linux/arch/alpha/mm/numa.c
Jiang Liu 2fb1cd5a28 mm/alpha: unify mem_init() for both UMA and NUMA architectures
Now mem_init() for both Alpha UMA and Alpha NUMA are the same, so unify it
to reduce duplicated code.

Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:39 -07:00

322 lines
9.1 KiB
C

/*
* linux/arch/alpha/mm/numa.c
*
* DISCONTIGMEM NUMA alpha support.
*
* Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/swap.h>
#include <linux/initrd.h>
#include <linux/pfn.h>
#include <linux/module.h>
#include <asm/hwrpb.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
pg_data_t node_data[MAX_NUMNODES];
EXPORT_SYMBOL(node_data);
#undef DEBUG_DISCONTIG
#ifdef DEBUG_DISCONTIG
#define DBGDCONT(args...) printk(args)
#else
#define DBGDCONT(args...)
#endif
#define for_each_mem_cluster(memdesc, _cluster, i) \
for ((_cluster) = (memdesc)->cluster, (i) = 0; \
(i) < (memdesc)->numclusters; (i)++, (_cluster)++)
static void __init show_mem_layout(void)
{
struct memclust_struct * cluster;
struct memdesc_struct * memdesc;
int i;
/* Find free clusters, and init and free the bootmem accordingly. */
memdesc = (struct memdesc_struct *)
(hwrpb->mddt_offset + (unsigned long) hwrpb);
printk("Raw memory layout:\n");
for_each_mem_cluster(memdesc, cluster, i) {
printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
i, cluster->usage, cluster->start_pfn,
cluster->start_pfn + cluster->numpages);
}
}
static void __init
setup_memory_node(int nid, void *kernel_end)
{
extern unsigned long mem_size_limit;
struct memclust_struct * cluster;
struct memdesc_struct * memdesc;
unsigned long start_kernel_pfn, end_kernel_pfn;
unsigned long bootmap_size, bootmap_pages, bootmap_start;
unsigned long start, end;
unsigned long node_pfn_start, node_pfn_end;
unsigned long node_min_pfn, node_max_pfn;
int i;
unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
int show_init = 0;
/* Find the bounds of current node */
node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
/* Find free clusters, and init and free the bootmem accordingly. */
memdesc = (struct memdesc_struct *)
(hwrpb->mddt_offset + (unsigned long) hwrpb);
/* find the bounds of this node (node_min_pfn/node_max_pfn) */
node_min_pfn = ~0UL;
node_max_pfn = 0UL;
for_each_mem_cluster(memdesc, cluster, i) {
/* Bit 0 is console/PALcode reserved. Bit 1 is
non-volatile memory -- we might want to mark
this for later. */
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = start + cluster->numpages;
if (start >= node_pfn_end || end <= node_pfn_start)
continue;
if (!show_init) {
show_init = 1;
printk("Initializing bootmem allocator on Node ID %d\n", nid);
}
printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
i, cluster->usage, cluster->start_pfn,
cluster->start_pfn + cluster->numpages);
if (start < node_pfn_start)
start = node_pfn_start;
if (end > node_pfn_end)
end = node_pfn_end;
if (start < node_min_pfn)
node_min_pfn = start;
if (end > node_max_pfn)
node_max_pfn = end;
}
if (mem_size_limit && node_max_pfn > mem_size_limit) {
static int msg_shown = 0;
if (!msg_shown) {
msg_shown = 1;
printk("setup: forcing memory size to %ldK (from %ldK).\n",
mem_size_limit << (PAGE_SHIFT - 10),
node_max_pfn << (PAGE_SHIFT - 10));
}
node_max_pfn = mem_size_limit;
}
if (node_min_pfn >= node_max_pfn)
return;
/* Update global {min,max}_low_pfn from node information. */
if (node_min_pfn < min_low_pfn)
min_low_pfn = node_min_pfn;
if (node_max_pfn > max_low_pfn)
max_pfn = max_low_pfn = node_max_pfn;
#if 0 /* we'll try this one again in a little while */
/* Cute trick to make sure our local node data is on local memory */
node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
#endif
/* Quasi-mark the pg_data_t as in-use */
node_min_pfn += node_datasz;
if (node_min_pfn >= node_max_pfn) {
printk(" not enough mem to reserve NODE_DATA");
return;
}
NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
printk(" Detected node memory: start %8lu, end %8lu\n",
node_min_pfn, node_max_pfn);
DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid));
DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
/* Find the bounds of kernel memory. */
start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
bootmap_start = -1;
if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
panic("kernel loaded out of ram");
/* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
Note that we round this down, not up - node memory
has much larger alignment than 8Mb, so it's safe. */
node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
/* We need to know how many physically contiguous pages
we'll need for the bootmap. */
bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
/* Now find a good region where to allocate the bootmap. */
for_each_mem_cluster(memdesc, cluster, i) {
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = start + cluster->numpages;
if (start >= node_max_pfn || end <= node_min_pfn)
continue;
if (end > node_max_pfn)
end = node_max_pfn;
if (start < node_min_pfn)
start = node_min_pfn;
if (start < start_kernel_pfn) {
if (end > end_kernel_pfn
&& end - end_kernel_pfn >= bootmap_pages) {
bootmap_start = end_kernel_pfn;
break;
} else if (end > start_kernel_pfn)
end = start_kernel_pfn;
} else if (start < end_kernel_pfn)
start = end_kernel_pfn;
if (end - start >= bootmap_pages) {
bootmap_start = start;
break;
}
}
if (bootmap_start == -1)
panic("couldn't find a contiguous place for the bootmap");
/* Allocate the bootmap and mark the whole MM as reserved. */
bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
node_min_pfn, node_max_pfn);
DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
bootmap_start, bootmap_size, bootmap_pages);
/* Mark the free regions. */
for_each_mem_cluster(memdesc, cluster, i) {
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = cluster->start_pfn + cluster->numpages;
if (start >= node_max_pfn || end <= node_min_pfn)
continue;
if (end > node_max_pfn)
end = node_max_pfn;
if (start < node_min_pfn)
start = node_min_pfn;
if (start < start_kernel_pfn) {
if (end > end_kernel_pfn) {
free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
(PFN_PHYS(start_kernel_pfn)
- PFN_PHYS(start)));
printk(" freeing pages %ld:%ld\n",
start, start_kernel_pfn);
start = end_kernel_pfn;
} else if (end > start_kernel_pfn)
end = start_kernel_pfn;
} else if (start < end_kernel_pfn)
start = end_kernel_pfn;
if (start >= end)
continue;
free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
printk(" freeing pages %ld:%ld\n", start, end);
}
/* Reserve the bootmap memory. */
reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start),
bootmap_size, BOOTMEM_DEFAULT);
printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
node_set_online(nid);
}
void __init
setup_memory(void *kernel_end)
{
int nid;
show_mem_layout();
nodes_clear(node_online_map);
min_low_pfn = ~0UL;
max_low_pfn = 0UL;
for (nid = 0; nid < MAX_NUMNODES; nid++)
setup_memory_node(nid, kernel_end);
#ifdef CONFIG_BLK_DEV_INITRD
initrd_start = INITRD_START;
if (initrd_start) {
extern void *move_initrd(unsigned long);
initrd_end = initrd_start+INITRD_SIZE;
printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
(void *) initrd_start, INITRD_SIZE);
if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
if (!move_initrd(PFN_PHYS(max_low_pfn)))
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%p)\ndisabling initrd\n",
initrd_end,
phys_to_virt(PFN_PHYS(max_low_pfn)));
} else {
nid = kvaddr_to_nid(initrd_start);
reserve_bootmem_node(NODE_DATA(nid),
virt_to_phys((void *)initrd_start),
INITRD_SIZE, BOOTMEM_DEFAULT);
}
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
void __init paging_init(void)
{
unsigned int nid;
unsigned long zones_size[MAX_NR_ZONES] = {0, };
unsigned long dma_local_pfn;
/*
* The old global MAX_DMA_ADDRESS per-arch API doesn't fit
* in the NUMA model, for now we convert it to a pfn and
* we interpret this pfn as a local per-node information.
* This issue isn't very important since none of these machines
* have legacy ISA slots anyways.
*/
dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
for_each_online_node(nid) {
bootmem_data_t *bdata = &bootmem_node_data[nid];
unsigned long start_pfn = bdata->node_min_pfn;
unsigned long end_pfn = bdata->node_low_pfn;
if (dma_local_pfn >= end_pfn - start_pfn)
zones_size[ZONE_DMA] = end_pfn - start_pfn;
else {
zones_size[ZONE_DMA] = dma_local_pfn;
zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
}
node_set_state(nid, N_NORMAL_MEMORY);
free_area_init_node(nid, zones_size, start_pfn, NULL);
}
/* Initialize the kernel's ZERO_PGE. */
memset((void *)ZERO_PGE, 0, PAGE_SIZE);
}