOERR;
|
|
}
|
|
}
|
|
|
|
blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
|
|
bvec.bv_len + fs_info->sectorsize
|
|
- 1);
|
|
|
|
for (i = 0; i < blockcount; i++) {
|
|
if (!one_ordered &&
|
|
!in_range(offset, ordered->file_offset,
|
|
ordered->num_bytes)) {
|
|
unsigned long bytes_left;
|
|
|
|
sums->len = this_sum_bytes;
|
|
this_sum_bytes = 0;
|
|
btrfs_add_ordered_sum(ordered, sums);
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
bytes_left = bio->bi_iter.bi_size - total_bytes;
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
|
|
bytes_left), GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
BUG_ON(!sums); /* -ENOMEM */
|
|
sums->len = bytes_left;
|
|
ordered = btrfs_lookup_ordered_extent(inode,
|
|
offset);
|
|
ASSERT(ordered); /* Logic error */
|
|
sums->bytenr = (bio->bi_iter.bi_sector << 9)
|
|
+ total_bytes;
|
|
index = 0;
|
|
}
|
|
|
|
data = bvec_kmap_local(&bvec);
|
|
crypto_shash_digest(shash,
|
|
data + (i * fs_info->sectorsize),
|
|
fs_info->sectorsize,
|
|
sums->sums + index);
|
|
kunmap_local(data);
|
|
index += fs_info->csum_size;
|
|
offset += fs_info->sectorsize;
|
|
this_sum_bytes += fs_info->sectorsize;
|
|
total_bytes += fs_info->sectorsize;
|
|
}
|
|
|
|
}
|
|
this_sum_bytes = 0;
|
|
btrfs_add_ordered_sum(ordered, sums);
|
|
btrfs_put_ordered_extent(ordered);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove one checksum overlapping a range.
|
|
*
|
|
* This expects the key to describe the csum pointed to by the path, and it
|
|
* expects the csum to overlap the range [bytenr, len]
|
|
*
|
|
* The csum should not be entirely contained in the range and the range should
|
|
* not be entirely contained in the csum.
|
|
*
|
|
* This calls btrfs_truncate_item with the correct args based on the overlap,
|
|
* and fixes up the key as required.
|
|
*/
|
|
static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *key,
|
|
u64 bytenr, u64 len)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u64 csum_end;
|
|
u64 end_byte = bytenr + len;
|
|
u32 blocksize_bits = fs_info->sectorsize_bits;
|
|
|
|
leaf = path->nodes[0];
|
|
csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
|
|
csum_end <<= blocksize_bits;
|
|
csum_end += key->offset;
|
|
|
|
if (key->offset < bytenr && csum_end <= end_byte) {
|
|
/*
|
|
* [ bytenr - len ]
|
|
* [ ]
|
|
* [csum ]
|
|
* A simple truncate off the end of the item
|
|
*/
|
|
u32 new_size = (bytenr - key->offset) >> blocksize_bits;
|
|
new_size *= csum_size;
|
|
btrfs_truncate_item(path, new_size, 1);
|
|
} else if (key->offset >= bytenr && csum_end > end_byte &&
|
|
end_byte > key->offset) {
|
|
/*
|
|
* [ bytenr - len ]
|
|
* [ ]
|
|
* [csum ]
|
|
* we need to truncate from the beginning of the csum
|
|
*/
|
|
u32 new_size = (csum_end - end_byte) >> blocksize_bits;
|
|
new_size *= csum_size;
|
|
|
|
btrfs_truncate_item(path, new_size, 0);
|
|
|
|
key->offset = end_byte;
|
|
btrfs_set_item_key_safe(fs_info, path, key);
|
|
} else {
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete the csum items from the csum tree for a given range of bytes.
|
|
*/
|
|
int btrfs_del_csums(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
u64 end_byte = bytenr + len;
|
|
u64 csum_end;
|
|
struct extent_buffer *leaf;
|
|
int ret = 0;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u32 blocksize_bits = fs_info->sectorsize_bits;
|
|
|
|
ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
|
|
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key.offset = end_byte - 1;
|
|
key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
} else if (ret < 0) {
|
|
break;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
key.type != BTRFS_EXTENT_CSUM_KEY) {
|
|
break;
|
|
}
|
|
|
|
if (key.offset >= end_byte)
|
|
break;
|
|
|
|
csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
|
|
csum_end <<= blocksize_bits;
|
|
csum_end += key.offset;
|
|
|
|
/* this csum ends before we start, we're done */
|
|
if (csum_end <= bytenr)
|
|
break;
|
|
|
|
/* delete the entire item, it is inside our range */
|
|
if (key.offset >= bytenr && csum_end <= end_byte) {
|
|
int del_nr = 1;
|
|
|
|
/*
|
|
* Check how many csum items preceding this one in this
|
|
* leaf correspond to our range and then delete them all
|
|
* at once.
|
|
*/
|
|
if (key.offset > bytenr && path->slots[0] > 0) {
|
|
int slot = path->slots[0] - 1;
|
|
|
|
while (slot >= 0) {
|
|
struct btrfs_key pk;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &pk, slot);
|
|
if (pk.offset < bytenr ||
|
|
pk.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
pk.objectid !=
|
|
BTRFS_EXTENT_CSUM_OBJECTID)
|
|
break;
|
|
path->slots[0] = slot;
|
|
del_nr++;
|
|
key.offset = pk.offset;
|
|
slot--;
|
|
}
|
|
}
|
|
ret = btrfs_del_items(trans, root, path,
|
|
path->slots[0], del_nr);
|
|
if (ret)
|
|
break;
|
|
if (key.offset == bytenr)
|
|
break;
|
|
} else if (key.offset < bytenr && csum_end > end_byte) {
|
|
unsigned long offset;
|
|
unsigned long shift_len;
|
|
unsigned long item_offset;
|
|
/*
|
|
* [ bytenr - len ]
|
|
* [csum ]
|
|
*
|
|
* Our bytes are in the middle of the csum,
|
|
* we need to split this item and insert a new one.
|
|
*
|
|
* But we can't drop the path because the
|
|
* csum could change, get removed, extended etc.
|
|
*
|
|
* The trick here is the max size of a csum item leaves
|
|
* enough room in the tree block for a single
|
|
* item header. So, we split the item in place,
|
|
* adding a new header pointing to the existing
|
|
* bytes. Then we loop around again and we have
|
|
* a nicely formed csum item that we can neatly
|
|
* truncate.
|
|
*/
|
|
offset = (bytenr - key.offset) >> blocksize_bits;
|
|
offset *= csum_size;
|
|
|
|
shift_len = (len >> blocksize_bits) * csum_size;
|
|
|
|
item_offset = btrfs_item_ptr_offset(leaf,
|
|
path->slots[0]);
|
|
|
|
memzero_extent_buffer(leaf, item_offset + offset,
|
|
shift_len);
|
|
key.offset = bytenr;
|
|
|
|
/*
|
|
* btrfs_split_item returns -EAGAIN when the
|
|
* item changed size or key
|
|
*/
|
|
ret = btrfs_split_item(trans, root, path, &key, offset);
|
|
if (ret && ret != -EAGAIN) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
break;
|
|
}
|
|
ret = 0;
|
|
|
|
key.offset = end_byte - 1;
|
|
} else {
|
|
truncate_one_csum(fs_info, path, &key, bytenr, len);
|
|
if (key.offset < bytenr)
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_next_csum_offset(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 *next_offset)
|
|
{
|
|
const u32 nritems = btrfs_header_nritems(path->nodes[0]);
|
|
struct btrfs_key found_key;
|
|
int slot = path->slots[0] + 1;
|
|
int ret;
|
|
|
|
if (nritems == 0 || slot >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
return ret;
|
|
} else if (ret > 0) {
|
|
*next_offset = (u64)-1;
|
|
return 0;
|
|
}
|
|
slot = path->slots[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
|
|
|
|
if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
found_key.type != BTRFS_EXTENT_CSUM_KEY)
|
|
*next_offset = (u64)-1;
|
|
else
|
|
*next_offset = found_key.offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_ordered_sum *sums)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key file_key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_csum_item *item;
|
|
struct btrfs_csum_item *item_end;
|
|
struct extent_buffer *leaf = NULL;
|
|
u64 next_offset;
|
|
u64 total_bytes = 0;
|
|
u64 csum_offset;
|
|
u64 bytenr;
|
|
u32 ins_size;
|
|
int index = 0;
|
|
int found_next;
|
|
int ret;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
again:
|
|
next_offset = (u64)-1;
|
|
found_next = 0;
|
|
bytenr = sums->bytenr + total_bytes;
|
|
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
file_key.offset = bytenr;
|
|
file_key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
|
|
item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
|
|
if (!IS_ERR(item)) {
|
|
ret = 0;
|
|
leaf = path->nodes[0];
|
|
item_end = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_csum_item);
|
|
item_end = (struct btrfs_csum_item *)((char *)item_end +
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
goto found;
|
|
}
|
|
ret = PTR_ERR(item);
|
|
if (ret != -EFBIG && ret != -ENOENT)
|
|
goto out;
|
|
|
|
if (ret == -EFBIG) {
|
|
u32 item_size;
|
|
/* we found one, but it isn't big enough yet */
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
if ((item_size / csum_size) >=
|
|
MAX_CSUM_ITEMS(fs_info, csum_size)) {
|
|
/* already at max size, make a new one */
|
|
goto insert;
|
|
}
|
|
} else {
|
|
/* We didn't find a csum item, insert one. */
|
|
ret = find_next_csum_offset(root, path, &next_offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
found_next = 1;
|
|
goto insert;
|
|
}
|
|
|
|
/*
|
|
* At this point, we know the tree has a checksum item that ends at an
|
|
* offset matching the start of the checksum range we want to insert.
|
|
* We try to extend that item as much as possible and then add as many
|
|
* checksums to it as they fit.
|
|
*
|
|
* First check if the leaf has enough free space for at least one
|
|
* checksum. If it has go directly to the item extension code, otherwise
|
|
* release the path and do a search for insertion before the extension.
|
|
*/
|
|
if (btrfs_leaf_free_space(leaf) >= csum_size) {
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
csum_offset = (bytenr - found_key.offset) >>
|
|
fs_info->sectorsize_bits;
|
|
goto extend_csum;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
path->search_for_extension = 1;
|
|
ret = btrfs_search_slot(trans, root, &file_key, path,
|
|
csum_size, 1);
|
|
path->search_for_extension = 0;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
goto insert;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
|
|
|
|
if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
|
|
goto insert;
|
|
}
|
|
|
|
extend_csum:
|
|
if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
|
|
csum_size) {
|
|
int extend_nr;
|
|
u64 tmp;
|
|
u32 diff;
|
|
|
|
tmp = sums->len - total_bytes;
|
|
tmp >>= fs_info->sectorsize_bits;
|
|
WARN_ON(tmp < 1);
|
|
extend_nr = max_t(int, 1, tmp);
|
|
|
|
/*
|
|
* A log tree can already have checksum items with a subset of
|
|
* the checksums we are trying to log. This can happen after
|
|
* doing a sequence of partial writes into prealloc extents and
|
|
* fsyncs in between, with a full fsync logging a larger subrange
|
|
* of an extent for which a previous fast fsync logged a smaller
|
|
* subrange. And this happens in particular due to merging file
|
|
* extent items when we complete an ordered extent for a range
|
|
* covered by a prealloc extent - this is done at
|
|
* btrfs_mark_extent_written().
|
|
*
|
|
* So if we try to extend the previous checksum item, which has
|
|
* a range that ends at the start of the range we want to insert,
|
|
* make sure we don't extend beyond the start offset of the next
|
|
* checksum item. If we are at the last item in the leaf, then
|
|
* forget the optimization of extending and add a new checksum
|
|
* item - it is not worth the complexity of releasing the path,
|
|
* getting the first key for the next leaf, repeat the btree
|
|
* search, etc, because log trees are temporary anyway and it
|
|
* would only save a few bytes of leaf space.
|
|
*/
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
if (path->slots[0] + 1 >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = find_next_csum_offset(root, path, &next_offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
found_next = 1;
|
|
goto insert;
|
|
}
|
|
|
|
ret = find_next_csum_offset(root, path, &next_offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
|
|
if (tmp <= INT_MAX)
|
|
extend_nr = min_t(int, extend_nr, tmp);
|
|
}
|
|
|
|
diff = (csum_offset + extend_nr) * csum_size;
|
|
diff = min(diff,
|
|
MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
|
|
|
|
diff = diff - btrfs_item_size(leaf, path->slots[0]);
|
|
diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
|
|
diff /= csum_size;
|
|
diff *= csum_size;
|
|
|
|
btrfs_extend_item(path, diff);
|
|
ret = 0;
|
|
goto csum;
|
|
}
|
|
|
|
insert:
|
|
btrfs_release_path(path);
|
|
csum_offset = 0;
|
|
if (found_next) {
|
|
u64 tmp;
|
|
|
|
tmp = sums->len - total_bytes;
|
|
tmp >>= fs_info->sectorsize_bits;
|
|
tmp = min(tmp, (next_offset - file_key.offset) >>
|
|
fs_info->sectorsize_bits);
|
|
|
|
tmp = max_t(u64, 1, tmp);
|
|
tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
|
|
ins_size = csum_size * tmp;
|
|
} else {
|
|
ins_size = csum_size;
|
|
}
|
|
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
|
|
ins_size);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (WARN_ON(ret != 0))
|
|
goto out;
|
|
leaf = path->nodes[0];
|
|
csum:
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
|
|
item_end = (struct btrfs_csum_item *)((unsigned char *)item +
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
item = (struct btrfs_csum_item *)((unsigned char *)item +
|
|
csum_offset * csum_size);
|
|
found:
|
|
ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
|
|
ins_size *= csum_size;
|
|
ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
|
|
ins_size);
|
|
write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
|
|
ins_size);
|
|
|
|
index += ins_size;
|
|
ins_size /= csum_size;
|
|
total_bytes += ins_size * fs_info->sectorsize;
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
if (total_bytes < sums->len) {
|
|
btrfs_release_path(path);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
|
|
const struct btrfs_path *path,
|
|
struct btrfs_file_extent_item *fi,
|
|
struct extent_map *em)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_root *root = inode->root;
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
const int slot = path->slots[0];
|
|
struct btrfs_key key;
|
|
u64 extent_start, extent_end;
|
|
u64 bytenr;
|
|
u8 type = btrfs_file_extent_type(leaf, fi);
|
|
int compress_type = btrfs_file_extent_compression(leaf, fi);
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
extent_start = key.offset;
|
|
extent_end = btrfs_file_extent_end(path);
|
|
em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
em->generation = btrfs_file_extent_generation(leaf, fi);
|
|
if (type == BTRFS_FILE_EXTENT_REG ||
|
|
type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
em->start = extent_start;
|
|
em->len = extent_end - extent_start;
|
|
em->orig_start = extent_start -
|
|
btrfs_file_extent_offset(leaf, fi);
|
|
em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (bytenr == 0) {
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
return;
|
|
}
|
|
if (compress_type != BTRFS_COMPRESS_NONE) {
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
em->compress_type = compress_type;
|
|
em->block_start = bytenr;
|
|
em->block_len = em->orig_block_len;
|
|
} else {
|
|
bytenr += btrfs_file_extent_offset(leaf, fi);
|
|
em->block_start = bytenr;
|
|
em->block_len = em->len;
|
|
if (type == BTRFS_FILE_EXTENT_PREALLOC)
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
}
|
|
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
|
|
em->block_start = EXTENT_MAP_INLINE;
|
|
em->start = extent_start;
|
|
em->len = extent_end - extent_start;
|
|
/*
|
|
* Initialize orig_start and block_len with the same values
|
|
* as in inode.c:btrfs_get_extent().
|
|
*/
|
|
em->orig_start = EXTENT_MAP_HOLE;
|
|
em->block_len = (u64)-1;
|
|
em->compress_type = compress_type;
|
|
if (compress_type != BTRFS_COMPRESS_NONE)
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
} else {
|
|
btrfs_err(fs_info,
|
|
"unknown file extent item type %d, inode %llu, offset %llu, "
|
|
"root %llu", type, btrfs_ino(inode), extent_start,
|
|
root->root_key.objectid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the end offset (non inclusive) of the file extent item the given path
|
|
* points to. If it points to an inline extent, the returned offset is rounded
|
|
* up to the sector size.
|
|
*/
|
|
u64 btrfs_file_extent_end(const struct btrfs_path *path)
|
|
{
|
|
const struct extent_buffer *leaf = path->nodes[0];
|
|
const int slot = path->slots[0];
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 end;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
|
|
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
|
|
end = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
|
|
} else {
|
|
end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
}
|
|
|
|
return end;
|
|
}
|