mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 08:31:55 +00:00
e28371c891
The synchronize_kernel() primitive was removed in favor of synchronize_sched() more than a decade ago, and it seems likely that rather few kernel hackers are familiar with it. Its continued presence is therefore providing more confusion than enlightenment. This commit therefore removes the reference from the synchronize_sched() header comment, and adds the corresponding information to the synchronize_rcu(0 header comment. Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
4228 lines
131 KiB
C
4228 lines
131 KiB
C
/*
|
|
* Read-Copy Update mechanism for mutual exclusion
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you can access it online at
|
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
|
*
|
|
* Copyright IBM Corporation, 2008
|
|
*
|
|
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
|
* Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
|
|
*
|
|
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
|
|
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
|
|
*
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
|
* Documentation/RCU
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/rcupdate_wait.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/export.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/time.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/kthread.h>
|
|
#include <uapi/linux/sched/types.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/random.h>
|
|
#include <linux/trace_events.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/ftrace.h>
|
|
|
|
#include "tree.h"
|
|
#include "rcu.h"
|
|
|
|
#ifdef MODULE_PARAM_PREFIX
|
|
#undef MODULE_PARAM_PREFIX
|
|
#endif
|
|
#define MODULE_PARAM_PREFIX "rcutree."
|
|
|
|
/* Data structures. */
|
|
|
|
/*
|
|
* In order to export the rcu_state name to the tracing tools, it
|
|
* needs to be added in the __tracepoint_string section.
|
|
* This requires defining a separate variable tp_<sname>_varname
|
|
* that points to the string being used, and this will allow
|
|
* the tracing userspace tools to be able to decipher the string
|
|
* address to the matching string.
|
|
*/
|
|
#ifdef CONFIG_TRACING
|
|
# define DEFINE_RCU_TPS(sname) \
|
|
static char sname##_varname[] = #sname; \
|
|
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
|
|
# define RCU_STATE_NAME(sname) sname##_varname
|
|
#else
|
|
# define DEFINE_RCU_TPS(sname)
|
|
# define RCU_STATE_NAME(sname) __stringify(sname)
|
|
#endif
|
|
|
|
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
|
|
DEFINE_RCU_TPS(sname) \
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
|
|
struct rcu_state sname##_state = { \
|
|
.level = { &sname##_state.node[0] }, \
|
|
.rda = &sname##_data, \
|
|
.call = cr, \
|
|
.gp_state = RCU_GP_IDLE, \
|
|
.gpnum = 0UL - 300UL, \
|
|
.completed = 0UL - 300UL, \
|
|
.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
|
|
.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
|
|
.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
|
|
.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
|
|
.name = RCU_STATE_NAME(sname), \
|
|
.abbr = sabbr, \
|
|
.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
|
|
.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
|
|
}
|
|
|
|
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
|
|
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
|
|
|
|
static struct rcu_state *const rcu_state_p;
|
|
LIST_HEAD(rcu_struct_flavors);
|
|
|
|
/* Dump rcu_node combining tree at boot to verify correct setup. */
|
|
static bool dump_tree;
|
|
module_param(dump_tree, bool, 0444);
|
|
/* Control rcu_node-tree auto-balancing at boot time. */
|
|
static bool rcu_fanout_exact;
|
|
module_param(rcu_fanout_exact, bool, 0444);
|
|
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
|
|
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
|
|
module_param(rcu_fanout_leaf, int, 0444);
|
|
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
|
|
/* Number of rcu_nodes at specified level. */
|
|
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
|
|
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
|
|
/* panic() on RCU Stall sysctl. */
|
|
int sysctl_panic_on_rcu_stall __read_mostly;
|
|
|
|
/*
|
|
* The rcu_scheduler_active variable is initialized to the value
|
|
* RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
|
|
* first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
|
|
* RCU can assume that there is but one task, allowing RCU to (for example)
|
|
* optimize synchronize_rcu() to a simple barrier(). When this variable
|
|
* is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
|
|
* to detect real grace periods. This variable is also used to suppress
|
|
* boot-time false positives from lockdep-RCU error checking. Finally, it
|
|
* transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
|
|
* is fully initialized, including all of its kthreads having been spawned.
|
|
*/
|
|
int rcu_scheduler_active __read_mostly;
|
|
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
|
|
|
|
/*
|
|
* The rcu_scheduler_fully_active variable transitions from zero to one
|
|
* during the early_initcall() processing, which is after the scheduler
|
|
* is capable of creating new tasks. So RCU processing (for example,
|
|
* creating tasks for RCU priority boosting) must be delayed until after
|
|
* rcu_scheduler_fully_active transitions from zero to one. We also
|
|
* currently delay invocation of any RCU callbacks until after this point.
|
|
*
|
|
* It might later prove better for people registering RCU callbacks during
|
|
* early boot to take responsibility for these callbacks, but one step at
|
|
* a time.
|
|
*/
|
|
static int rcu_scheduler_fully_active __read_mostly;
|
|
|
|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
|
|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
|
|
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
|
|
static void invoke_rcu_core(void);
|
|
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
|
|
static void rcu_report_exp_rdp(struct rcu_state *rsp,
|
|
struct rcu_data *rdp, bool wake);
|
|
static void sync_sched_exp_online_cleanup(int cpu);
|
|
|
|
/* rcuc/rcub kthread realtime priority */
|
|
#ifdef CONFIG_RCU_KTHREAD_PRIO
|
|
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
|
|
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
|
|
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
|
|
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
|
|
module_param(kthread_prio, int, 0644);
|
|
|
|
/* Delay in jiffies for grace-period initialization delays, debug only. */
|
|
|
|
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
|
|
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
|
|
module_param(gp_preinit_delay, int, 0644);
|
|
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
|
|
static const int gp_preinit_delay;
|
|
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
|
|
|
|
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
|
|
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
|
|
module_param(gp_init_delay, int, 0644);
|
|
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
|
|
static const int gp_init_delay;
|
|
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
|
|
|
|
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
|
|
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
|
|
module_param(gp_cleanup_delay, int, 0644);
|
|
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
|
|
static const int gp_cleanup_delay;
|
|
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
|
|
|
|
/*
|
|
* Number of grace periods between delays, normalized by the duration of
|
|
* the delay. The longer the delay, the more the grace periods between
|
|
* each delay. The reason for this normalization is that it means that,
|
|
* for non-zero delays, the overall slowdown of grace periods is constant
|
|
* regardless of the duration of the delay. This arrangement balances
|
|
* the need for long delays to increase some race probabilities with the
|
|
* need for fast grace periods to increase other race probabilities.
|
|
*/
|
|
#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
|
|
|
|
/*
|
|
* Track the rcutorture test sequence number and the update version
|
|
* number within a given test. The rcutorture_testseq is incremented
|
|
* on every rcutorture module load and unload, so has an odd value
|
|
* when a test is running. The rcutorture_vernum is set to zero
|
|
* when rcutorture starts and is incremented on each rcutorture update.
|
|
* These variables enable correlating rcutorture output with the
|
|
* RCU tracing information.
|
|
*/
|
|
unsigned long rcutorture_testseq;
|
|
unsigned long rcutorture_vernum;
|
|
|
|
/*
|
|
* Compute the mask of online CPUs for the specified rcu_node structure.
|
|
* This will not be stable unless the rcu_node structure's ->lock is
|
|
* held, but the bit corresponding to the current CPU will be stable
|
|
* in most contexts.
|
|
*/
|
|
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
|
|
{
|
|
return READ_ONCE(rnp->qsmaskinitnext);
|
|
}
|
|
|
|
/*
|
|
* Return true if an RCU grace period is in progress. The READ_ONCE()s
|
|
* permit this function to be invoked without holding the root rcu_node
|
|
* structure's ->lock, but of course results can be subject to change.
|
|
*/
|
|
static int rcu_gp_in_progress(struct rcu_state *rsp)
|
|
{
|
|
return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
|
|
}
|
|
|
|
/*
|
|
* Note a quiescent state. Because we do not need to know
|
|
* how many quiescent states passed, just if there was at least
|
|
* one since the start of the grace period, this just sets a flag.
|
|
* The caller must have disabled preemption.
|
|
*/
|
|
void rcu_sched_qs(void)
|
|
{
|
|
if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
|
|
return;
|
|
trace_rcu_grace_period(TPS("rcu_sched"),
|
|
__this_cpu_read(rcu_sched_data.gpnum),
|
|
TPS("cpuqs"));
|
|
__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
|
|
if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
|
|
return;
|
|
__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
|
|
rcu_report_exp_rdp(&rcu_sched_state,
|
|
this_cpu_ptr(&rcu_sched_data), true);
|
|
}
|
|
|
|
void rcu_bh_qs(void)
|
|
{
|
|
if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
|
|
trace_rcu_grace_period(TPS("rcu_bh"),
|
|
__this_cpu_read(rcu_bh_data.gpnum),
|
|
TPS("cpuqs"));
|
|
__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Steal a bit from the bottom of ->dynticks for idle entry/exit
|
|
* control. Initially this is for TLB flushing.
|
|
*/
|
|
#define RCU_DYNTICK_CTRL_MASK 0x1
|
|
#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
|
|
#ifndef rcu_eqs_special_exit
|
|
#define rcu_eqs_special_exit() do { } while (0)
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
|
|
.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
|
|
.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
|
|
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
|
|
.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
|
|
.dynticks_idle = ATOMIC_INIT(1),
|
|
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
|
|
};
|
|
|
|
/*
|
|
* There's a few places, currently just in the tracing infrastructure,
|
|
* that uses rcu_irq_enter() to make sure RCU is watching. But there's
|
|
* a small location where that will not even work. In those cases
|
|
* rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
|
|
* can be called.
|
|
*/
|
|
static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
|
|
|
|
bool rcu_irq_enter_disabled(void)
|
|
{
|
|
return this_cpu_read(disable_rcu_irq_enter);
|
|
}
|
|
|
|
/*
|
|
* Record entry into an extended quiescent state. This is only to be
|
|
* called when not already in an extended quiescent state.
|
|
*/
|
|
static void rcu_dynticks_eqs_enter(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
int seq;
|
|
|
|
/*
|
|
* CPUs seeing atomic_add_return() must see prior RCU read-side
|
|
* critical sections, and we also must force ordering with the
|
|
* next idle sojourn.
|
|
*/
|
|
seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
|
|
/* Better be in an extended quiescent state! */
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
(seq & RCU_DYNTICK_CTRL_CTR));
|
|
/* Better not have special action (TLB flush) pending! */
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
(seq & RCU_DYNTICK_CTRL_MASK));
|
|
}
|
|
|
|
/*
|
|
* Record exit from an extended quiescent state. This is only to be
|
|
* called from an extended quiescent state.
|
|
*/
|
|
static void rcu_dynticks_eqs_exit(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
int seq;
|
|
|
|
/*
|
|
* CPUs seeing atomic_add_return() must see prior idle sojourns,
|
|
* and we also must force ordering with the next RCU read-side
|
|
* critical section.
|
|
*/
|
|
seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
!(seq & RCU_DYNTICK_CTRL_CTR));
|
|
if (seq & RCU_DYNTICK_CTRL_MASK) {
|
|
atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
|
|
smp_mb__after_atomic(); /* _exit after clearing mask. */
|
|
/* Prefer duplicate flushes to losing a flush. */
|
|
rcu_eqs_special_exit();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the current CPU's ->dynticks counter to indicate that the
|
|
* newly onlined CPU is no longer in an extended quiescent state.
|
|
* This will either leave the counter unchanged, or increment it
|
|
* to the next non-quiescent value.
|
|
*
|
|
* The non-atomic test/increment sequence works because the upper bits
|
|
* of the ->dynticks counter are manipulated only by the corresponding CPU,
|
|
* or when the corresponding CPU is offline.
|
|
*/
|
|
static void rcu_dynticks_eqs_online(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
|
|
if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
|
|
return;
|
|
atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
|
|
}
|
|
|
|
/*
|
|
* Is the current CPU in an extended quiescent state?
|
|
*
|
|
* No ordering, as we are sampling CPU-local information.
|
|
*/
|
|
bool rcu_dynticks_curr_cpu_in_eqs(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
|
|
return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
|
|
}
|
|
|
|
/*
|
|
* Snapshot the ->dynticks counter with full ordering so as to allow
|
|
* stable comparison of this counter with past and future snapshots.
|
|
*/
|
|
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
|
|
{
|
|
int snap = atomic_add_return(0, &rdtp->dynticks);
|
|
|
|
return snap & ~RCU_DYNTICK_CTRL_MASK;
|
|
}
|
|
|
|
/*
|
|
* Return true if the snapshot returned from rcu_dynticks_snap()
|
|
* indicates that RCU is in an extended quiescent state.
|
|
*/
|
|
static bool rcu_dynticks_in_eqs(int snap)
|
|
{
|
|
return !(snap & RCU_DYNTICK_CTRL_CTR);
|
|
}
|
|
|
|
/*
|
|
* Return true if the CPU corresponding to the specified rcu_dynticks
|
|
* structure has spent some time in an extended quiescent state since
|
|
* rcu_dynticks_snap() returned the specified snapshot.
|
|
*/
|
|
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
|
|
{
|
|
return snap != rcu_dynticks_snap(rdtp);
|
|
}
|
|
|
|
/*
|
|
* Do a double-increment of the ->dynticks counter to emulate a
|
|
* momentary idle-CPU quiescent state.
|
|
*/
|
|
static void rcu_dynticks_momentary_idle(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
|
|
&rdtp->dynticks);
|
|
|
|
/* It is illegal to call this from idle state. */
|
|
WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
|
|
}
|
|
|
|
/*
|
|
* Set the special (bottom) bit of the specified CPU so that it
|
|
* will take special action (such as flushing its TLB) on the
|
|
* next exit from an extended quiescent state. Returns true if
|
|
* the bit was successfully set, or false if the CPU was not in
|
|
* an extended quiescent state.
|
|
*/
|
|
bool rcu_eqs_special_set(int cpu)
|
|
{
|
|
int old;
|
|
int new;
|
|
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
|
|
|
do {
|
|
old = atomic_read(&rdtp->dynticks);
|
|
if (old & RCU_DYNTICK_CTRL_CTR)
|
|
return false;
|
|
new = old | RCU_DYNTICK_CTRL_MASK;
|
|
} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Let the RCU core know that this CPU has gone through the scheduler,
|
|
* which is a quiescent state. This is called when the need for a
|
|
* quiescent state is urgent, so we burn an atomic operation and full
|
|
* memory barriers to let the RCU core know about it, regardless of what
|
|
* this CPU might (or might not) do in the near future.
|
|
*
|
|
* We inform the RCU core by emulating a zero-duration dyntick-idle period.
|
|
*
|
|
* The caller must have disabled interrupts.
|
|
*/
|
|
static void rcu_momentary_dyntick_idle(void)
|
|
{
|
|
raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
|
|
rcu_dynticks_momentary_idle();
|
|
}
|
|
|
|
/*
|
|
* Note a context switch. This is a quiescent state for RCU-sched,
|
|
* and requires special handling for preemptible RCU.
|
|
* The caller must have disabled interrupts.
|
|
*/
|
|
void rcu_note_context_switch(bool preempt)
|
|
{
|
|
barrier(); /* Avoid RCU read-side critical sections leaking down. */
|
|
trace_rcu_utilization(TPS("Start context switch"));
|
|
rcu_sched_qs();
|
|
rcu_preempt_note_context_switch(preempt);
|
|
/* Load rcu_urgent_qs before other flags. */
|
|
if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
|
|
goto out;
|
|
this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
|
|
if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
|
|
rcu_momentary_dyntick_idle();
|
|
this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
|
|
if (!preempt)
|
|
rcu_note_voluntary_context_switch_lite(current);
|
|
out:
|
|
trace_rcu_utilization(TPS("End context switch"));
|
|
barrier(); /* Avoid RCU read-side critical sections leaking up. */
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
|
|
|
|
/*
|
|
* Register a quiescent state for all RCU flavors. If there is an
|
|
* emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
|
|
* dyntick-idle quiescent state visible to other CPUs (but only for those
|
|
* RCU flavors in desperate need of a quiescent state, which will normally
|
|
* be none of them). Either way, do a lightweight quiescent state for
|
|
* all RCU flavors.
|
|
*
|
|
* The barrier() calls are redundant in the common case when this is
|
|
* called externally, but just in case this is called from within this
|
|
* file.
|
|
*
|
|
*/
|
|
void rcu_all_qs(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
|
|
return;
|
|
preempt_disable();
|
|
/* Load rcu_urgent_qs before other flags. */
|
|
if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
|
|
barrier(); /* Avoid RCU read-side critical sections leaking down. */
|
|
if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
|
|
local_irq_save(flags);
|
|
rcu_momentary_dyntick_idle();
|
|
local_irq_restore(flags);
|
|
}
|
|
if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
|
|
rcu_sched_qs();
|
|
this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
|
|
barrier(); /* Avoid RCU read-side critical sections leaking up. */
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_all_qs);
|
|
|
|
static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
|
|
static long qhimark = 10000; /* If this many pending, ignore blimit. */
|
|
static long qlowmark = 100; /* Once only this many pending, use blimit. */
|
|
|
|
module_param(blimit, long, 0444);
|
|
module_param(qhimark, long, 0444);
|
|
module_param(qlowmark, long, 0444);
|
|
|
|
static ulong jiffies_till_first_fqs = ULONG_MAX;
|
|
static ulong jiffies_till_next_fqs = ULONG_MAX;
|
|
static bool rcu_kick_kthreads;
|
|
|
|
module_param(jiffies_till_first_fqs, ulong, 0644);
|
|
module_param(jiffies_till_next_fqs, ulong, 0644);
|
|
module_param(rcu_kick_kthreads, bool, 0644);
|
|
|
|
/*
|
|
* How long the grace period must be before we start recruiting
|
|
* quiescent-state help from rcu_note_context_switch().
|
|
*/
|
|
static ulong jiffies_till_sched_qs = HZ / 20;
|
|
module_param(jiffies_till_sched_qs, ulong, 0644);
|
|
|
|
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
|
|
struct rcu_data *rdp);
|
|
static void force_qs_rnp(struct rcu_state *rsp,
|
|
int (*f)(struct rcu_data *rsp, bool *isidle,
|
|
unsigned long *maxj),
|
|
bool *isidle, unsigned long *maxj);
|
|
static void force_quiescent_state(struct rcu_state *rsp);
|
|
static int rcu_pending(void);
|
|
|
|
/*
|
|
* Return the number of RCU batches started thus far for debug & stats.
|
|
*/
|
|
unsigned long rcu_batches_started(void)
|
|
{
|
|
return rcu_state_p->gpnum;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_started);
|
|
|
|
/*
|
|
* Return the number of RCU-sched batches started thus far for debug & stats.
|
|
*/
|
|
unsigned long rcu_batches_started_sched(void)
|
|
{
|
|
return rcu_sched_state.gpnum;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
|
|
|
|
/*
|
|
* Return the number of RCU BH batches started thus far for debug & stats.
|
|
*/
|
|
unsigned long rcu_batches_started_bh(void)
|
|
{
|
|
return rcu_bh_state.gpnum;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
|
|
|
|
/*
|
|
* Return the number of RCU batches completed thus far for debug & stats.
|
|
*/
|
|
unsigned long rcu_batches_completed(void)
|
|
{
|
|
return rcu_state_p->completed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed);
|
|
|
|
/*
|
|
* Return the number of RCU-sched batches completed thus far for debug & stats.
|
|
*/
|
|
unsigned long rcu_batches_completed_sched(void)
|
|
{
|
|
return rcu_sched_state.completed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
|
|
|
|
/*
|
|
* Return the number of RCU BH batches completed thus far for debug & stats.
|
|
*/
|
|
unsigned long rcu_batches_completed_bh(void)
|
|
{
|
|
return rcu_bh_state.completed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
|
|
|
|
/*
|
|
* Return the number of RCU expedited batches completed thus far for
|
|
* debug & stats. Odd numbers mean that a batch is in progress, even
|
|
* numbers mean idle. The value returned will thus be roughly double
|
|
* the cumulative batches since boot.
|
|
*/
|
|
unsigned long rcu_exp_batches_completed(void)
|
|
{
|
|
return rcu_state_p->expedited_sequence;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
|
|
|
|
/*
|
|
* Return the number of RCU-sched expedited batches completed thus far
|
|
* for debug & stats. Similar to rcu_exp_batches_completed().
|
|
*/
|
|
unsigned long rcu_exp_batches_completed_sched(void)
|
|
{
|
|
return rcu_sched_state.expedited_sequence;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
|
|
|
|
/*
|
|
* Force a quiescent state.
|
|
*/
|
|
void rcu_force_quiescent_state(void)
|
|
{
|
|
force_quiescent_state(rcu_state_p);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
|
|
|
|
/*
|
|
* Force a quiescent state for RCU BH.
|
|
*/
|
|
void rcu_bh_force_quiescent_state(void)
|
|
{
|
|
force_quiescent_state(&rcu_bh_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
|
|
|
|
/*
|
|
* Force a quiescent state for RCU-sched.
|
|
*/
|
|
void rcu_sched_force_quiescent_state(void)
|
|
{
|
|
force_quiescent_state(&rcu_sched_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
|
|
|
|
/*
|
|
* Show the state of the grace-period kthreads.
|
|
*/
|
|
void show_rcu_gp_kthreads(void)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp) {
|
|
pr_info("%s: wait state: %d ->state: %#lx\n",
|
|
rsp->name, rsp->gp_state, rsp->gp_kthread->state);
|
|
/* sched_show_task(rsp->gp_kthread); */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
|
|
|
|
/*
|
|
* Record the number of times rcutorture tests have been initiated and
|
|
* terminated. This information allows the debugfs tracing stats to be
|
|
* correlated to the rcutorture messages, even when the rcutorture module
|
|
* is being repeatedly loaded and unloaded. In other words, we cannot
|
|
* store this state in rcutorture itself.
|
|
*/
|
|
void rcutorture_record_test_transition(void)
|
|
{
|
|
rcutorture_testseq++;
|
|
rcutorture_vernum = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
|
|
|
|
/*
|
|
* Send along grace-period-related data for rcutorture diagnostics.
|
|
*/
|
|
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
|
|
unsigned long *gpnum, unsigned long *completed)
|
|
{
|
|
struct rcu_state *rsp = NULL;
|
|
|
|
switch (test_type) {
|
|
case RCU_FLAVOR:
|
|
rsp = rcu_state_p;
|
|
break;
|
|
case RCU_BH_FLAVOR:
|
|
rsp = &rcu_bh_state;
|
|
break;
|
|
case RCU_SCHED_FLAVOR:
|
|
rsp = &rcu_sched_state;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (rsp == NULL)
|
|
return;
|
|
*flags = READ_ONCE(rsp->gp_flags);
|
|
*gpnum = READ_ONCE(rsp->gpnum);
|
|
*completed = READ_ONCE(rsp->completed);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
|
|
|
|
/*
|
|
* Record the number of writer passes through the current rcutorture test.
|
|
* This is also used to correlate debugfs tracing stats with the rcutorture
|
|
* messages.
|
|
*/
|
|
void rcutorture_record_progress(unsigned long vernum)
|
|
{
|
|
rcutorture_vernum++;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcutorture_record_progress);
|
|
|
|
/*
|
|
* Return the root node of the specified rcu_state structure.
|
|
*/
|
|
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
|
|
{
|
|
return &rsp->node[0];
|
|
}
|
|
|
|
/*
|
|
* Is there any need for future grace periods?
|
|
* Interrupts must be disabled. If the caller does not hold the root
|
|
* rnp_node structure's ->lock, the results are advisory only.
|
|
*/
|
|
static int rcu_future_needs_gp(struct rcu_state *rsp)
|
|
{
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
|
|
int *fp = &rnp->need_future_gp[idx];
|
|
|
|
return READ_ONCE(*fp);
|
|
}
|
|
|
|
/*
|
|
* Does the current CPU require a not-yet-started grace period?
|
|
* The caller must have disabled interrupts to prevent races with
|
|
* normal callback registry.
|
|
*/
|
|
static bool
|
|
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
if (rcu_gp_in_progress(rsp))
|
|
return false; /* No, a grace period is already in progress. */
|
|
if (rcu_future_needs_gp(rsp))
|
|
return true; /* Yes, a no-CBs CPU needs one. */
|
|
if (!rcu_segcblist_is_enabled(&rdp->cblist))
|
|
return false; /* No, this is a no-CBs (or offline) CPU. */
|
|
if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
|
|
return true; /* Yes, CPU has newly registered callbacks. */
|
|
if (rcu_segcblist_future_gp_needed(&rdp->cblist,
|
|
READ_ONCE(rsp->completed)))
|
|
return true; /* Yes, CBs for future grace period. */
|
|
return false; /* No grace period needed. */
|
|
}
|
|
|
|
/*
|
|
* rcu_eqs_enter_common - current CPU is entering an extended quiescent state
|
|
*
|
|
* Enter idle, doing appropriate accounting. The caller must have
|
|
* disabled interrupts.
|
|
*/
|
|
static void rcu_eqs_enter_common(bool user)
|
|
{
|
|
struct rcu_state *rsp;
|
|
struct rcu_data *rdp;
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
|
|
trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
|
|
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
!user && !is_idle_task(current)) {
|
|
struct task_struct *idle __maybe_unused =
|
|
idle_task(smp_processor_id());
|
|
|
|
trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
|
|
rcu_ftrace_dump(DUMP_ORIG);
|
|
WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
|
|
current->pid, current->comm,
|
|
idle->pid, idle->comm); /* must be idle task! */
|
|
}
|
|
for_each_rcu_flavor(rsp) {
|
|
rdp = this_cpu_ptr(rsp->rda);
|
|
do_nocb_deferred_wakeup(rdp);
|
|
}
|
|
rcu_prepare_for_idle();
|
|
__this_cpu_inc(disable_rcu_irq_enter);
|
|
rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
|
|
rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
|
|
__this_cpu_dec(disable_rcu_irq_enter);
|
|
rcu_dynticks_task_enter();
|
|
|
|
/*
|
|
* It is illegal to enter an extended quiescent state while
|
|
* in an RCU read-side critical section.
|
|
*/
|
|
RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
|
|
"Illegal idle entry in RCU read-side critical section.");
|
|
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
|
|
"Illegal idle entry in RCU-bh read-side critical section.");
|
|
RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
|
|
"Illegal idle entry in RCU-sched read-side critical section.");
|
|
}
|
|
|
|
/*
|
|
* Enter an RCU extended quiescent state, which can be either the
|
|
* idle loop or adaptive-tickless usermode execution.
|
|
*/
|
|
static void rcu_eqs_enter(bool user)
|
|
{
|
|
struct rcu_dynticks *rdtp;
|
|
|
|
rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
|
|
if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
|
|
rcu_eqs_enter_common(user);
|
|
else
|
|
rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
|
|
}
|
|
|
|
/**
|
|
* rcu_idle_enter - inform RCU that current CPU is entering idle
|
|
*
|
|
* Enter idle mode, in other words, -leave- the mode in which RCU
|
|
* read-side critical sections can occur. (Though RCU read-side
|
|
* critical sections can occur in irq handlers in idle, a possibility
|
|
* handled by irq_enter() and irq_exit().)
|
|
*
|
|
* We crowbar the ->dynticks_nesting field to zero to allow for
|
|
* the possibility of usermode upcalls having messed up our count
|
|
* of interrupt nesting level during the prior busy period.
|
|
*/
|
|
void rcu_idle_enter(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
rcu_eqs_enter(false);
|
|
rcu_sysidle_enter(0);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_idle_enter);
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
/**
|
|
* rcu_user_enter - inform RCU that we are resuming userspace.
|
|
*
|
|
* Enter RCU idle mode right before resuming userspace. No use of RCU
|
|
* is permitted between this call and rcu_user_exit(). This way the
|
|
* CPU doesn't need to maintain the tick for RCU maintenance purposes
|
|
* when the CPU runs in userspace.
|
|
*/
|
|
void rcu_user_enter(void)
|
|
{
|
|
rcu_eqs_enter(1);
|
|
}
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
|
|
|
/**
|
|
* rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
|
|
*
|
|
* Exit from an interrupt handler, which might possibly result in entering
|
|
* idle mode, in other words, leaving the mode in which read-side critical
|
|
* sections can occur. The caller must have disabled interrupts.
|
|
*
|
|
* This code assumes that the idle loop never does anything that might
|
|
* result in unbalanced calls to irq_enter() and irq_exit(). If your
|
|
* architecture violates this assumption, RCU will give you what you
|
|
* deserve, good and hard. But very infrequently and irreproducibly.
|
|
*
|
|
* Use things like work queues to work around this limitation.
|
|
*
|
|
* You have been warned.
|
|
*/
|
|
void rcu_irq_exit(void)
|
|
{
|
|
struct rcu_dynticks *rdtp;
|
|
|
|
RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
|
|
rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
rdtp->dynticks_nesting < 1);
|
|
if (rdtp->dynticks_nesting <= 1) {
|
|
rcu_eqs_enter_common(true);
|
|
} else {
|
|
trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
|
|
rdtp->dynticks_nesting--;
|
|
}
|
|
rcu_sysidle_enter(1);
|
|
}
|
|
|
|
/*
|
|
* Wrapper for rcu_irq_exit() where interrupts are enabled.
|
|
*/
|
|
void rcu_irq_exit_irqson(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
rcu_irq_exit();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* rcu_eqs_exit_common - current CPU moving away from extended quiescent state
|
|
*
|
|
* If the new value of the ->dynticks_nesting counter was previously zero,
|
|
* we really have exited idle, and must do the appropriate accounting.
|
|
* The caller must have disabled interrupts.
|
|
*/
|
|
static void rcu_eqs_exit_common(long long oldval, int user)
|
|
{
|
|
RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
|
|
|
|
rcu_dynticks_task_exit();
|
|
rcu_dynticks_eqs_exit();
|
|
rcu_cleanup_after_idle();
|
|
trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
|
|
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
!user && !is_idle_task(current)) {
|
|
struct task_struct *idle __maybe_unused =
|
|
idle_task(smp_processor_id());
|
|
|
|
trace_rcu_dyntick(TPS("Error on exit: not idle task"),
|
|
oldval, rdtp->dynticks_nesting);
|
|
rcu_ftrace_dump(DUMP_ORIG);
|
|
WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
|
|
current->pid, current->comm,
|
|
idle->pid, idle->comm); /* must be idle task! */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Exit an RCU extended quiescent state, which can be either the
|
|
* idle loop or adaptive-tickless usermode execution.
|
|
*/
|
|
static void rcu_eqs_exit(bool user)
|
|
{
|
|
struct rcu_dynticks *rdtp;
|
|
long long oldval;
|
|
|
|
rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
oldval = rdtp->dynticks_nesting;
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
|
|
if (oldval & DYNTICK_TASK_NEST_MASK) {
|
|
rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
|
|
} else {
|
|
rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
|
|
rcu_eqs_exit_common(oldval, user);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rcu_idle_exit - inform RCU that current CPU is leaving idle
|
|
*
|
|
* Exit idle mode, in other words, -enter- the mode in which RCU
|
|
* read-side critical sections can occur.
|
|
*
|
|
* We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
|
|
* allow for the possibility of usermode upcalls messing up our count
|
|
* of interrupt nesting level during the busy period that is just
|
|
* now starting.
|
|
*/
|
|
void rcu_idle_exit(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
rcu_eqs_exit(false);
|
|
rcu_sysidle_exit(0);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_idle_exit);
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
/**
|
|
* rcu_user_exit - inform RCU that we are exiting userspace.
|
|
*
|
|
* Exit RCU idle mode while entering the kernel because it can
|
|
* run a RCU read side critical section anytime.
|
|
*/
|
|
void rcu_user_exit(void)
|
|
{
|
|
rcu_eqs_exit(1);
|
|
}
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
|
|
|
/**
|
|
* rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
|
|
*
|
|
* Enter an interrupt handler, which might possibly result in exiting
|
|
* idle mode, in other words, entering the mode in which read-side critical
|
|
* sections can occur. The caller must have disabled interrupts.
|
|
*
|
|
* Note that the Linux kernel is fully capable of entering an interrupt
|
|
* handler that it never exits, for example when doing upcalls to
|
|
* user mode! This code assumes that the idle loop never does upcalls to
|
|
* user mode. If your architecture does do upcalls from the idle loop (or
|
|
* does anything else that results in unbalanced calls to the irq_enter()
|
|
* and irq_exit() functions), RCU will give you what you deserve, good
|
|
* and hard. But very infrequently and irreproducibly.
|
|
*
|
|
* Use things like work queues to work around this limitation.
|
|
*
|
|
* You have been warned.
|
|
*/
|
|
void rcu_irq_enter(void)
|
|
{
|
|
struct rcu_dynticks *rdtp;
|
|
long long oldval;
|
|
|
|
RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
|
|
rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
oldval = rdtp->dynticks_nesting;
|
|
rdtp->dynticks_nesting++;
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
rdtp->dynticks_nesting == 0);
|
|
if (oldval)
|
|
trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
|
|
else
|
|
rcu_eqs_exit_common(oldval, true);
|
|
rcu_sysidle_exit(1);
|
|
}
|
|
|
|
/*
|
|
* Wrapper for rcu_irq_enter() where interrupts are enabled.
|
|
*/
|
|
void rcu_irq_enter_irqson(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
rcu_irq_enter();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* rcu_nmi_enter - inform RCU of entry to NMI context
|
|
*
|
|
* If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
|
|
* rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
|
|
* that the CPU is active. This implementation permits nested NMIs, as
|
|
* long as the nesting level does not overflow an int. (You will probably
|
|
* run out of stack space first.)
|
|
*/
|
|
void rcu_nmi_enter(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
int incby = 2;
|
|
|
|
/* Complain about underflow. */
|
|
WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
|
|
|
|
/*
|
|
* If idle from RCU viewpoint, atomically increment ->dynticks
|
|
* to mark non-idle and increment ->dynticks_nmi_nesting by one.
|
|
* Otherwise, increment ->dynticks_nmi_nesting by two. This means
|
|
* if ->dynticks_nmi_nesting is equal to one, we are guaranteed
|
|
* to be in the outermost NMI handler that interrupted an RCU-idle
|
|
* period (observation due to Andy Lutomirski).
|
|
*/
|
|
if (rcu_dynticks_curr_cpu_in_eqs()) {
|
|
rcu_dynticks_eqs_exit();
|
|
incby = 1;
|
|
}
|
|
rdtp->dynticks_nmi_nesting += incby;
|
|
barrier();
|
|
}
|
|
|
|
/**
|
|
* rcu_nmi_exit - inform RCU of exit from NMI context
|
|
*
|
|
* If we are returning from the outermost NMI handler that interrupted an
|
|
* RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
|
|
* to let the RCU grace-period handling know that the CPU is back to
|
|
* being RCU-idle.
|
|
*/
|
|
void rcu_nmi_exit(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
|
|
|
|
/*
|
|
* Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
|
|
* (We are exiting an NMI handler, so RCU better be paying attention
|
|
* to us!)
|
|
*/
|
|
WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
|
|
WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
|
|
|
|
/*
|
|
* If the nesting level is not 1, the CPU wasn't RCU-idle, so
|
|
* leave it in non-RCU-idle state.
|
|
*/
|
|
if (rdtp->dynticks_nmi_nesting != 1) {
|
|
rdtp->dynticks_nmi_nesting -= 2;
|
|
return;
|
|
}
|
|
|
|
/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
|
|
rdtp->dynticks_nmi_nesting = 0;
|
|
rcu_dynticks_eqs_enter();
|
|
}
|
|
|
|
/**
|
|
* __rcu_is_watching - are RCU read-side critical sections safe?
|
|
*
|
|
* Return true if RCU is watching the running CPU, which means that
|
|
* this CPU can safely enter RCU read-side critical sections. Unlike
|
|
* rcu_is_watching(), the caller of __rcu_is_watching() must have at
|
|
* least disabled preemption.
|
|
*/
|
|
bool notrace __rcu_is_watching(void)
|
|
{
|
|
return !rcu_dynticks_curr_cpu_in_eqs();
|
|
}
|
|
|
|
/**
|
|
* rcu_is_watching - see if RCU thinks that the current CPU is idle
|
|
*
|
|
* If the current CPU is in its idle loop and is neither in an interrupt
|
|
* or NMI handler, return true.
|
|
*/
|
|
bool notrace rcu_is_watching(void)
|
|
{
|
|
bool ret;
|
|
|
|
preempt_disable_notrace();
|
|
ret = __rcu_is_watching();
|
|
preempt_enable_notrace();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_is_watching);
|
|
|
|
/*
|
|
* If a holdout task is actually running, request an urgent quiescent
|
|
* state from its CPU. This is unsynchronized, so migrations can cause
|
|
* the request to go to the wrong CPU. Which is OK, all that will happen
|
|
* is that the CPU's next context switch will be a bit slower and next
|
|
* time around this task will generate another request.
|
|
*/
|
|
void rcu_request_urgent_qs_task(struct task_struct *t)
|
|
{
|
|
int cpu;
|
|
|
|
barrier();
|
|
cpu = task_cpu(t);
|
|
if (!task_curr(t))
|
|
return; /* This task is not running on that CPU. */
|
|
smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
|
|
}
|
|
|
|
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
|
|
|
|
/*
|
|
* Is the current CPU online? Disable preemption to avoid false positives
|
|
* that could otherwise happen due to the current CPU number being sampled,
|
|
* this task being preempted, its old CPU being taken offline, resuming
|
|
* on some other CPU, then determining that its old CPU is now offline.
|
|
* It is OK to use RCU on an offline processor during initial boot, hence
|
|
* the check for rcu_scheduler_fully_active. Note also that it is OK
|
|
* for a CPU coming online to use RCU for one jiffy prior to marking itself
|
|
* online in the cpu_online_mask. Similarly, it is OK for a CPU going
|
|
* offline to continue to use RCU for one jiffy after marking itself
|
|
* offline in the cpu_online_mask. This leniency is necessary given the
|
|
* non-atomic nature of the online and offline processing, for example,
|
|
* the fact that a CPU enters the scheduler after completing the teardown
|
|
* of the CPU.
|
|
*
|
|
* This is also why RCU internally marks CPUs online during in the
|
|
* preparation phase and offline after the CPU has been taken down.
|
|
*
|
|
* Disable checking if in an NMI handler because we cannot safely report
|
|
* errors from NMI handlers anyway.
|
|
*/
|
|
bool rcu_lockdep_current_cpu_online(void)
|
|
{
|
|
struct rcu_data *rdp;
|
|
struct rcu_node *rnp;
|
|
bool ret;
|
|
|
|
if (in_nmi())
|
|
return true;
|
|
preempt_disable();
|
|
rdp = this_cpu_ptr(&rcu_sched_data);
|
|
rnp = rdp->mynode;
|
|
ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
|
|
!rcu_scheduler_fully_active;
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
|
|
|
|
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
|
|
|
|
/**
|
|
* rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
|
|
*
|
|
* If the current CPU is idle or running at a first-level (not nested)
|
|
* interrupt from idle, return true. The caller must have at least
|
|
* disabled preemption.
|
|
*/
|
|
static int rcu_is_cpu_rrupt_from_idle(void)
|
|
{
|
|
return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
|
|
}
|
|
|
|
/*
|
|
* Snapshot the specified CPU's dynticks counter so that we can later
|
|
* credit them with an implicit quiescent state. Return 1 if this CPU
|
|
* is in dynticks idle mode, which is an extended quiescent state.
|
|
*/
|
|
static int dyntick_save_progress_counter(struct rcu_data *rdp,
|
|
bool *isidle, unsigned long *maxj)
|
|
{
|
|
rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
|
|
rcu_sysidle_check_cpu(rdp, isidle, maxj);
|
|
if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
|
|
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
|
|
if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
|
|
rdp->mynode->gpnum))
|
|
WRITE_ONCE(rdp->gpwrap, true);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return true if the specified CPU has passed through a quiescent
|
|
* state by virtue of being in or having passed through an dynticks
|
|
* idle state since the last call to dyntick_save_progress_counter()
|
|
* for this same CPU, or by virtue of having been offline.
|
|
*/
|
|
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
|
|
bool *isidle, unsigned long *maxj)
|
|
{
|
|
unsigned long jtsq;
|
|
bool *rnhqp;
|
|
bool *ruqp;
|
|
unsigned long rjtsc;
|
|
struct rcu_node *rnp;
|
|
|
|
/*
|
|
* If the CPU passed through or entered a dynticks idle phase with
|
|
* no active irq/NMI handlers, then we can safely pretend that the CPU
|
|
* already acknowledged the request to pass through a quiescent
|
|
* state. Either way, that CPU cannot possibly be in an RCU
|
|
* read-side critical section that started before the beginning
|
|
* of the current RCU grace period.
|
|
*/
|
|
if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
|
|
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
|
|
rdp->dynticks_fqs++;
|
|
return 1;
|
|
}
|
|
|
|
/* Compute and saturate jiffies_till_sched_qs. */
|
|
jtsq = jiffies_till_sched_qs;
|
|
rjtsc = rcu_jiffies_till_stall_check();
|
|
if (jtsq > rjtsc / 2) {
|
|
WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
|
|
jtsq = rjtsc / 2;
|
|
} else if (jtsq < 1) {
|
|
WRITE_ONCE(jiffies_till_sched_qs, 1);
|
|
jtsq = 1;
|
|
}
|
|
|
|
/*
|
|
* Has this CPU encountered a cond_resched_rcu_qs() since the
|
|
* beginning of the grace period? For this to be the case,
|
|
* the CPU has to have noticed the current grace period. This
|
|
* might not be the case for nohz_full CPUs looping in the kernel.
|
|
*/
|
|
rnp = rdp->mynode;
|
|
ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
|
|
if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
|
|
READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
|
|
READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
|
|
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
|
|
return 1;
|
|
} else {
|
|
/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
|
|
smp_store_release(ruqp, true);
|
|
}
|
|
|
|
/* Check for the CPU being offline. */
|
|
if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
|
|
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
|
|
rdp->offline_fqs++;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A CPU running for an extended time within the kernel can
|
|
* delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
|
|
* even context-switching back and forth between a pair of
|
|
* in-kernel CPU-bound tasks cannot advance grace periods.
|
|
* So if the grace period is old enough, make the CPU pay attention.
|
|
* Note that the unsynchronized assignments to the per-CPU
|
|
* rcu_need_heavy_qs variable are safe. Yes, setting of
|
|
* bits can be lost, but they will be set again on the next
|
|
* force-quiescent-state pass. So lost bit sets do not result
|
|
* in incorrect behavior, merely in a grace period lasting
|
|
* a few jiffies longer than it might otherwise. Because
|
|
* there are at most four threads involved, and because the
|
|
* updates are only once every few jiffies, the probability of
|
|
* lossage (and thus of slight grace-period extension) is
|
|
* quite low.
|
|
*
|
|
* Note that if the jiffies_till_sched_qs boot/sysfs parameter
|
|
* is set too high, we override with half of the RCU CPU stall
|
|
* warning delay.
|
|
*/
|
|
rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
|
|
if (!READ_ONCE(*rnhqp) &&
|
|
(time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
|
|
time_after(jiffies, rdp->rsp->jiffies_resched))) {
|
|
WRITE_ONCE(*rnhqp, true);
|
|
/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
|
|
smp_store_release(ruqp, true);
|
|
rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
|
|
}
|
|
|
|
/*
|
|
* If more than halfway to RCU CPU stall-warning time, do
|
|
* a resched_cpu() to try to loosen things up a bit.
|
|
*/
|
|
if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
|
|
resched_cpu(rdp->cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void record_gp_stall_check_time(struct rcu_state *rsp)
|
|
{
|
|
unsigned long j = jiffies;
|
|
unsigned long j1;
|
|
|
|
rsp->gp_start = j;
|
|
smp_wmb(); /* Record start time before stall time. */
|
|
j1 = rcu_jiffies_till_stall_check();
|
|
WRITE_ONCE(rsp->jiffies_stall, j + j1);
|
|
rsp->jiffies_resched = j + j1 / 2;
|
|
rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
|
|
}
|
|
|
|
/*
|
|
* Convert a ->gp_state value to a character string.
|
|
*/
|
|
static const char *gp_state_getname(short gs)
|
|
{
|
|
if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
|
|
return "???";
|
|
return gp_state_names[gs];
|
|
}
|
|
|
|
/*
|
|
* Complain about starvation of grace-period kthread.
|
|
*/
|
|
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
|
|
{
|
|
unsigned long gpa;
|
|
unsigned long j;
|
|
|
|
j = jiffies;
|
|
gpa = READ_ONCE(rsp->gp_activity);
|
|
if (j - gpa > 2 * HZ) {
|
|
pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
|
|
rsp->name, j - gpa,
|
|
rsp->gpnum, rsp->completed,
|
|
rsp->gp_flags,
|
|
gp_state_getname(rsp->gp_state), rsp->gp_state,
|
|
rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
|
|
if (rsp->gp_kthread) {
|
|
sched_show_task(rsp->gp_kthread);
|
|
wake_up_process(rsp->gp_kthread);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dump stacks of all tasks running on stalled CPUs. First try using
|
|
* NMIs, but fall back to manual remote stack tracing on architectures
|
|
* that don't support NMI-based stack dumps. The NMI-triggered stack
|
|
* traces are more accurate because they are printed by the target CPU.
|
|
*/
|
|
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
struct rcu_node *rnp;
|
|
|
|
rcu_for_each_leaf_node(rsp, rnp) {
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
for_each_leaf_node_possible_cpu(rnp, cpu)
|
|
if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
|
|
if (!trigger_single_cpu_backtrace(cpu))
|
|
dump_cpu_task(cpu);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If too much time has passed in the current grace period, and if
|
|
* so configured, go kick the relevant kthreads.
|
|
*/
|
|
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
|
|
{
|
|
unsigned long j;
|
|
|
|
if (!rcu_kick_kthreads)
|
|
return;
|
|
j = READ_ONCE(rsp->jiffies_kick_kthreads);
|
|
if (time_after(jiffies, j) && rsp->gp_kthread &&
|
|
(rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
|
|
WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
|
|
rcu_ftrace_dump(DUMP_ALL);
|
|
wake_up_process(rsp->gp_kthread);
|
|
WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
|
|
}
|
|
}
|
|
|
|
static inline void panic_on_rcu_stall(void)
|
|
{
|
|
if (sysctl_panic_on_rcu_stall)
|
|
panic("RCU Stall\n");
|
|
}
|
|
|
|
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
|
|
{
|
|
int cpu;
|
|
long delta;
|
|
unsigned long flags;
|
|
unsigned long gpa;
|
|
unsigned long j;
|
|
int ndetected = 0;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
long totqlen = 0;
|
|
|
|
/* Kick and suppress, if so configured. */
|
|
rcu_stall_kick_kthreads(rsp);
|
|
if (rcu_cpu_stall_suppress)
|
|
return;
|
|
|
|
/* Only let one CPU complain about others per time interval. */
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
delta = jiffies - READ_ONCE(rsp->jiffies_stall);
|
|
if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return;
|
|
}
|
|
WRITE_ONCE(rsp->jiffies_stall,
|
|
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
/*
|
|
* OK, time to rat on our buddy...
|
|
* See Documentation/RCU/stallwarn.txt for info on how to debug
|
|
* RCU CPU stall warnings.
|
|
*/
|
|
pr_err("INFO: %s detected stalls on CPUs/tasks:",
|
|
rsp->name);
|
|
print_cpu_stall_info_begin();
|
|
rcu_for_each_leaf_node(rsp, rnp) {
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
ndetected += rcu_print_task_stall(rnp);
|
|
if (rnp->qsmask != 0) {
|
|
for_each_leaf_node_possible_cpu(rnp, cpu)
|
|
if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
|
|
print_cpu_stall_info(rsp, cpu);
|
|
ndetected++;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
|
|
print_cpu_stall_info_end();
|
|
for_each_possible_cpu(cpu)
|
|
totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
|
|
cpu)->cblist);
|
|
pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
|
|
smp_processor_id(), (long)(jiffies - rsp->gp_start),
|
|
(long)rsp->gpnum, (long)rsp->completed, totqlen);
|
|
if (ndetected) {
|
|
rcu_dump_cpu_stacks(rsp);
|
|
|
|
/* Complain about tasks blocking the grace period. */
|
|
rcu_print_detail_task_stall(rsp);
|
|
} else {
|
|
if (READ_ONCE(rsp->gpnum) != gpnum ||
|
|
READ_ONCE(rsp->completed) == gpnum) {
|
|
pr_err("INFO: Stall ended before state dump start\n");
|
|
} else {
|
|
j = jiffies;
|
|
gpa = READ_ONCE(rsp->gp_activity);
|
|
pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
|
|
rsp->name, j - gpa, j, gpa,
|
|
jiffies_till_next_fqs,
|
|
rcu_get_root(rsp)->qsmask);
|
|
/* In this case, the current CPU might be at fault. */
|
|
sched_show_task(current);
|
|
}
|
|
}
|
|
|
|
rcu_check_gp_kthread_starvation(rsp);
|
|
|
|
panic_on_rcu_stall();
|
|
|
|
force_quiescent_state(rsp); /* Kick them all. */
|
|
}
|
|
|
|
static void print_cpu_stall(struct rcu_state *rsp)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
long totqlen = 0;
|
|
|
|
/* Kick and suppress, if so configured. */
|
|
rcu_stall_kick_kthreads(rsp);
|
|
if (rcu_cpu_stall_suppress)
|
|
return;
|
|
|
|
/*
|
|
* OK, time to rat on ourselves...
|
|
* See Documentation/RCU/stallwarn.txt for info on how to debug
|
|
* RCU CPU stall warnings.
|
|
*/
|
|
pr_err("INFO: %s self-detected stall on CPU", rsp->name);
|
|
print_cpu_stall_info_begin();
|
|
print_cpu_stall_info(rsp, smp_processor_id());
|
|
print_cpu_stall_info_end();
|
|
for_each_possible_cpu(cpu)
|
|
totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
|
|
cpu)->cblist);
|
|
pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
|
|
jiffies - rsp->gp_start,
|
|
(long)rsp->gpnum, (long)rsp->completed, totqlen);
|
|
|
|
rcu_check_gp_kthread_starvation(rsp);
|
|
|
|
rcu_dump_cpu_stacks(rsp);
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
|
|
WRITE_ONCE(rsp->jiffies_stall,
|
|
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
panic_on_rcu_stall();
|
|
|
|
/*
|
|
* Attempt to revive the RCU machinery by forcing a context switch.
|
|
*
|
|
* A context switch would normally allow the RCU state machine to make
|
|
* progress and it could be we're stuck in kernel space without context
|
|
* switches for an entirely unreasonable amount of time.
|
|
*/
|
|
resched_cpu(smp_processor_id());
|
|
}
|
|
|
|
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
unsigned long completed;
|
|
unsigned long gpnum;
|
|
unsigned long gps;
|
|
unsigned long j;
|
|
unsigned long js;
|
|
struct rcu_node *rnp;
|
|
|
|
if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
|
|
!rcu_gp_in_progress(rsp))
|
|
return;
|
|
rcu_stall_kick_kthreads(rsp);
|
|
j = jiffies;
|
|
|
|
/*
|
|
* Lots of memory barriers to reject false positives.
|
|
*
|
|
* The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
|
|
* then rsp->gp_start, and finally rsp->completed. These values
|
|
* are updated in the opposite order with memory barriers (or
|
|
* equivalent) during grace-period initialization and cleanup.
|
|
* Now, a false positive can occur if we get an new value of
|
|
* rsp->gp_start and a old value of rsp->jiffies_stall. But given
|
|
* the memory barriers, the only way that this can happen is if one
|
|
* grace period ends and another starts between these two fetches.
|
|
* Detect this by comparing rsp->completed with the previous fetch
|
|
* from rsp->gpnum.
|
|
*
|
|
* Given this check, comparisons of jiffies, rsp->jiffies_stall,
|
|
* and rsp->gp_start suffice to forestall false positives.
|
|
*/
|
|
gpnum = READ_ONCE(rsp->gpnum);
|
|
smp_rmb(); /* Pick up ->gpnum first... */
|
|
js = READ_ONCE(rsp->jiffies_stall);
|
|
smp_rmb(); /* ...then ->jiffies_stall before the rest... */
|
|
gps = READ_ONCE(rsp->gp_start);
|
|
smp_rmb(); /* ...and finally ->gp_start before ->completed. */
|
|
completed = READ_ONCE(rsp->completed);
|
|
if (ULONG_CMP_GE(completed, gpnum) ||
|
|
ULONG_CMP_LT(j, js) ||
|
|
ULONG_CMP_GE(gps, js))
|
|
return; /* No stall or GP completed since entering function. */
|
|
rnp = rdp->mynode;
|
|
if (rcu_gp_in_progress(rsp) &&
|
|
(READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
|
|
|
|
/* We haven't checked in, so go dump stack. */
|
|
print_cpu_stall(rsp);
|
|
|
|
} else if (rcu_gp_in_progress(rsp) &&
|
|
ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
|
|
|
|
/* They had a few time units to dump stack, so complain. */
|
|
print_other_cpu_stall(rsp, gpnum);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rcu_cpu_stall_reset - prevent further stall warnings in current grace period
|
|
*
|
|
* Set the stall-warning timeout way off into the future, thus preventing
|
|
* any RCU CPU stall-warning messages from appearing in the current set of
|
|
* RCU grace periods.
|
|
*
|
|
* The caller must disable hard irqs.
|
|
*/
|
|
void rcu_cpu_stall_reset(void)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp)
|
|
WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
|
|
}
|
|
|
|
/*
|
|
* Determine the value that ->completed will have at the end of the
|
|
* next subsequent grace period. This is used to tag callbacks so that
|
|
* a CPU can invoke callbacks in a timely fashion even if that CPU has
|
|
* been dyntick-idle for an extended period with callbacks under the
|
|
* influence of RCU_FAST_NO_HZ.
|
|
*
|
|
* The caller must hold rnp->lock with interrupts disabled.
|
|
*/
|
|
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
|
|
struct rcu_node *rnp)
|
|
{
|
|
/*
|
|
* If RCU is idle, we just wait for the next grace period.
|
|
* But we can only be sure that RCU is idle if we are looking
|
|
* at the root rcu_node structure -- otherwise, a new grace
|
|
* period might have started, but just not yet gotten around
|
|
* to initializing the current non-root rcu_node structure.
|
|
*/
|
|
if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
|
|
return rnp->completed + 1;
|
|
|
|
/*
|
|
* Otherwise, wait for a possible partial grace period and
|
|
* then the subsequent full grace period.
|
|
*/
|
|
return rnp->completed + 2;
|
|
}
|
|
|
|
/*
|
|
* Trace-event helper function for rcu_start_future_gp() and
|
|
* rcu_nocb_wait_gp().
|
|
*/
|
|
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
|
|
unsigned long c, const char *s)
|
|
{
|
|
trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
|
|
rnp->completed, c, rnp->level,
|
|
rnp->grplo, rnp->grphi, s);
|
|
}
|
|
|
|
/*
|
|
* Start some future grace period, as needed to handle newly arrived
|
|
* callbacks. The required future grace periods are recorded in each
|
|
* rcu_node structure's ->need_future_gp field. Returns true if there
|
|
* is reason to awaken the grace-period kthread.
|
|
*
|
|
* The caller must hold the specified rcu_node structure's ->lock.
|
|
*/
|
|
static bool __maybe_unused
|
|
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
|
|
unsigned long *c_out)
|
|
{
|
|
unsigned long c;
|
|
bool ret = false;
|
|
struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
|
|
|
|
/*
|
|
* Pick up grace-period number for new callbacks. If this
|
|
* grace period is already marked as needed, return to the caller.
|
|
*/
|
|
c = rcu_cbs_completed(rdp->rsp, rnp);
|
|
trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
|
|
if (rnp->need_future_gp[c & 0x1]) {
|
|
trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If either this rcu_node structure or the root rcu_node structure
|
|
* believe that a grace period is in progress, then we must wait
|
|
* for the one following, which is in "c". Because our request
|
|
* will be noticed at the end of the current grace period, we don't
|
|
* need to explicitly start one. We only do the lockless check
|
|
* of rnp_root's fields if the current rcu_node structure thinks
|
|
* there is no grace period in flight, and because we hold rnp->lock,
|
|
* the only possible change is when rnp_root's two fields are
|
|
* equal, in which case rnp_root->gpnum might be concurrently
|
|
* incremented. But that is OK, as it will just result in our
|
|
* doing some extra useless work.
|
|
*/
|
|
if (rnp->gpnum != rnp->completed ||
|
|
READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
|
|
rnp->need_future_gp[c & 0x1]++;
|
|
trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* There might be no grace period in progress. If we don't already
|
|
* hold it, acquire the root rcu_node structure's lock in order to
|
|
* start one (if needed).
|
|
*/
|
|
if (rnp != rnp_root)
|
|
raw_spin_lock_rcu_node(rnp_root);
|
|
|
|
/*
|
|
* Get a new grace-period number. If there really is no grace
|
|
* period in progress, it will be smaller than the one we obtained
|
|
* earlier. Adjust callbacks as needed.
|
|
*/
|
|
c = rcu_cbs_completed(rdp->rsp, rnp_root);
|
|
if (!rcu_is_nocb_cpu(rdp->cpu))
|
|
(void)rcu_segcblist_accelerate(&rdp->cblist, c);
|
|
|
|
/*
|
|
* If the needed for the required grace period is already
|
|
* recorded, trace and leave.
|
|
*/
|
|
if (rnp_root->need_future_gp[c & 0x1]) {
|
|
trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
|
|
goto unlock_out;
|
|
}
|
|
|
|
/* Record the need for the future grace period. */
|
|
rnp_root->need_future_gp[c & 0x1]++;
|
|
|
|
/* If a grace period is not already in progress, start one. */
|
|
if (rnp_root->gpnum != rnp_root->completed) {
|
|
trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
|
|
} else {
|
|
trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
|
|
ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
|
|
}
|
|
unlock_out:
|
|
if (rnp != rnp_root)
|
|
raw_spin_unlock_rcu_node(rnp_root);
|
|
out:
|
|
if (c_out != NULL)
|
|
*c_out = c;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clean up any old requests for the just-ended grace period. Also return
|
|
* whether any additional grace periods have been requested.
|
|
*/
|
|
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
|
|
{
|
|
int c = rnp->completed;
|
|
int needmore;
|
|
struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
|
|
|
|
rnp->need_future_gp[c & 0x1] = 0;
|
|
needmore = rnp->need_future_gp[(c + 1) & 0x1];
|
|
trace_rcu_future_gp(rnp, rdp, c,
|
|
needmore ? TPS("CleanupMore") : TPS("Cleanup"));
|
|
return needmore;
|
|
}
|
|
|
|
/*
|
|
* Awaken the grace-period kthread for the specified flavor of RCU.
|
|
* Don't do a self-awaken, and don't bother awakening when there is
|
|
* nothing for the grace-period kthread to do (as in several CPUs
|
|
* raced to awaken, and we lost), and finally don't try to awaken
|
|
* a kthread that has not yet been created.
|
|
*/
|
|
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
|
|
{
|
|
if (current == rsp->gp_kthread ||
|
|
!READ_ONCE(rsp->gp_flags) ||
|
|
!rsp->gp_kthread)
|
|
return;
|
|
swake_up(&rsp->gp_wq);
|
|
}
|
|
|
|
/*
|
|
* If there is room, assign a ->completed number to any callbacks on
|
|
* this CPU that have not already been assigned. Also accelerate any
|
|
* callbacks that were previously assigned a ->completed number that has
|
|
* since proven to be too conservative, which can happen if callbacks get
|
|
* assigned a ->completed number while RCU is idle, but with reference to
|
|
* a non-root rcu_node structure. This function is idempotent, so it does
|
|
* not hurt to call it repeatedly. Returns an flag saying that we should
|
|
* awaken the RCU grace-period kthread.
|
|
*
|
|
* The caller must hold rnp->lock with interrupts disabled.
|
|
*/
|
|
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
|
|
struct rcu_data *rdp)
|
|
{
|
|
bool ret = false;
|
|
|
|
/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
|
|
if (!rcu_segcblist_pend_cbs(&rdp->cblist))
|
|
return false;
|
|
|
|
/*
|
|
* Callbacks are often registered with incomplete grace-period
|
|
* information. Something about the fact that getting exact
|
|
* information requires acquiring a global lock... RCU therefore
|
|
* makes a conservative estimate of the grace period number at which
|
|
* a given callback will become ready to invoke. The following
|
|
* code checks this estimate and improves it when possible, thus
|
|
* accelerating callback invocation to an earlier grace-period
|
|
* number.
|
|
*/
|
|
if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
|
|
ret = rcu_start_future_gp(rnp, rdp, NULL);
|
|
|
|
/* Trace depending on how much we were able to accelerate. */
|
|
if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
|
|
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
|
|
else
|
|
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Move any callbacks whose grace period has completed to the
|
|
* RCU_DONE_TAIL sublist, then compact the remaining sublists and
|
|
* assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
|
|
* sublist. This function is idempotent, so it does not hurt to
|
|
* invoke it repeatedly. As long as it is not invoked -too- often...
|
|
* Returns true if the RCU grace-period kthread needs to be awakened.
|
|
*
|
|
* The caller must hold rnp->lock with interrupts disabled.
|
|
*/
|
|
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
|
|
struct rcu_data *rdp)
|
|
{
|
|
/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
|
|
if (!rcu_segcblist_pend_cbs(&rdp->cblist))
|
|
return false;
|
|
|
|
/*
|
|
* Find all callbacks whose ->completed numbers indicate that they
|
|
* are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
|
|
*/
|
|
rcu_segcblist_advance(&rdp->cblist, rnp->completed);
|
|
|
|
/* Classify any remaining callbacks. */
|
|
return rcu_accelerate_cbs(rsp, rnp, rdp);
|
|
}
|
|
|
|
/*
|
|
* Update CPU-local rcu_data state to record the beginnings and ends of
|
|
* grace periods. The caller must hold the ->lock of the leaf rcu_node
|
|
* structure corresponding to the current CPU, and must have irqs disabled.
|
|
* Returns true if the grace-period kthread needs to be awakened.
|
|
*/
|
|
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
|
|
struct rcu_data *rdp)
|
|
{
|
|
bool ret;
|
|
bool need_gp;
|
|
|
|
/* Handle the ends of any preceding grace periods first. */
|
|
if (rdp->completed == rnp->completed &&
|
|
!unlikely(READ_ONCE(rdp->gpwrap))) {
|
|
|
|
/* No grace period end, so just accelerate recent callbacks. */
|
|
ret = rcu_accelerate_cbs(rsp, rnp, rdp);
|
|
|
|
} else {
|
|
|
|
/* Advance callbacks. */
|
|
ret = rcu_advance_cbs(rsp, rnp, rdp);
|
|
|
|
/* Remember that we saw this grace-period completion. */
|
|
rdp->completed = rnp->completed;
|
|
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
|
|
}
|
|
|
|
if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
|
|
/*
|
|
* If the current grace period is waiting for this CPU,
|
|
* set up to detect a quiescent state, otherwise don't
|
|
* go looking for one.
|
|
*/
|
|
rdp->gpnum = rnp->gpnum;
|
|
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
|
|
need_gp = !!(rnp->qsmask & rdp->grpmask);
|
|
rdp->cpu_no_qs.b.norm = need_gp;
|
|
rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
|
|
rdp->core_needs_qs = need_gp;
|
|
zero_cpu_stall_ticks(rdp);
|
|
WRITE_ONCE(rdp->gpwrap, false);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
unsigned long flags;
|
|
bool needwake;
|
|
struct rcu_node *rnp;
|
|
|
|
local_irq_save(flags);
|
|
rnp = rdp->mynode;
|
|
if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
|
|
rdp->completed == READ_ONCE(rnp->completed) &&
|
|
!unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
|
|
!raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
needwake = __note_gp_changes(rsp, rnp, rdp);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
if (needwake)
|
|
rcu_gp_kthread_wake(rsp);
|
|
}
|
|
|
|
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
|
|
{
|
|
if (delay > 0 &&
|
|
!(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
|
|
schedule_timeout_uninterruptible(delay);
|
|
}
|
|
|
|
/*
|
|
* Initialize a new grace period. Return false if no grace period required.
|
|
*/
|
|
static bool rcu_gp_init(struct rcu_state *rsp)
|
|
{
|
|
unsigned long oldmask;
|
|
struct rcu_data *rdp;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
|
if (!READ_ONCE(rsp->gp_flags)) {
|
|
/* Spurious wakeup, tell caller to go back to sleep. */
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
return false;
|
|
}
|
|
WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
|
|
|
|
if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
|
|
/*
|
|
* Grace period already in progress, don't start another.
|
|
* Not supposed to be able to happen.
|
|
*/
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
return false;
|
|
}
|
|
|
|
/* Advance to a new grace period and initialize state. */
|
|
record_gp_stall_check_time(rsp);
|
|
/* Record GP times before starting GP, hence smp_store_release(). */
|
|
smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
|
|
trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
|
|
/*
|
|
* Apply per-leaf buffered online and offline operations to the
|
|
* rcu_node tree. Note that this new grace period need not wait
|
|
* for subsequent online CPUs, and that quiescent-state forcing
|
|
* will handle subsequent offline CPUs.
|
|
*/
|
|
rcu_for_each_leaf_node(rsp, rnp) {
|
|
rcu_gp_slow(rsp, gp_preinit_delay);
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
|
if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
|
|
!rnp->wait_blkd_tasks) {
|
|
/* Nothing to do on this leaf rcu_node structure. */
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
continue;
|
|
}
|
|
|
|
/* Record old state, apply changes to ->qsmaskinit field. */
|
|
oldmask = rnp->qsmaskinit;
|
|
rnp->qsmaskinit = rnp->qsmaskinitnext;
|
|
|
|
/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
|
|
if (!oldmask != !rnp->qsmaskinit) {
|
|
if (!oldmask) /* First online CPU for this rcu_node. */
|
|
rcu_init_new_rnp(rnp);
|
|
else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
|
|
rnp->wait_blkd_tasks = true;
|
|
else /* Last offline CPU and can propagate. */
|
|
rcu_cleanup_dead_rnp(rnp);
|
|
}
|
|
|
|
/*
|
|
* If all waited-on tasks from prior grace period are
|
|
* done, and if all this rcu_node structure's CPUs are
|
|
* still offline, propagate up the rcu_node tree and
|
|
* clear ->wait_blkd_tasks. Otherwise, if one of this
|
|
* rcu_node structure's CPUs has since come back online,
|
|
* simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
|
|
* checks for this, so just call it unconditionally).
|
|
*/
|
|
if (rnp->wait_blkd_tasks &&
|
|
(!rcu_preempt_has_tasks(rnp) ||
|
|
rnp->qsmaskinit)) {
|
|
rnp->wait_blkd_tasks = false;
|
|
rcu_cleanup_dead_rnp(rnp);
|
|
}
|
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
}
|
|
|
|
/*
|
|
* Set the quiescent-state-needed bits in all the rcu_node
|
|
* structures for all currently online CPUs in breadth-first order,
|
|
* starting from the root rcu_node structure, relying on the layout
|
|
* of the tree within the rsp->node[] array. Note that other CPUs
|
|
* will access only the leaves of the hierarchy, thus seeing that no
|
|
* grace period is in progress, at least until the corresponding
|
|
* leaf node has been initialized.
|
|
*
|
|
* The grace period cannot complete until the initialization
|
|
* process finishes, because this kthread handles both.
|
|
*/
|
|
rcu_for_each_node_breadth_first(rsp, rnp) {
|
|
rcu_gp_slow(rsp, gp_init_delay);
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
|
rdp = this_cpu_ptr(rsp->rda);
|
|
rcu_preempt_check_blocked_tasks(rnp);
|
|
rnp->qsmask = rnp->qsmaskinit;
|
|
WRITE_ONCE(rnp->gpnum, rsp->gpnum);
|
|
if (WARN_ON_ONCE(rnp->completed != rsp->completed))
|
|
WRITE_ONCE(rnp->completed, rsp->completed);
|
|
if (rnp == rdp->mynode)
|
|
(void)__note_gp_changes(rsp, rnp, rdp);
|
|
rcu_preempt_boost_start_gp(rnp);
|
|
trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
|
|
rnp->level, rnp->grplo,
|
|
rnp->grphi, rnp->qsmask);
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
cond_resched_rcu_qs();
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Helper function for wait_event_interruptible_timeout() wakeup
|
|
* at force-quiescent-state time.
|
|
*/
|
|
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
|
|
{
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
/* Someone like call_rcu() requested a force-quiescent-state scan. */
|
|
*gfp = READ_ONCE(rsp->gp_flags);
|
|
if (*gfp & RCU_GP_FLAG_FQS)
|
|
return true;
|
|
|
|
/* The current grace period has completed. */
|
|
if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Do one round of quiescent-state forcing.
|
|
*/
|
|
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
|
|
{
|
|
bool isidle = false;
|
|
unsigned long maxj;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
rsp->n_force_qs++;
|
|
if (first_time) {
|
|
/* Collect dyntick-idle snapshots. */
|
|
if (is_sysidle_rcu_state(rsp)) {
|
|
isidle = true;
|
|
maxj = jiffies - ULONG_MAX / 4;
|
|
}
|
|
force_qs_rnp(rsp, dyntick_save_progress_counter,
|
|
&isidle, &maxj);
|
|
rcu_sysidle_report_gp(rsp, isidle, maxj);
|
|
} else {
|
|
/* Handle dyntick-idle and offline CPUs. */
|
|
isidle = true;
|
|
force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
|
|
}
|
|
/* Clear flag to prevent immediate re-entry. */
|
|
if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
|
WRITE_ONCE(rsp->gp_flags,
|
|
READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up after the old grace period.
|
|
*/
|
|
static void rcu_gp_cleanup(struct rcu_state *rsp)
|
|
{
|
|
unsigned long gp_duration;
|
|
bool needgp = false;
|
|
int nocb = 0;
|
|
struct rcu_data *rdp;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
struct swait_queue_head *sq;
|
|
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
|
gp_duration = jiffies - rsp->gp_start;
|
|
if (gp_duration > rsp->gp_max)
|
|
rsp->gp_max = gp_duration;
|
|
|
|
/*
|
|
* We know the grace period is complete, but to everyone else
|
|
* it appears to still be ongoing. But it is also the case
|
|
* that to everyone else it looks like there is nothing that
|
|
* they can do to advance the grace period. It is therefore
|
|
* safe for us to drop the lock in order to mark the grace
|
|
* period as completed in all of the rcu_node structures.
|
|
*/
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
|
|
/*
|
|
* Propagate new ->completed value to rcu_node structures so
|
|
* that other CPUs don't have to wait until the start of the next
|
|
* grace period to process their callbacks. This also avoids
|
|
* some nasty RCU grace-period initialization races by forcing
|
|
* the end of the current grace period to be completely recorded in
|
|
* all of the rcu_node structures before the beginning of the next
|
|
* grace period is recorded in any of the rcu_node structures.
|
|
*/
|
|
rcu_for_each_node_breadth_first(rsp, rnp) {
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
|
WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
|
|
WARN_ON_ONCE(rnp->qsmask);
|
|
WRITE_ONCE(rnp->completed, rsp->gpnum);
|
|
rdp = this_cpu_ptr(rsp->rda);
|
|
if (rnp == rdp->mynode)
|
|
needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
|
|
/* smp_mb() provided by prior unlock-lock pair. */
|
|
nocb += rcu_future_gp_cleanup(rsp, rnp);
|
|
sq = rcu_nocb_gp_get(rnp);
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
rcu_nocb_gp_cleanup(sq);
|
|
cond_resched_rcu_qs();
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
rcu_gp_slow(rsp, gp_cleanup_delay);
|
|
}
|
|
rnp = rcu_get_root(rsp);
|
|
raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
|
|
rcu_nocb_gp_set(rnp, nocb);
|
|
|
|
/* Declare grace period done. */
|
|
WRITE_ONCE(rsp->completed, rsp->gpnum);
|
|
trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
|
|
rsp->gp_state = RCU_GP_IDLE;
|
|
rdp = this_cpu_ptr(rsp->rda);
|
|
/* Advance CBs to reduce false positives below. */
|
|
needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
|
|
if (needgp || cpu_needs_another_gp(rsp, rdp)) {
|
|
WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("newreq"));
|
|
}
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
|
}
|
|
|
|
/*
|
|
* Body of kthread that handles grace periods.
|
|
*/
|
|
static int __noreturn rcu_gp_kthread(void *arg)
|
|
{
|
|
bool first_gp_fqs;
|
|
int gf;
|
|
unsigned long j;
|
|
int ret;
|
|
struct rcu_state *rsp = arg;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
rcu_bind_gp_kthread();
|
|
for (;;) {
|
|
|
|
/* Handle grace-period start. */
|
|
for (;;) {
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("reqwait"));
|
|
rsp->gp_state = RCU_GP_WAIT_GPS;
|
|
swait_event_interruptible(rsp->gp_wq,
|
|
READ_ONCE(rsp->gp_flags) &
|
|
RCU_GP_FLAG_INIT);
|
|
rsp->gp_state = RCU_GP_DONE_GPS;
|
|
/* Locking provides needed memory barrier. */
|
|
if (rcu_gp_init(rsp))
|
|
break;
|
|
cond_resched_rcu_qs();
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
WARN_ON(signal_pending(current));
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("reqwaitsig"));
|
|
}
|
|
|
|
/* Handle quiescent-state forcing. */
|
|
first_gp_fqs = true;
|
|
j = jiffies_till_first_fqs;
|
|
if (j > HZ) {
|
|
j = HZ;
|
|
jiffies_till_first_fqs = HZ;
|
|
}
|
|
ret = 0;
|
|
for (;;) {
|
|
if (!ret) {
|
|
rsp->jiffies_force_qs = jiffies + j;
|
|
WRITE_ONCE(rsp->jiffies_kick_kthreads,
|
|
jiffies + 3 * j);
|
|
}
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("fqswait"));
|
|
rsp->gp_state = RCU_GP_WAIT_FQS;
|
|
ret = swait_event_interruptible_timeout(rsp->gp_wq,
|
|
rcu_gp_fqs_check_wake(rsp, &gf), j);
|
|
rsp->gp_state = RCU_GP_DOING_FQS;
|
|
/* Locking provides needed memory barriers. */
|
|
/* If grace period done, leave loop. */
|
|
if (!READ_ONCE(rnp->qsmask) &&
|
|
!rcu_preempt_blocked_readers_cgp(rnp))
|
|
break;
|
|
/* If time for quiescent-state forcing, do it. */
|
|
if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
|
|
(gf & RCU_GP_FLAG_FQS)) {
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("fqsstart"));
|
|
rcu_gp_fqs(rsp, first_gp_fqs);
|
|
first_gp_fqs = false;
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("fqsend"));
|
|
cond_resched_rcu_qs();
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
ret = 0; /* Force full wait till next FQS. */
|
|
j = jiffies_till_next_fqs;
|
|
if (j > HZ) {
|
|
j = HZ;
|
|
jiffies_till_next_fqs = HZ;
|
|
} else if (j < 1) {
|
|
j = 1;
|
|
jiffies_till_next_fqs = 1;
|
|
}
|
|
} else {
|
|
/* Deal with stray signal. */
|
|
cond_resched_rcu_qs();
|
|
WRITE_ONCE(rsp->gp_activity, jiffies);
|
|
WARN_ON(signal_pending(current));
|
|
trace_rcu_grace_period(rsp->name,
|
|
READ_ONCE(rsp->gpnum),
|
|
TPS("fqswaitsig"));
|
|
ret = 1; /* Keep old FQS timing. */
|
|
j = jiffies;
|
|
if (time_after(jiffies, rsp->jiffies_force_qs))
|
|
j = 1;
|
|
else
|
|
j = rsp->jiffies_force_qs - j;
|
|
}
|
|
}
|
|
|
|
/* Handle grace-period end. */
|
|
rsp->gp_state = RCU_GP_CLEANUP;
|
|
rcu_gp_cleanup(rsp);
|
|
rsp->gp_state = RCU_GP_CLEANED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start a new RCU grace period if warranted, re-initializing the hierarchy
|
|
* in preparation for detecting the next grace period. The caller must hold
|
|
* the root node's ->lock and hard irqs must be disabled.
|
|
*
|
|
* Note that it is legal for a dying CPU (which is marked as offline) to
|
|
* invoke this function. This can happen when the dying CPU reports its
|
|
* quiescent state.
|
|
*
|
|
* Returns true if the grace-period kthread must be awakened.
|
|
*/
|
|
static bool
|
|
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
|
|
struct rcu_data *rdp)
|
|
{
|
|
if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
|
|
/*
|
|
* Either we have not yet spawned the grace-period
|
|
* task, this CPU does not need another grace period,
|
|
* or a grace period is already in progress.
|
|
* Either way, don't start a new grace period.
|
|
*/
|
|
return false;
|
|
}
|
|
WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
|
|
trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
|
|
TPS("newreq"));
|
|
|
|
/*
|
|
* We can't do wakeups while holding the rnp->lock, as that
|
|
* could cause possible deadlocks with the rq->lock. Defer
|
|
* the wakeup to our caller.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
|
|
* callbacks. Note that rcu_start_gp_advanced() cannot do this because it
|
|
* is invoked indirectly from rcu_advance_cbs(), which would result in
|
|
* endless recursion -- or would do so if it wasn't for the self-deadlock
|
|
* that is encountered beforehand.
|
|
*
|
|
* Returns true if the grace-period kthread needs to be awakened.
|
|
*/
|
|
static bool rcu_start_gp(struct rcu_state *rsp)
|
|
{
|
|
struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
bool ret = false;
|
|
|
|
/*
|
|
* If there is no grace period in progress right now, any
|
|
* callbacks we have up to this point will be satisfied by the
|
|
* next grace period. Also, advancing the callbacks reduces the
|
|
* probability of false positives from cpu_needs_another_gp()
|
|
* resulting in pointless grace periods. So, advance callbacks
|
|
* then start the grace period!
|
|
*/
|
|
ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
|
|
ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Report a full set of quiescent states to the specified rcu_state data
|
|
* structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
|
|
* kthread if another grace period is required. Whether we wake
|
|
* the grace-period kthread or it awakens itself for the next round
|
|
* of quiescent-state forcing, that kthread will clean up after the
|
|
* just-completed grace period. Note that the caller must hold rnp->lock,
|
|
* which is released before return.
|
|
*/
|
|
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
|
|
__releases(rcu_get_root(rsp)->lock)
|
|
{
|
|
WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
|
|
WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
|
|
raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
|
|
rcu_gp_kthread_wake(rsp);
|
|
}
|
|
|
|
/*
|
|
* Similar to rcu_report_qs_rdp(), for which it is a helper function.
|
|
* Allows quiescent states for a group of CPUs to be reported at one go
|
|
* to the specified rcu_node structure, though all the CPUs in the group
|
|
* must be represented by the same rcu_node structure (which need not be a
|
|
* leaf rcu_node structure, though it often will be). The gps parameter
|
|
* is the grace-period snapshot, which means that the quiescent states
|
|
* are valid only if rnp->gpnum is equal to gps. That structure's lock
|
|
* must be held upon entry, and it is released before return.
|
|
*/
|
|
static void
|
|
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
|
|
struct rcu_node *rnp, unsigned long gps, unsigned long flags)
|
|
__releases(rnp->lock)
|
|
{
|
|
unsigned long oldmask = 0;
|
|
struct rcu_node *rnp_c;
|
|
|
|
/* Walk up the rcu_node hierarchy. */
|
|
for (;;) {
|
|
if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
|
|
|
|
/*
|
|
* Our bit has already been cleared, or the
|
|
* relevant grace period is already over, so done.
|
|
*/
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return;
|
|
}
|
|
WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
|
|
rnp->qsmask &= ~mask;
|
|
trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
|
|
mask, rnp->qsmask, rnp->level,
|
|
rnp->grplo, rnp->grphi,
|
|
!!rnp->gp_tasks);
|
|
if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
|
|
|
|
/* Other bits still set at this level, so done. */
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return;
|
|
}
|
|
mask = rnp->grpmask;
|
|
if (rnp->parent == NULL) {
|
|
|
|
/* No more levels. Exit loop holding root lock. */
|
|
|
|
break;
|
|
}
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
rnp_c = rnp;
|
|
rnp = rnp->parent;
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
oldmask = rnp_c->qsmask;
|
|
}
|
|
|
|
/*
|
|
* Get here if we are the last CPU to pass through a quiescent
|
|
* state for this grace period. Invoke rcu_report_qs_rsp()
|
|
* to clean up and start the next grace period if one is needed.
|
|
*/
|
|
rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
|
|
}
|
|
|
|
/*
|
|
* Record a quiescent state for all tasks that were previously queued
|
|
* on the specified rcu_node structure and that were blocking the current
|
|
* RCU grace period. The caller must hold the specified rnp->lock with
|
|
* irqs disabled, and this lock is released upon return, but irqs remain
|
|
* disabled.
|
|
*/
|
|
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
|
|
struct rcu_node *rnp, unsigned long flags)
|
|
__releases(rnp->lock)
|
|
{
|
|
unsigned long gps;
|
|
unsigned long mask;
|
|
struct rcu_node *rnp_p;
|
|
|
|
if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
|
|
rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return; /* Still need more quiescent states! */
|
|
}
|
|
|
|
rnp_p = rnp->parent;
|
|
if (rnp_p == NULL) {
|
|
/*
|
|
* Only one rcu_node structure in the tree, so don't
|
|
* try to report up to its nonexistent parent!
|
|
*/
|
|
rcu_report_qs_rsp(rsp, flags);
|
|
return;
|
|
}
|
|
|
|
/* Report up the rest of the hierarchy, tracking current ->gpnum. */
|
|
gps = rnp->gpnum;
|
|
mask = rnp->grpmask;
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
|
raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
|
|
rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
|
|
}
|
|
|
|
/*
|
|
* Record a quiescent state for the specified CPU to that CPU's rcu_data
|
|
* structure. This must be called from the specified CPU.
|
|
*/
|
|
static void
|
|
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask;
|
|
bool needwake;
|
|
struct rcu_node *rnp;
|
|
|
|
rnp = rdp->mynode;
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
|
|
rnp->completed == rnp->gpnum || rdp->gpwrap) {
|
|
|
|
/*
|
|
* The grace period in which this quiescent state was
|
|
* recorded has ended, so don't report it upwards.
|
|
* We will instead need a new quiescent state that lies
|
|
* within the current grace period.
|
|
*/
|
|
rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
|
|
rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return;
|
|
}
|
|
mask = rdp->grpmask;
|
|
if ((rnp->qsmask & mask) == 0) {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
} else {
|
|
rdp->core_needs_qs = false;
|
|
|
|
/*
|
|
* This GP can't end until cpu checks in, so all of our
|
|
* callbacks can be processed during the next GP.
|
|
*/
|
|
needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
|
|
|
|
rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
|
|
/* ^^^ Released rnp->lock */
|
|
if (needwake)
|
|
rcu_gp_kthread_wake(rsp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if there is a new grace period of which this CPU
|
|
* is not yet aware, and if so, set up local rcu_data state for it.
|
|
* Otherwise, see if this CPU has just passed through its first
|
|
* quiescent state for this grace period, and record that fact if so.
|
|
*/
|
|
static void
|
|
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
/* Check for grace-period ends and beginnings. */
|
|
note_gp_changes(rsp, rdp);
|
|
|
|
/*
|
|
* Does this CPU still need to do its part for current grace period?
|
|
* If no, return and let the other CPUs do their part as well.
|
|
*/
|
|
if (!rdp->core_needs_qs)
|
|
return;
|
|
|
|
/*
|
|
* Was there a quiescent state since the beginning of the grace
|
|
* period? If no, then exit and wait for the next call.
|
|
*/
|
|
if (rdp->cpu_no_qs.b.norm)
|
|
return;
|
|
|
|
/*
|
|
* Tell RCU we are done (but rcu_report_qs_rdp() will be the
|
|
* judge of that).
|
|
*/
|
|
rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
|
|
}
|
|
|
|
/*
|
|
* Send the specified CPU's RCU callbacks to the orphanage. The
|
|
* specified CPU must be offline, and the caller must hold the
|
|
* ->orphan_lock.
|
|
*/
|
|
static void
|
|
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
|
|
struct rcu_node *rnp, struct rcu_data *rdp)
|
|
{
|
|
/* No-CBs CPUs do not have orphanable callbacks. */
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
|
|
return;
|
|
|
|
/*
|
|
* Orphan the callbacks. First adjust the counts. This is safe
|
|
* because _rcu_barrier() excludes CPU-hotplug operations, so it
|
|
* cannot be running now. Thus no memory barrier is required.
|
|
*/
|
|
rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
|
|
rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
|
|
|
|
/*
|
|
* Next, move those callbacks still needing a grace period to
|
|
* the orphanage, where some other CPU will pick them up.
|
|
* Some of the callbacks might have gone partway through a grace
|
|
* period, but that is too bad. They get to start over because we
|
|
* cannot assume that grace periods are synchronized across CPUs.
|
|
*/
|
|
rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
|
|
|
|
/*
|
|
* Then move the ready-to-invoke callbacks to the orphanage,
|
|
* where some other CPU will pick them up. These will not be
|
|
* required to pass though another grace period: They are done.
|
|
*/
|
|
rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
|
|
|
|
/* Finally, disallow further callbacks on this CPU. */
|
|
rcu_segcblist_disable(&rdp->cblist);
|
|
}
|
|
|
|
/*
|
|
* Adopt the RCU callbacks from the specified rcu_state structure's
|
|
* orphanage. The caller must hold the ->orphan_lock.
|
|
*/
|
|
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
|
|
{
|
|
struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
|
|
|
|
/* No-CBs CPUs are handled specially. */
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
|
|
rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
|
|
return;
|
|
|
|
/* Do the accounting first. */
|
|
rdp->n_cbs_adopted += rsp->orphan_done.len;
|
|
if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
|
|
rcu_idle_count_callbacks_posted();
|
|
rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
|
|
|
|
/*
|
|
* We do not need a memory barrier here because the only way we
|
|
* can get here if there is an rcu_barrier() in flight is if
|
|
* we are the task doing the rcu_barrier().
|
|
*/
|
|
|
|
/* First adopt the ready-to-invoke callbacks, then the done ones. */
|
|
rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
|
|
WARN_ON_ONCE(rsp->orphan_done.head);
|
|
rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
|
|
WARN_ON_ONCE(rsp->orphan_pend.head);
|
|
WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
|
|
!rcu_segcblist_n_cbs(&rdp->cblist));
|
|
}
|
|
|
|
/*
|
|
* Trace the fact that this CPU is going offline.
|
|
*/
|
|
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
|
|
{
|
|
RCU_TRACE(unsigned long mask;)
|
|
RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
|
|
RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
|
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
|
|
return;
|
|
|
|
RCU_TRACE(mask = rdp->grpmask;)
|
|
trace_rcu_grace_period(rsp->name,
|
|
rnp->gpnum + 1 - !!(rnp->qsmask & mask),
|
|
TPS("cpuofl"));
|
|
}
|
|
|
|
/*
|
|
* All CPUs for the specified rcu_node structure have gone offline,
|
|
* and all tasks that were preempted within an RCU read-side critical
|
|
* section while running on one of those CPUs have since exited their RCU
|
|
* read-side critical section. Some other CPU is reporting this fact with
|
|
* the specified rcu_node structure's ->lock held and interrupts disabled.
|
|
* This function therefore goes up the tree of rcu_node structures,
|
|
* clearing the corresponding bits in the ->qsmaskinit fields. Note that
|
|
* the leaf rcu_node structure's ->qsmaskinit field has already been
|
|
* updated
|
|
*
|
|
* This function does check that the specified rcu_node structure has
|
|
* all CPUs offline and no blocked tasks, so it is OK to invoke it
|
|
* prematurely. That said, invoking it after the fact will cost you
|
|
* a needless lock acquisition. So once it has done its work, don't
|
|
* invoke it again.
|
|
*/
|
|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
|
|
{
|
|
long mask;
|
|
struct rcu_node *rnp = rnp_leaf;
|
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
|
|
rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
|
|
return;
|
|
for (;;) {
|
|
mask = rnp->grpmask;
|
|
rnp = rnp->parent;
|
|
if (!rnp)
|
|
break;
|
|
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
|
|
rnp->qsmaskinit &= ~mask;
|
|
rnp->qsmask &= ~mask;
|
|
if (rnp->qsmaskinit) {
|
|
raw_spin_unlock_rcu_node(rnp);
|
|
/* irqs remain disabled. */
|
|
return;
|
|
}
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The CPU has been completely removed, and some other CPU is reporting
|
|
* this fact from process context. Do the remainder of the cleanup,
|
|
* including orphaning the outgoing CPU's RCU callbacks, and also
|
|
* adopting them. There can only be one CPU hotplug operation at a time,
|
|
* so no other CPU can be attempting to update rcu_cpu_kthread_task.
|
|
*/
|
|
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
|
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
|
|
return;
|
|
|
|
/* Adjust any no-longer-needed kthreads. */
|
|
rcu_boost_kthread_setaffinity(rnp, -1);
|
|
|
|
/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
|
|
raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
|
|
rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
|
|
rcu_adopt_orphan_cbs(rsp, flags);
|
|
raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
|
|
|
|
WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
|
|
!rcu_segcblist_empty(&rdp->cblist),
|
|
"rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
|
|
cpu, rcu_segcblist_n_cbs(&rdp->cblist),
|
|
rcu_segcblist_first_cb(&rdp->cblist));
|
|
}
|
|
|
|
/*
|
|
* Invoke any RCU callbacks that have made it to the end of their grace
|
|
* period. Thottle as specified by rdp->blimit.
|
|
*/
|
|
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_head *rhp;
|
|
struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
|
|
long bl, count;
|
|
|
|
/* If no callbacks are ready, just return. */
|
|
if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
|
|
trace_rcu_batch_start(rsp->name,
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
rcu_segcblist_n_cbs(&rdp->cblist), 0);
|
|
trace_rcu_batch_end(rsp->name, 0,
|
|
!rcu_segcblist_empty(&rdp->cblist),
|
|
need_resched(), is_idle_task(current),
|
|
rcu_is_callbacks_kthread());
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Extract the list of ready callbacks, disabling to prevent
|
|
* races with call_rcu() from interrupt handlers. Leave the
|
|
* callback counts, as rcu_barrier() needs to be conservative.
|
|
*/
|
|
local_irq_save(flags);
|
|
WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
|
|
bl = rdp->blimit;
|
|
trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
rcu_segcblist_n_cbs(&rdp->cblist), bl);
|
|
rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
|
|
local_irq_restore(flags);
|
|
|
|
/* Invoke callbacks. */
|
|
rhp = rcu_cblist_dequeue(&rcl);
|
|
for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
|
|
debug_rcu_head_unqueue(rhp);
|
|
if (__rcu_reclaim(rsp->name, rhp))
|
|
rcu_cblist_dequeued_lazy(&rcl);
|
|
/*
|
|
* Stop only if limit reached and CPU has something to do.
|
|
* Note: The rcl structure counts down from zero.
|
|
*/
|
|
if (-rcl.len >= bl &&
|
|
(need_resched() ||
|
|
(!is_idle_task(current) && !rcu_is_callbacks_kthread())))
|
|
break;
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
count = -rcl.len;
|
|
trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
|
|
is_idle_task(current), rcu_is_callbacks_kthread());
|
|
|
|
/* Update counts and requeue any remaining callbacks. */
|
|
rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
|
|
smp_mb(); /* List handling before counting for rcu_barrier(). */
|
|
rdp->n_cbs_invoked += count;
|
|
rcu_segcblist_insert_count(&rdp->cblist, &rcl);
|
|
|
|
/* Reinstate batch limit if we have worked down the excess. */
|
|
count = rcu_segcblist_n_cbs(&rdp->cblist);
|
|
if (rdp->blimit == LONG_MAX && count <= qlowmark)
|
|
rdp->blimit = blimit;
|
|
|
|
/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
|
|
if (count == 0 && rdp->qlen_last_fqs_check != 0) {
|
|
rdp->qlen_last_fqs_check = 0;
|
|
rdp->n_force_qs_snap = rsp->n_force_qs;
|
|
} else if (count < rdp->qlen_last_fqs_check - qhimark)
|
|
rdp->qlen_last_fqs_check = count;
|
|
WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
|
|
|
|
local_irq_restore(flags);
|
|
|
|
/* Re-invoke RCU core processing if there are callbacks remaining. */
|
|
if (rcu_segcblist_ready_cbs(&rdp->cblist))
|
|
invoke_rcu_core();
|
|
}
|
|
|
|
/*
|
|
* Check to see if this CPU is in a non-context-switch quiescent state
|
|
* (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
|
|
* Also schedule RCU core processing.
|
|
*
|
|
* This function must be called from hardirq context. It is normally
|
|
* invoked from the scheduling-clock interrupt.
|
|
*/
|
|
void rcu_check_callbacks(int user)
|
|
{
|
|
trace_rcu_utilization(TPS("Start scheduler-tick"));
|
|
increment_cpu_stall_ticks();
|
|
if (user || rcu_is_cpu_rrupt_from_idle()) {
|
|
|
|
/*
|
|
* Get here if this CPU took its interrupt from user
|
|
* mode or from the idle loop, and if this is not a
|
|
* nested interrupt. In this case, the CPU is in
|
|
* a quiescent state, so note it.
|
|
*
|
|
* No memory barrier is required here because both
|
|
* rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
|
|
* variables that other CPUs neither access nor modify,
|
|
* at least not while the corresponding CPU is online.
|
|
*/
|
|
|
|
rcu_sched_qs();
|
|
rcu_bh_qs();
|
|
|
|
} else if (!in_softirq()) {
|
|
|
|
/*
|
|
* Get here if this CPU did not take its interrupt from
|
|
* softirq, in other words, if it is not interrupting
|
|
* a rcu_bh read-side critical section. This is an _bh
|
|
* critical section, so note it.
|
|
*/
|
|
|
|
rcu_bh_qs();
|
|
}
|
|
rcu_preempt_check_callbacks();
|
|
if (rcu_pending())
|
|
invoke_rcu_core();
|
|
if (user)
|
|
rcu_note_voluntary_context_switch(current);
|
|
trace_rcu_utilization(TPS("End scheduler-tick"));
|
|
}
|
|
|
|
/*
|
|
* Scan the leaf rcu_node structures, processing dyntick state for any that
|
|
* have not yet encountered a quiescent state, using the function specified.
|
|
* Also initiate boosting for any threads blocked on the root rcu_node.
|
|
*
|
|
* The caller must have suppressed start of new grace periods.
|
|
*/
|
|
static void force_qs_rnp(struct rcu_state *rsp,
|
|
int (*f)(struct rcu_data *rsp, bool *isidle,
|
|
unsigned long *maxj),
|
|
bool *isidle, unsigned long *maxj)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
unsigned long mask;
|
|
struct rcu_node *rnp;
|
|
|
|
rcu_for_each_leaf_node(rsp, rnp) {
|
|
cond_resched_rcu_qs();
|
|
mask = 0;
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
if (rnp->qsmask == 0) {
|
|
if (rcu_state_p == &rcu_sched_state ||
|
|
rsp != rcu_state_p ||
|
|
rcu_preempt_blocked_readers_cgp(rnp)) {
|
|
/*
|
|
* No point in scanning bits because they
|
|
* are all zero. But we might need to
|
|
* priority-boost blocked readers.
|
|
*/
|
|
rcu_initiate_boost(rnp, flags);
|
|
/* rcu_initiate_boost() releases rnp->lock */
|
|
continue;
|
|
}
|
|
if (rnp->parent &&
|
|
(rnp->parent->qsmask & rnp->grpmask)) {
|
|
/*
|
|
* Race between grace-period
|
|
* initialization and task exiting RCU
|
|
* read-side critical section: Report.
|
|
*/
|
|
rcu_report_unblock_qs_rnp(rsp, rnp, flags);
|
|
/* rcu_report_unblock_qs_rnp() rlses ->lock */
|
|
continue;
|
|
}
|
|
}
|
|
for_each_leaf_node_possible_cpu(rnp, cpu) {
|
|
unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
|
|
if ((rnp->qsmask & bit) != 0) {
|
|
if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
|
|
mask |= bit;
|
|
}
|
|
}
|
|
if (mask != 0) {
|
|
/* Idle/offline CPUs, report (releases rnp->lock. */
|
|
rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
|
|
} else {
|
|
/* Nothing to do here, so just drop the lock. */
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force quiescent states on reluctant CPUs, and also detect which
|
|
* CPUs are in dyntick-idle mode.
|
|
*/
|
|
static void force_quiescent_state(struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
bool ret;
|
|
struct rcu_node *rnp;
|
|
struct rcu_node *rnp_old = NULL;
|
|
|
|
/* Funnel through hierarchy to reduce memory contention. */
|
|
rnp = __this_cpu_read(rsp->rda->mynode);
|
|
for (; rnp != NULL; rnp = rnp->parent) {
|
|
ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
|
|
!raw_spin_trylock(&rnp->fqslock);
|
|
if (rnp_old != NULL)
|
|
raw_spin_unlock(&rnp_old->fqslock);
|
|
if (ret) {
|
|
rsp->n_force_qs_lh++;
|
|
return;
|
|
}
|
|
rnp_old = rnp;
|
|
}
|
|
/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
|
|
|
|
/* Reached the root of the rcu_node tree, acquire lock. */
|
|
raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
|
|
raw_spin_unlock(&rnp_old->fqslock);
|
|
if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
|
|
rsp->n_force_qs_lh++;
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
|
|
return; /* Someone beat us to it. */
|
|
}
|
|
WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
|
|
rcu_gp_kthread_wake(rsp);
|
|
}
|
|
|
|
/*
|
|
* This does the RCU core processing work for the specified rcu_state
|
|
* and rcu_data structures. This may be called only from the CPU to
|
|
* whom the rdp belongs.
|
|
*/
|
|
static void
|
|
__rcu_process_callbacks(struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
bool needwake;
|
|
struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
|
|
|
|
WARN_ON_ONCE(!rdp->beenonline);
|
|
|
|
/* Update RCU state based on any recent quiescent states. */
|
|
rcu_check_quiescent_state(rsp, rdp);
|
|
|
|
/* Does this CPU require a not-yet-started grace period? */
|
|
local_irq_save(flags);
|
|
if (cpu_needs_another_gp(rsp, rdp)) {
|
|
raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
|
|
needwake = rcu_start_gp(rsp);
|
|
raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
|
|
if (needwake)
|
|
rcu_gp_kthread_wake(rsp);
|
|
} else {
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* If there are callbacks ready, invoke them. */
|
|
if (rcu_segcblist_ready_cbs(&rdp->cblist))
|
|
invoke_rcu_callbacks(rsp, rdp);
|
|
|
|
/* Do any needed deferred wakeups of rcuo kthreads. */
|
|
do_nocb_deferred_wakeup(rdp);
|
|
}
|
|
|
|
/*
|
|
* Do RCU core processing for the current CPU.
|
|
*/
|
|
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
if (cpu_is_offline(smp_processor_id()))
|
|
return;
|
|
trace_rcu_utilization(TPS("Start RCU core"));
|
|
for_each_rcu_flavor(rsp)
|
|
__rcu_process_callbacks(rsp);
|
|
trace_rcu_utilization(TPS("End RCU core"));
|
|
}
|
|
|
|
/*
|
|
* Schedule RCU callback invocation. If the specified type of RCU
|
|
* does not support RCU priority boosting, just do a direct call,
|
|
* otherwise wake up the per-CPU kernel kthread. Note that because we
|
|
* are running on the current CPU with softirqs disabled, the
|
|
* rcu_cpu_kthread_task cannot disappear out from under us.
|
|
*/
|
|
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
|
|
return;
|
|
if (likely(!rsp->boost)) {
|
|
rcu_do_batch(rsp, rdp);
|
|
return;
|
|
}
|
|
invoke_rcu_callbacks_kthread();
|
|
}
|
|
|
|
static void invoke_rcu_core(void)
|
|
{
|
|
if (cpu_online(smp_processor_id()))
|
|
raise_softirq(RCU_SOFTIRQ);
|
|
}
|
|
|
|
/*
|
|
* Handle any core-RCU processing required by a call_rcu() invocation.
|
|
*/
|
|
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
|
|
struct rcu_head *head, unsigned long flags)
|
|
{
|
|
bool needwake;
|
|
|
|
/*
|
|
* If called from an extended quiescent state, invoke the RCU
|
|
* core in order to force a re-evaluation of RCU's idleness.
|
|
*/
|
|
if (!rcu_is_watching())
|
|
invoke_rcu_core();
|
|
|
|
/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
|
|
if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
|
|
return;
|
|
|
|
/*
|
|
* Force the grace period if too many callbacks or too long waiting.
|
|
* Enforce hysteresis, and don't invoke force_quiescent_state()
|
|
* if some other CPU has recently done so. Also, don't bother
|
|
* invoking force_quiescent_state() if the newly enqueued callback
|
|
* is the only one waiting for a grace period to complete.
|
|
*/
|
|
if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
|
|
rdp->qlen_last_fqs_check + qhimark)) {
|
|
|
|
/* Are we ignoring a completed grace period? */
|
|
note_gp_changes(rsp, rdp);
|
|
|
|
/* Start a new grace period if one not already started. */
|
|
if (!rcu_gp_in_progress(rsp)) {
|
|
struct rcu_node *rnp_root = rcu_get_root(rsp);
|
|
|
|
raw_spin_lock_rcu_node(rnp_root);
|
|
needwake = rcu_start_gp(rsp);
|
|
raw_spin_unlock_rcu_node(rnp_root);
|
|
if (needwake)
|
|
rcu_gp_kthread_wake(rsp);
|
|
} else {
|
|
/* Give the grace period a kick. */
|
|
rdp->blimit = LONG_MAX;
|
|
if (rsp->n_force_qs == rdp->n_force_qs_snap &&
|
|
rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
|
|
force_quiescent_state(rsp);
|
|
rdp->n_force_qs_snap = rsp->n_force_qs;
|
|
rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* RCU callback function to leak a callback.
|
|
*/
|
|
static void rcu_leak_callback(struct rcu_head *rhp)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Helper function for call_rcu() and friends. The cpu argument will
|
|
* normally be -1, indicating "currently running CPU". It may specify
|
|
* a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
|
|
* is expected to specify a CPU.
|
|
*/
|
|
static void
|
|
__call_rcu(struct rcu_head *head, rcu_callback_t func,
|
|
struct rcu_state *rsp, int cpu, bool lazy)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp;
|
|
|
|
/* Misaligned rcu_head! */
|
|
WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
|
|
|
|
if (debug_rcu_head_queue(head)) {
|
|
/* Probable double call_rcu(), so leak the callback. */
|
|
WRITE_ONCE(head->func, rcu_leak_callback);
|
|
WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
|
|
return;
|
|
}
|
|
head->func = func;
|
|
head->next = NULL;
|
|
local_irq_save(flags);
|
|
rdp = this_cpu_ptr(rsp->rda);
|
|
|
|
/* Add the callback to our list. */
|
|
if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
|
|
int offline;
|
|
|
|
if (cpu != -1)
|
|
rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
if (likely(rdp->mynode)) {
|
|
/* Post-boot, so this should be for a no-CBs CPU. */
|
|
offline = !__call_rcu_nocb(rdp, head, lazy, flags);
|
|
WARN_ON_ONCE(offline);
|
|
/* Offline CPU, _call_rcu() illegal, leak callback. */
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
/*
|
|
* Very early boot, before rcu_init(). Initialize if needed
|
|
* and then drop through to queue the callback.
|
|
*/
|
|
BUG_ON(cpu != -1);
|
|
WARN_ON_ONCE(!rcu_is_watching());
|
|
if (rcu_segcblist_empty(&rdp->cblist))
|
|
rcu_segcblist_init(&rdp->cblist);
|
|
}
|
|
rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
|
|
if (!lazy)
|
|
rcu_idle_count_callbacks_posted();
|
|
|
|
if (__is_kfree_rcu_offset((unsigned long)func))
|
|
trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
rcu_segcblist_n_cbs(&rdp->cblist));
|
|
else
|
|
trace_rcu_callback(rsp->name, head,
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
rcu_segcblist_n_cbs(&rdp->cblist));
|
|
|
|
/* Go handle any RCU core processing required. */
|
|
__call_rcu_core(rsp, rdp, head, flags);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Queue an RCU-sched callback for invocation after a grace period.
|
|
*/
|
|
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
|
|
{
|
|
__call_rcu(head, func, &rcu_sched_state, -1, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_rcu_sched);
|
|
|
|
/*
|
|
* Queue an RCU callback for invocation after a quicker grace period.
|
|
*/
|
|
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
|
|
{
|
|
__call_rcu(head, func, &rcu_bh_state, -1, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_rcu_bh);
|
|
|
|
/*
|
|
* Queue an RCU callback for lazy invocation after a grace period.
|
|
* This will likely be later named something like "call_rcu_lazy()",
|
|
* but this change will require some way of tagging the lazy RCU
|
|
* callbacks in the list of pending callbacks. Until then, this
|
|
* function may only be called from __kfree_rcu().
|
|
*/
|
|
void kfree_call_rcu(struct rcu_head *head,
|
|
rcu_callback_t func)
|
|
{
|
|
__call_rcu(head, func, rcu_state_p, -1, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kfree_call_rcu);
|
|
|
|
/*
|
|
* Because a context switch is a grace period for RCU-sched and RCU-bh,
|
|
* any blocking grace-period wait automatically implies a grace period
|
|
* if there is only one CPU online at any point time during execution
|
|
* of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
|
|
* occasionally incorrectly indicate that there are multiple CPUs online
|
|
* when there was in fact only one the whole time, as this just adds
|
|
* some overhead: RCU still operates correctly.
|
|
*/
|
|
static inline int rcu_blocking_is_gp(void)
|
|
{
|
|
int ret;
|
|
|
|
might_sleep(); /* Check for RCU read-side critical section. */
|
|
preempt_disable();
|
|
ret = num_online_cpus() <= 1;
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* synchronize_sched - wait until an rcu-sched grace period has elapsed.
|
|
*
|
|
* Control will return to the caller some time after a full rcu-sched
|
|
* grace period has elapsed, in other words after all currently executing
|
|
* rcu-sched read-side critical sections have completed. These read-side
|
|
* critical sections are delimited by rcu_read_lock_sched() and
|
|
* rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
|
|
* local_irq_disable(), and so on may be used in place of
|
|
* rcu_read_lock_sched().
|
|
*
|
|
* This means that all preempt_disable code sequences, including NMI and
|
|
* non-threaded hardware-interrupt handlers, in progress on entry will
|
|
* have completed before this primitive returns. However, this does not
|
|
* guarantee that softirq handlers will have completed, since in some
|
|
* kernels, these handlers can run in process context, and can block.
|
|
*
|
|
* Note that this guarantee implies further memory-ordering guarantees.
|
|
* On systems with more than one CPU, when synchronize_sched() returns,
|
|
* each CPU is guaranteed to have executed a full memory barrier since the
|
|
* end of its last RCU-sched read-side critical section whose beginning
|
|
* preceded the call to synchronize_sched(). In addition, each CPU having
|
|
* an RCU read-side critical section that extends beyond the return from
|
|
* synchronize_sched() is guaranteed to have executed a full memory barrier
|
|
* after the beginning of synchronize_sched() and before the beginning of
|
|
* that RCU read-side critical section. Note that these guarantees include
|
|
* CPUs that are offline, idle, or executing in user mode, as well as CPUs
|
|
* that are executing in the kernel.
|
|
*
|
|
* Furthermore, if CPU A invoked synchronize_sched(), which returned
|
|
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
|
* to have executed a full memory barrier during the execution of
|
|
* synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
|
|
* again only if the system has more than one CPU).
|
|
*/
|
|
void synchronize_sched(void)
|
|
{
|
|
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
|
|
lock_is_held(&rcu_lock_map) ||
|
|
lock_is_held(&rcu_sched_lock_map),
|
|
"Illegal synchronize_sched() in RCU-sched read-side critical section");
|
|
if (rcu_blocking_is_gp())
|
|
return;
|
|
if (rcu_gp_is_expedited())
|
|
synchronize_sched_expedited();
|
|
else
|
|
wait_rcu_gp(call_rcu_sched);
|
|
}
|
|
EXPORT_SYMBOL_GPL(synchronize_sched);
|
|
|
|
/**
|
|
* synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
|
|
*
|
|
* Control will return to the caller some time after a full rcu_bh grace
|
|
* period has elapsed, in other words after all currently executing rcu_bh
|
|
* read-side critical sections have completed. RCU read-side critical
|
|
* sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
|
|
* and may be nested.
|
|
*
|
|
* See the description of synchronize_sched() for more detailed information
|
|
* on memory ordering guarantees.
|
|
*/
|
|
void synchronize_rcu_bh(void)
|
|
{
|
|
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
|
|
lock_is_held(&rcu_lock_map) ||
|
|
lock_is_held(&rcu_sched_lock_map),
|
|
"Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
|
|
if (rcu_blocking_is_gp())
|
|
return;
|
|
if (rcu_gp_is_expedited())
|
|
synchronize_rcu_bh_expedited();
|
|
else
|
|
wait_rcu_gp(call_rcu_bh);
|
|
}
|
|
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
|
|
|
|
/**
|
|
* get_state_synchronize_rcu - Snapshot current RCU state
|
|
*
|
|
* Returns a cookie that is used by a later call to cond_synchronize_rcu()
|
|
* to determine whether or not a full grace period has elapsed in the
|
|
* meantime.
|
|
*/
|
|
unsigned long get_state_synchronize_rcu(void)
|
|
{
|
|
/*
|
|
* Any prior manipulation of RCU-protected data must happen
|
|
* before the load from ->gpnum.
|
|
*/
|
|
smp_mb(); /* ^^^ */
|
|
|
|
/*
|
|
* Make sure this load happens before the purportedly
|
|
* time-consuming work between get_state_synchronize_rcu()
|
|
* and cond_synchronize_rcu().
|
|
*/
|
|
return smp_load_acquire(&rcu_state_p->gpnum);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
|
|
|
|
/**
|
|
* cond_synchronize_rcu - Conditionally wait for an RCU grace period
|
|
*
|
|
* @oldstate: return value from earlier call to get_state_synchronize_rcu()
|
|
*
|
|
* If a full RCU grace period has elapsed since the earlier call to
|
|
* get_state_synchronize_rcu(), just return. Otherwise, invoke
|
|
* synchronize_rcu() to wait for a full grace period.
|
|
*
|
|
* Yes, this function does not take counter wrap into account. But
|
|
* counter wrap is harmless. If the counter wraps, we have waited for
|
|
* more than 2 billion grace periods (and way more on a 64-bit system!),
|
|
* so waiting for one additional grace period should be just fine.
|
|
*/
|
|
void cond_synchronize_rcu(unsigned long oldstate)
|
|
{
|
|
unsigned long newstate;
|
|
|
|
/*
|
|
* Ensure that this load happens before any RCU-destructive
|
|
* actions the caller might carry out after we return.
|
|
*/
|
|
newstate = smp_load_acquire(&rcu_state_p->completed);
|
|
if (ULONG_CMP_GE(oldstate, newstate))
|
|
synchronize_rcu();
|
|
}
|
|
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
|
|
|
|
/**
|
|
* get_state_synchronize_sched - Snapshot current RCU-sched state
|
|
*
|
|
* Returns a cookie that is used by a later call to cond_synchronize_sched()
|
|
* to determine whether or not a full grace period has elapsed in the
|
|
* meantime.
|
|
*/
|
|
unsigned long get_state_synchronize_sched(void)
|
|
{
|
|
/*
|
|
* Any prior manipulation of RCU-protected data must happen
|
|
* before the load from ->gpnum.
|
|
*/
|
|
smp_mb(); /* ^^^ */
|
|
|
|
/*
|
|
* Make sure this load happens before the purportedly
|
|
* time-consuming work between get_state_synchronize_sched()
|
|
* and cond_synchronize_sched().
|
|
*/
|
|
return smp_load_acquire(&rcu_sched_state.gpnum);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
|
|
|
|
/**
|
|
* cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
|
|
*
|
|
* @oldstate: return value from earlier call to get_state_synchronize_sched()
|
|
*
|
|
* If a full RCU-sched grace period has elapsed since the earlier call to
|
|
* get_state_synchronize_sched(), just return. Otherwise, invoke
|
|
* synchronize_sched() to wait for a full grace period.
|
|
*
|
|
* Yes, this function does not take counter wrap into account. But
|
|
* counter wrap is harmless. If the counter wraps, we have waited for
|
|
* more than 2 billion grace periods (and way more on a 64-bit system!),
|
|
* so waiting for one additional grace period should be just fine.
|
|
*/
|
|
void cond_synchronize_sched(unsigned long oldstate)
|
|
{
|
|
unsigned long newstate;
|
|
|
|
/*
|
|
* Ensure that this load happens before any RCU-destructive
|
|
* actions the caller might carry out after we return.
|
|
*/
|
|
newstate = smp_load_acquire(&rcu_sched_state.completed);
|
|
if (ULONG_CMP_GE(oldstate, newstate))
|
|
synchronize_sched();
|
|
}
|
|
EXPORT_SYMBOL_GPL(cond_synchronize_sched);
|
|
|
|
/*
|
|
* Check to see if there is any immediate RCU-related work to be done
|
|
* by the current CPU, for the specified type of RCU, returning 1 if so.
|
|
* The checks are in order of increasing expense: checks that can be
|
|
* carried out against CPU-local state are performed first. However,
|
|
* we must check for CPU stalls first, else we might not get a chance.
|
|
*/
|
|
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
struct rcu_node *rnp = rdp->mynode;
|
|
|
|
rdp->n_rcu_pending++;
|
|
|
|
/* Check for CPU stalls, if enabled. */
|
|
check_cpu_stall(rsp, rdp);
|
|
|
|
/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
|
|
if (rcu_nohz_full_cpu(rsp))
|
|
return 0;
|
|
|
|
/* Is the RCU core waiting for a quiescent state from this CPU? */
|
|
if (rcu_scheduler_fully_active &&
|
|
rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
|
|
rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
|
|
rdp->n_rp_core_needs_qs++;
|
|
} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
|
|
rdp->n_rp_report_qs++;
|
|
return 1;
|
|
}
|
|
|
|
/* Does this CPU have callbacks ready to invoke? */
|
|
if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
|
|
rdp->n_rp_cb_ready++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has RCU gone idle with this CPU needing another grace period? */
|
|
if (cpu_needs_another_gp(rsp, rdp)) {
|
|
rdp->n_rp_cpu_needs_gp++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has another RCU grace period completed? */
|
|
if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
|
|
rdp->n_rp_gp_completed++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has a new RCU grace period started? */
|
|
if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
|
|
unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
|
|
rdp->n_rp_gp_started++;
|
|
return 1;
|
|
}
|
|
|
|
/* Does this CPU need a deferred NOCB wakeup? */
|
|
if (rcu_nocb_need_deferred_wakeup(rdp)) {
|
|
rdp->n_rp_nocb_defer_wakeup++;
|
|
return 1;
|
|
}
|
|
|
|
/* nothing to do */
|
|
rdp->n_rp_need_nothing++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check to see if there is any immediate RCU-related work to be done
|
|
* by the current CPU, returning 1 if so. This function is part of the
|
|
* RCU implementation; it is -not- an exported member of the RCU API.
|
|
*/
|
|
static int rcu_pending(void)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp)
|
|
if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return true if the specified CPU has any callback. If all_lazy is
|
|
* non-NULL, store an indication of whether all callbacks are lazy.
|
|
* (If there are no callbacks, all of them are deemed to be lazy.)
|
|
*/
|
|
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
|
|
{
|
|
bool al = true;
|
|
bool hc = false;
|
|
struct rcu_data *rdp;
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp) {
|
|
rdp = this_cpu_ptr(rsp->rda);
|
|
if (rcu_segcblist_empty(&rdp->cblist))
|
|
continue;
|
|
hc = true;
|
|
if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
|
|
al = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_lazy)
|
|
*all_lazy = al;
|
|
return hc;
|
|
}
|
|
|
|
/*
|
|
* Helper function for _rcu_barrier() tracing. If tracing is disabled,
|
|
* the compiler is expected to optimize this away.
|
|
*/
|
|
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
|
|
int cpu, unsigned long done)
|
|
{
|
|
trace_rcu_barrier(rsp->name, s, cpu,
|
|
atomic_read(&rsp->barrier_cpu_count), done);
|
|
}
|
|
|
|
/*
|
|
* RCU callback function for _rcu_barrier(). If we are last, wake
|
|
* up the task executing _rcu_barrier().
|
|
*/
|
|
static void rcu_barrier_callback(struct rcu_head *rhp)
|
|
{
|
|
struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
|
|
struct rcu_state *rsp = rdp->rsp;
|
|
|
|
if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
|
|
_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
|
|
complete(&rsp->barrier_completion);
|
|
} else {
|
|
_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called with preemption disabled, and from cross-cpu IRQ context.
|
|
*/
|
|
static void rcu_barrier_func(void *type)
|
|
{
|
|
struct rcu_state *rsp = type;
|
|
struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
|
|
|
|
_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
|
|
rdp->barrier_head.func = rcu_barrier_callback;
|
|
debug_rcu_head_queue(&rdp->barrier_head);
|
|
if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
|
|
atomic_inc(&rsp->barrier_cpu_count);
|
|
} else {
|
|
debug_rcu_head_unqueue(&rdp->barrier_head);
|
|
_rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Orchestrate the specified type of RCU barrier, waiting for all
|
|
* RCU callbacks of the specified type to complete.
|
|
*/
|
|
static void _rcu_barrier(struct rcu_state *rsp)
|
|
{
|
|
int cpu;
|
|
struct rcu_data *rdp;
|
|
unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
|
|
|
|
_rcu_barrier_trace(rsp, "Begin", -1, s);
|
|
|
|
/* Take mutex to serialize concurrent rcu_barrier() requests. */
|
|
mutex_lock(&rsp->barrier_mutex);
|
|
|
|
/* Did someone else do our work for us? */
|
|
if (rcu_seq_done(&rsp->barrier_sequence, s)) {
|
|
_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
|
|
smp_mb(); /* caller's subsequent code after above check. */
|
|
mutex_unlock(&rsp->barrier_mutex);
|
|
return;
|
|
}
|
|
|
|
/* Mark the start of the barrier operation. */
|
|
rcu_seq_start(&rsp->barrier_sequence);
|
|
_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
|
|
|
|
/*
|
|
* Initialize the count to one rather than to zero in order to
|
|
* avoid a too-soon return to zero in case of a short grace period
|
|
* (or preemption of this task). Exclude CPU-hotplug operations
|
|
* to ensure that no offline CPU has callbacks queued.
|
|
*/
|
|
init_completion(&rsp->barrier_completion);
|
|
atomic_set(&rsp->barrier_cpu_count, 1);
|
|
get_online_cpus();
|
|
|
|
/*
|
|
* Force each CPU with callbacks to register a new callback.
|
|
* When that callback is invoked, we will know that all of the
|
|
* corresponding CPU's preceding callbacks have been invoked.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
|
|
continue;
|
|
rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
if (rcu_is_nocb_cpu(cpu)) {
|
|
if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
|
|
_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
|
|
rsp->barrier_sequence);
|
|
} else {
|
|
_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
|
|
rsp->barrier_sequence);
|
|
smp_mb__before_atomic();
|
|
atomic_inc(&rsp->barrier_cpu_count);
|
|
__call_rcu(&rdp->barrier_head,
|
|
rcu_barrier_callback, rsp, cpu, 0);
|
|
}
|
|
} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
|
|
_rcu_barrier_trace(rsp, "OnlineQ", cpu,
|
|
rsp->barrier_sequence);
|
|
smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
|
|
} else {
|
|
_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
|
|
rsp->barrier_sequence);
|
|
}
|
|
}
|
|
put_online_cpus();
|
|
|
|
/*
|
|
* Now that we have an rcu_barrier_callback() callback on each
|
|
* CPU, and thus each counted, remove the initial count.
|
|
*/
|
|
if (atomic_dec_and_test(&rsp->barrier_cpu_count))
|
|
complete(&rsp->barrier_completion);
|
|
|
|
/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
|
|
wait_for_completion(&rsp->barrier_completion);
|
|
|
|
/* Mark the end of the barrier operation. */
|
|
_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
|
|
rcu_seq_end(&rsp->barrier_sequence);
|
|
|
|
/* Other rcu_barrier() invocations can now safely proceed. */
|
|
mutex_unlock(&rsp->barrier_mutex);
|
|
}
|
|
|
|
/**
|
|
* rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
|
|
*/
|
|
void rcu_barrier_bh(void)
|
|
{
|
|
_rcu_barrier(&rcu_bh_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_bh);
|
|
|
|
/**
|
|
* rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
|
|
*/
|
|
void rcu_barrier_sched(void)
|
|
{
|
|
_rcu_barrier(&rcu_sched_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_sched);
|
|
|
|
/*
|
|
* Propagate ->qsinitmask bits up the rcu_node tree to account for the
|
|
* first CPU in a given leaf rcu_node structure coming online. The caller
|
|
* must hold the corresponding leaf rcu_node ->lock with interrrupts
|
|
* disabled.
|
|
*/
|
|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
|
|
{
|
|
long mask;
|
|
struct rcu_node *rnp = rnp_leaf;
|
|
|
|
for (;;) {
|
|
mask = rnp->grpmask;
|
|
rnp = rnp->parent;
|
|
if (rnp == NULL)
|
|
return;
|
|
raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
|
|
rnp->qsmaskinit |= mask;
|
|
raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do boot-time initialization of a CPU's per-CPU RCU data.
|
|
*/
|
|
static void __init
|
|
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
/* Set up local state, ensuring consistent view of global state. */
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
|
|
rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
|
|
WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
|
|
WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
|
|
rdp->cpu = cpu;
|
|
rdp->rsp = rsp;
|
|
rcu_boot_init_nocb_percpu_data(rdp);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
|
|
/*
|
|
* Initialize a CPU's per-CPU RCU data. Note that only one online or
|
|
* offline event can be happening at a given time. Note also that we
|
|
* can accept some slop in the rsp->completed access due to the fact
|
|
* that this CPU cannot possibly have any RCU callbacks in flight yet.
|
|
*/
|
|
static void
|
|
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
/* Set up local state, ensuring consistent view of global state. */
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
rdp->qlen_last_fqs_check = 0;
|
|
rdp->n_force_qs_snap = rsp->n_force_qs;
|
|
rdp->blimit = blimit;
|
|
if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
|
|
!init_nocb_callback_list(rdp))
|
|
rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
|
|
rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
|
|
rcu_sysidle_init_percpu_data(rdp->dynticks);
|
|
rcu_dynticks_eqs_online();
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
|
|
|
/*
|
|
* Add CPU to leaf rcu_node pending-online bitmask. Any needed
|
|
* propagation up the rcu_node tree will happen at the beginning
|
|
* of the next grace period.
|
|
*/
|
|
rnp = rdp->mynode;
|
|
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
|
|
if (!rdp->beenonline)
|
|
WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
|
|
rdp->beenonline = true; /* We have now been online. */
|
|
rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
|
|
rdp->completed = rnp->completed;
|
|
rdp->cpu_no_qs.b.norm = true;
|
|
rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
|
|
rdp->core_needs_qs = false;
|
|
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
|
|
/*
|
|
* Invoked early in the CPU-online process, when pretty much all
|
|
* services are available. The incoming CPU is not present.
|
|
*/
|
|
int rcutree_prepare_cpu(unsigned int cpu)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp)
|
|
rcu_init_percpu_data(cpu, rsp);
|
|
|
|
rcu_prepare_kthreads(cpu);
|
|
rcu_spawn_all_nocb_kthreads(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update RCU priority boot kthread affinity for CPU-hotplug changes.
|
|
*/
|
|
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
|
|
{
|
|
struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
|
|
|
|
rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
|
|
}
|
|
|
|
/*
|
|
* Near the end of the CPU-online process. Pretty much all services
|
|
* enabled, and the CPU is now very much alive.
|
|
*/
|
|
int rcutree_online_cpu(unsigned int cpu)
|
|
{
|
|
sync_sched_exp_online_cleanup(cpu);
|
|
rcutree_affinity_setting(cpu, -1);
|
|
if (IS_ENABLED(CONFIG_TREE_SRCU))
|
|
srcu_online_cpu(cpu);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Near the beginning of the process. The CPU is still very much alive
|
|
* with pretty much all services enabled.
|
|
*/
|
|
int rcutree_offline_cpu(unsigned int cpu)
|
|
{
|
|
rcutree_affinity_setting(cpu, cpu);
|
|
if (IS_ENABLED(CONFIG_TREE_SRCU))
|
|
srcu_offline_cpu(cpu);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Near the end of the offline process. We do only tracing here.
|
|
*/
|
|
int rcutree_dying_cpu(unsigned int cpu)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp)
|
|
rcu_cleanup_dying_cpu(rsp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The outgoing CPU is gone and we are running elsewhere.
|
|
*/
|
|
int rcutree_dead_cpu(unsigned int cpu)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp) {
|
|
rcu_cleanup_dead_cpu(cpu, rsp);
|
|
do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mark the specified CPU as being online so that subsequent grace periods
|
|
* (both expedited and normal) will wait on it. Note that this means that
|
|
* incoming CPUs are not allowed to use RCU read-side critical sections
|
|
* until this function is called. Failing to observe this restriction
|
|
* will result in lockdep splats.
|
|
*
|
|
* Note that this function is special in that it is invoked directly
|
|
* from the incoming CPU rather than from the cpuhp_step mechanism.
|
|
* This is because this function must be invoked at a precise location.
|
|
*/
|
|
void rcu_cpu_starting(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask;
|
|
struct rcu_data *rdp;
|
|
struct rcu_node *rnp;
|
|
struct rcu_state *rsp;
|
|
|
|
for_each_rcu_flavor(rsp) {
|
|
rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
rnp = rdp->mynode;
|
|
mask = rdp->grpmask;
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
rnp->qsmaskinitnext |= mask;
|
|
rnp->expmaskinitnext |= mask;
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* The CPU is exiting the idle loop into the arch_cpu_idle_dead()
|
|
* function. We now remove it from the rcu_node tree's ->qsmaskinit
|
|
* bit masks.
|
|
*/
|
|
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask;
|
|
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
|
|
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
|
|
|
|
/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
|
|
mask = rdp->grpmask;
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
|
|
rnp->qsmaskinitnext &= ~mask;
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
|
|
/*
|
|
* The outgoing function has no further need of RCU, so remove it from
|
|
* the list of CPUs that RCU must track.
|
|
*
|
|
* Note that this function is special in that it is invoked directly
|
|
* from the outgoing CPU rather than from the cpuhp_step mechanism.
|
|
* This is because this function must be invoked at a precise location.
|
|
*/
|
|
void rcu_report_dead(unsigned int cpu)
|
|
{
|
|
struct rcu_state *rsp;
|
|
|
|
/* QS for any half-done expedited RCU-sched GP. */
|
|
preempt_disable();
|
|
rcu_report_exp_rdp(&rcu_sched_state,
|
|
this_cpu_ptr(rcu_sched_state.rda), true);
|
|
preempt_enable();
|
|
for_each_rcu_flavor(rsp)
|
|
rcu_cleanup_dying_idle_cpu(cpu, rsp);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* On non-huge systems, use expedited RCU grace periods to make suspend
|
|
* and hibernation run faster.
|
|
*/
|
|
static int rcu_pm_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
switch (action) {
|
|
case PM_HIBERNATION_PREPARE:
|
|
case PM_SUSPEND_PREPARE:
|
|
if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
|
|
rcu_expedite_gp();
|
|
break;
|
|
case PM_POST_HIBERNATION:
|
|
case PM_POST_SUSPEND:
|
|
if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
|
|
rcu_unexpedite_gp();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/*
|
|
* Spawn the kthreads that handle each RCU flavor's grace periods.
|
|
*/
|
|
static int __init rcu_spawn_gp_kthread(void)
|
|
{
|
|
unsigned long flags;
|
|
int kthread_prio_in = kthread_prio;
|
|
struct rcu_node *rnp;
|
|
struct rcu_state *rsp;
|
|
struct sched_param sp;
|
|
struct task_struct *t;
|
|
|
|
/* Force priority into range. */
|
|
if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
|
|
kthread_prio = 1;
|
|
else if (kthread_prio < 0)
|
|
kthread_prio = 0;
|
|
else if (kthread_prio > 99)
|
|
kthread_prio = 99;
|
|
if (kthread_prio != kthread_prio_in)
|
|
pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
|
|
kthread_prio, kthread_prio_in);
|
|
|
|
rcu_scheduler_fully_active = 1;
|
|
for_each_rcu_flavor(rsp) {
|
|
t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
|
|
BUG_ON(IS_ERR(t));
|
|
rnp = rcu_get_root(rsp);
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
rsp->gp_kthread = t;
|
|
if (kthread_prio) {
|
|
sp.sched_priority = kthread_prio;
|
|
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
|
|
}
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
wake_up_process(t);
|
|
}
|
|
rcu_spawn_nocb_kthreads();
|
|
rcu_spawn_boost_kthreads();
|
|
return 0;
|
|
}
|
|
early_initcall(rcu_spawn_gp_kthread);
|
|
|
|
/*
|
|
* This function is invoked towards the end of the scheduler's
|
|
* initialization process. Before this is called, the idle task might
|
|
* contain synchronous grace-period primitives (during which time, this idle
|
|
* task is booting the system, and such primitives are no-ops). After this
|
|
* function is called, any synchronous grace-period primitives are run as
|
|
* expedited, with the requesting task driving the grace period forward.
|
|
* A later core_initcall() rcu_set_runtime_mode() will switch to full
|
|
* runtime RCU functionality.
|
|
*/
|
|
void rcu_scheduler_starting(void)
|
|
{
|
|
WARN_ON(num_online_cpus() != 1);
|
|
WARN_ON(nr_context_switches() > 0);
|
|
rcu_test_sync_prims();
|
|
rcu_scheduler_active = RCU_SCHEDULER_INIT;
|
|
rcu_test_sync_prims();
|
|
}
|
|
|
|
/*
|
|
* Helper function for rcu_init() that initializes one rcu_state structure.
|
|
*/
|
|
static void __init rcu_init_one(struct rcu_state *rsp)
|
|
{
|
|
static const char * const buf[] = RCU_NODE_NAME_INIT;
|
|
static const char * const fqs[] = RCU_FQS_NAME_INIT;
|
|
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
|
|
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
|
|
|
|
int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
|
|
int cpustride = 1;
|
|
int i;
|
|
int j;
|
|
struct rcu_node *rnp;
|
|
|
|
BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
|
|
|
|
/* Silence gcc 4.8 false positive about array index out of range. */
|
|
if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
|
|
panic("rcu_init_one: rcu_num_lvls out of range");
|
|
|
|
/* Initialize the level-tracking arrays. */
|
|
|
|
for (i = 1; i < rcu_num_lvls; i++)
|
|
rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
|
|
rcu_init_levelspread(levelspread, num_rcu_lvl);
|
|
|
|
/* Initialize the elements themselves, starting from the leaves. */
|
|
|
|
for (i = rcu_num_lvls - 1; i >= 0; i--) {
|
|
cpustride *= levelspread[i];
|
|
rnp = rsp->level[i];
|
|
for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
|
|
raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
|
|
lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
|
|
&rcu_node_class[i], buf[i]);
|
|
raw_spin_lock_init(&rnp->fqslock);
|
|
lockdep_set_class_and_name(&rnp->fqslock,
|
|
&rcu_fqs_class[i], fqs[i]);
|
|
rnp->gpnum = rsp->gpnum;
|
|
rnp->completed = rsp->completed;
|
|
rnp->qsmask = 0;
|
|
rnp->qsmaskinit = 0;
|
|
rnp->grplo = j * cpustride;
|
|
rnp->grphi = (j + 1) * cpustride - 1;
|
|
if (rnp->grphi >= nr_cpu_ids)
|
|
rnp->grphi = nr_cpu_ids - 1;
|
|
if (i == 0) {
|
|
rnp->grpnum = 0;
|
|
rnp->grpmask = 0;
|
|
rnp->parent = NULL;
|
|
} else {
|
|
rnp->grpnum = j % levelspread[i - 1];
|
|
rnp->grpmask = 1UL << rnp->grpnum;
|
|
rnp->parent = rsp->level[i - 1] +
|
|
j / levelspread[i - 1];
|
|
}
|
|
rnp->level = i;
|
|
INIT_LIST_HEAD(&rnp->blkd_tasks);
|
|
rcu_init_one_nocb(rnp);
|
|
init_waitqueue_head(&rnp->exp_wq[0]);
|
|
init_waitqueue_head(&rnp->exp_wq[1]);
|
|
init_waitqueue_head(&rnp->exp_wq[2]);
|
|
init_waitqueue_head(&rnp->exp_wq[3]);
|
|
spin_lock_init(&rnp->exp_lock);
|
|
}
|
|
}
|
|
|
|
init_swait_queue_head(&rsp->gp_wq);
|
|
init_swait_queue_head(&rsp->expedited_wq);
|
|
rnp = rsp->level[rcu_num_lvls - 1];
|
|
for_each_possible_cpu(i) {
|
|
while (i > rnp->grphi)
|
|
rnp++;
|
|
per_cpu_ptr(rsp->rda, i)->mynode = rnp;
|
|
rcu_boot_init_percpu_data(i, rsp);
|
|
}
|
|
list_add(&rsp->flavors, &rcu_struct_flavors);
|
|
}
|
|
|
|
/*
|
|
* Compute the rcu_node tree geometry from kernel parameters. This cannot
|
|
* replace the definitions in tree.h because those are needed to size
|
|
* the ->node array in the rcu_state structure.
|
|
*/
|
|
static void __init rcu_init_geometry(void)
|
|
{
|
|
ulong d;
|
|
int i;
|
|
int rcu_capacity[RCU_NUM_LVLS];
|
|
|
|
/*
|
|
* Initialize any unspecified boot parameters.
|
|
* The default values of jiffies_till_first_fqs and
|
|
* jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
|
|
* value, which is a function of HZ, then adding one for each
|
|
* RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
|
|
*/
|
|
d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
|
|
if (jiffies_till_first_fqs == ULONG_MAX)
|
|
jiffies_till_first_fqs = d;
|
|
if (jiffies_till_next_fqs == ULONG_MAX)
|
|
jiffies_till_next_fqs = d;
|
|
|
|
/* If the compile-time values are accurate, just leave. */
|
|
if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
|
|
nr_cpu_ids == NR_CPUS)
|
|
return;
|
|
pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
|
|
rcu_fanout_leaf, nr_cpu_ids);
|
|
|
|
/*
|
|
* The boot-time rcu_fanout_leaf parameter must be at least two
|
|
* and cannot exceed the number of bits in the rcu_node masks.
|
|
* Complain and fall back to the compile-time values if this
|
|
* limit is exceeded.
|
|
*/
|
|
if (rcu_fanout_leaf < 2 ||
|
|
rcu_fanout_leaf > sizeof(unsigned long) * 8) {
|
|
rcu_fanout_leaf = RCU_FANOUT_LEAF;
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Compute number of nodes that can be handled an rcu_node tree
|
|
* with the given number of levels.
|
|
*/
|
|
rcu_capacity[0] = rcu_fanout_leaf;
|
|
for (i = 1; i < RCU_NUM_LVLS; i++)
|
|
rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
|
|
|
|
/*
|
|
* The tree must be able to accommodate the configured number of CPUs.
|
|
* If this limit is exceeded, fall back to the compile-time values.
|
|
*/
|
|
if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
|
|
rcu_fanout_leaf = RCU_FANOUT_LEAF;
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
/* Calculate the number of levels in the tree. */
|
|
for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
|
|
}
|
|
rcu_num_lvls = i + 1;
|
|
|
|
/* Calculate the number of rcu_nodes at each level of the tree. */
|
|
for (i = 0; i < rcu_num_lvls; i++) {
|
|
int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
|
|
num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
|
|
}
|
|
|
|
/* Calculate the total number of rcu_node structures. */
|
|
rcu_num_nodes = 0;
|
|
for (i = 0; i < rcu_num_lvls; i++)
|
|
rcu_num_nodes += num_rcu_lvl[i];
|
|
}
|
|
|
|
/*
|
|
* Dump out the structure of the rcu_node combining tree associated
|
|
* with the rcu_state structure referenced by rsp.
|
|
*/
|
|
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
|
|
{
|
|
int level = 0;
|
|
struct rcu_node *rnp;
|
|
|
|
pr_info("rcu_node tree layout dump\n");
|
|
pr_info(" ");
|
|
rcu_for_each_node_breadth_first(rsp, rnp) {
|
|
if (rnp->level != level) {
|
|
pr_cont("\n");
|
|
pr_info(" ");
|
|
level = rnp->level;
|
|
}
|
|
pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
|
|
void __init rcu_init(void)
|
|
{
|
|
int cpu;
|
|
|
|
rcu_early_boot_tests();
|
|
|
|
rcu_bootup_announce();
|
|
rcu_init_geometry();
|
|
rcu_init_one(&rcu_bh_state);
|
|
rcu_init_one(&rcu_sched_state);
|
|
if (dump_tree)
|
|
rcu_dump_rcu_node_tree(&rcu_sched_state);
|
|
__rcu_init_preempt();
|
|
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
|
|
|
|
/*
|
|
* We don't need protection against CPU-hotplug here because
|
|
* this is called early in boot, before either interrupts
|
|
* or the scheduler are operational.
|
|
*/
|
|
pm_notifier(rcu_pm_notify, 0);
|
|
for_each_online_cpu(cpu) {
|
|
rcutree_prepare_cpu(cpu);
|
|
rcu_cpu_starting(cpu);
|
|
if (IS_ENABLED(CONFIG_TREE_SRCU))
|
|
srcu_online_cpu(cpu);
|
|
}
|
|
}
|
|
|
|
#include "tree_exp.h"
|
|
#include "tree_plugin.h"
|