linux/kernel/time/tick-sched.c
Shi, Alex fc0763f53e nohz: Remove nohz_cpu_mask
RCU no longer uses this global variable, nor does anyone else.  This
commit therefore removes this variable.  This reduces memory footprint
and also removes some atomic instructions and memory barriers from
the dyntick-idle path.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28 21:38:29 -07:00

860 lines
22 KiB
C

/*
* linux/kernel/time/tick-sched.c
*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
*
* No idle tick implementation for low and high resolution timers
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* Distribute under GPLv2.
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <asm/irq_regs.h>
#include "tick-internal.h"
/*
* Per cpu nohz control structure
*/
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
/*
* The time, when the last jiffy update happened. Protected by xtime_lock.
*/
static ktime_t last_jiffies_update;
struct tick_sched *tick_get_tick_sched(int cpu)
{
return &per_cpu(tick_cpu_sched, cpu);
}
/*
* Must be called with interrupts disabled !
*/
static void tick_do_update_jiffies64(ktime_t now)
{
unsigned long ticks = 0;
ktime_t delta;
/*
* Do a quick check without holding xtime_lock:
*/
delta = ktime_sub(now, last_jiffies_update);
if (delta.tv64 < tick_period.tv64)
return;
/* Reevalute with xtime_lock held */
write_seqlock(&xtime_lock);
delta = ktime_sub(now, last_jiffies_update);
if (delta.tv64 >= tick_period.tv64) {
delta = ktime_sub(delta, tick_period);
last_jiffies_update = ktime_add(last_jiffies_update,
tick_period);
/* Slow path for long timeouts */
if (unlikely(delta.tv64 >= tick_period.tv64)) {
s64 incr = ktime_to_ns(tick_period);
ticks = ktime_divns(delta, incr);
last_jiffies_update = ktime_add_ns(last_jiffies_update,
incr * ticks);
}
do_timer(++ticks);
/* Keep the tick_next_period variable up to date */
tick_next_period = ktime_add(last_jiffies_update, tick_period);
}
write_sequnlock(&xtime_lock);
}
/*
* Initialize and return retrieve the jiffies update.
*/
static ktime_t tick_init_jiffy_update(void)
{
ktime_t period;
write_seqlock(&xtime_lock);
/* Did we start the jiffies update yet ? */
if (last_jiffies_update.tv64 == 0)
last_jiffies_update = tick_next_period;
period = last_jiffies_update;
write_sequnlock(&xtime_lock);
return period;
}
/*
* NOHZ - aka dynamic tick functionality
*/
#ifdef CONFIG_NO_HZ
/*
* NO HZ enabled ?
*/
static int tick_nohz_enabled __read_mostly = 1;
/*
* Enable / Disable tickless mode
*/
static int __init setup_tick_nohz(char *str)
{
if (!strcmp(str, "off"))
tick_nohz_enabled = 0;
else if (!strcmp(str, "on"))
tick_nohz_enabled = 1;
else
return 0;
return 1;
}
__setup("nohz=", setup_tick_nohz);
/**
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
*
* Called from interrupt entry when the CPU was idle
*
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
* must be updated. Otherwise an interrupt handler could use a stale jiffy
* value. We do this unconditionally on any cpu, as we don't know whether the
* cpu, which has the update task assigned is in a long sleep.
*/
static void tick_nohz_update_jiffies(ktime_t now)
{
int cpu = smp_processor_id();
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
unsigned long flags;
ts->idle_waketime = now;
local_irq_save(flags);
tick_do_update_jiffies64(now);
local_irq_restore(flags);
touch_softlockup_watchdog();
}
/*
* Updates the per cpu time idle statistics counters
*/
static void
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
{
ktime_t delta;
if (ts->idle_active) {
delta = ktime_sub(now, ts->idle_entrytime);
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
if (nr_iowait_cpu(cpu) > 0)
ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
ts->idle_entrytime = now;
}
if (last_update_time)
*last_update_time = ktime_to_us(now);
}
static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
update_ts_time_stats(cpu, ts, now, NULL);
ts->idle_active = 0;
sched_clock_idle_wakeup_event(0);
}
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
{
ktime_t now;
now = ktime_get();
update_ts_time_stats(cpu, ts, now, NULL);
ts->idle_entrytime = now;
ts->idle_active = 1;
sched_clock_idle_sleep_event();
return now;
}
/**
* get_cpu_idle_time_us - get the total idle time of a cpu
* @cpu: CPU number to query
* @last_update_time: variable to store update time in
*
* Return the cummulative idle time (since boot) for a given
* CPU, in microseconds. The idle time returned includes
* the iowait time (unlike what "top" and co report).
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
*
* This function returns -1 if NOHZ is not enabled.
*/
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
if (!tick_nohz_enabled)
return -1;
update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
return ktime_to_us(ts->idle_sleeptime);
}
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
/*
* get_cpu_iowait_time_us - get the total iowait time of a cpu
* @cpu: CPU number to query
* @last_update_time: variable to store update time in
*
* Return the cummulative iowait time (since boot) for a given
* CPU, in microseconds.
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
*
* This function returns -1 if NOHZ is not enabled.
*/
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
if (!tick_nohz_enabled)
return -1;
update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
return ktime_to_us(ts->iowait_sleeptime);
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
/**
* tick_nohz_stop_sched_tick - stop the idle tick from the idle task
*
* When the next event is more than a tick into the future, stop the idle tick
* Called either from the idle loop or from irq_exit() when an idle period was
* just interrupted by an interrupt which did not cause a reschedule.
*/
void tick_nohz_stop_sched_tick(int inidle)
{
unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
struct tick_sched *ts;
ktime_t last_update, expires, now;
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
u64 time_delta;
int cpu;
local_irq_save(flags);
cpu = smp_processor_id();
ts = &per_cpu(tick_cpu_sched, cpu);
/*
* Call to tick_nohz_start_idle stops the last_update_time from being
* updated. Thus, it must not be called in the event we are called from
* irq_exit() with the prior state different than idle.
*/
if (!inidle && !ts->inidle)
goto end;
/*
* Set ts->inidle unconditionally. Even if the system did not
* switch to NOHZ mode the cpu frequency governers rely on the
* update of the idle time accounting in tick_nohz_start_idle().
*/
ts->inidle = 1;
now = tick_nohz_start_idle(cpu, ts);
/*
* If this cpu is offline and it is the one which updates
* jiffies, then give up the assignment and let it be taken by
* the cpu which runs the tick timer next. If we don't drop
* this here the jiffies might be stale and do_timer() never
* invoked.
*/
if (unlikely(!cpu_online(cpu))) {
if (cpu == tick_do_timer_cpu)
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
}
if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
goto end;
if (need_resched())
goto end;
if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
static int ratelimit;
if (ratelimit < 10) {
printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
(unsigned int) local_softirq_pending());
ratelimit++;
}
goto end;
}
ts->idle_calls++;
/* Read jiffies and the time when jiffies were updated last */
do {
seq = read_seqbegin(&xtime_lock);
last_update = last_jiffies_update;
last_jiffies = jiffies;
time_delta = timekeeping_max_deferment();
} while (read_seqretry(&xtime_lock, seq));
if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
arch_needs_cpu(cpu)) {
next_jiffies = last_jiffies + 1;
delta_jiffies = 1;
} else {
/* Get the next timer wheel timer */
next_jiffies = get_next_timer_interrupt(last_jiffies);
delta_jiffies = next_jiffies - last_jiffies;
}
/*
* Do not stop the tick, if we are only one off
* or if the cpu is required for rcu
*/
if (!ts->tick_stopped && delta_jiffies == 1)
goto out;
/* Schedule the tick, if we are at least one jiffie off */
if ((long)delta_jiffies >= 1) {
/*
* If this cpu is the one which updates jiffies, then
* give up the assignment and let it be taken by the
* cpu which runs the tick timer next, which might be
* this cpu as well. If we don't drop this here the
* jiffies might be stale and do_timer() never
* invoked. Keep track of the fact that it was the one
* which had the do_timer() duty last. If this cpu is
* the one which had the do_timer() duty last, we
* limit the sleep time to the timekeeping
* max_deferement value which we retrieved
* above. Otherwise we can sleep as long as we want.
*/
if (cpu == tick_do_timer_cpu) {
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
ts->do_timer_last = 1;
} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
time_delta = KTIME_MAX;
ts->do_timer_last = 0;
} else if (!ts->do_timer_last) {
time_delta = KTIME_MAX;
}
/*
* calculate the expiry time for the next timer wheel
* timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
* that there is no timer pending or at least extremely
* far into the future (12 days for HZ=1000). In this
* case we set the expiry to the end of time.
*/
if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
/*
* Calculate the time delta for the next timer event.
* If the time delta exceeds the maximum time delta
* permitted by the current clocksource then adjust
* the time delta accordingly to ensure the
* clocksource does not wrap.
*/
time_delta = min_t(u64, time_delta,
tick_period.tv64 * delta_jiffies);
}
if (time_delta < KTIME_MAX)
expires = ktime_add_ns(last_update, time_delta);
else
expires.tv64 = KTIME_MAX;
/* Skip reprogram of event if its not changed */
if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
goto out;
/*
* nohz_stop_sched_tick can be called several times before
* the nohz_restart_sched_tick is called. This happens when
* interrupts arrive which do not cause a reschedule. In the
* first call we save the current tick time, so we can restart
* the scheduler tick in nohz_restart_sched_tick.
*/
if (!ts->tick_stopped) {
select_nohz_load_balancer(1);
ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
ts->tick_stopped = 1;
ts->idle_jiffies = last_jiffies;
rcu_enter_nohz();
}
ts->idle_sleeps++;
/* Mark expires */
ts->idle_expires = expires;
/*
* If the expiration time == KTIME_MAX, then
* in this case we simply stop the tick timer.
*/
if (unlikely(expires.tv64 == KTIME_MAX)) {
if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
hrtimer_cancel(&ts->sched_timer);
goto out;
}
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
hrtimer_start(&ts->sched_timer, expires,
HRTIMER_MODE_ABS_PINNED);
/* Check, if the timer was already in the past */
if (hrtimer_active(&ts->sched_timer))
goto out;
} else if (!tick_program_event(expires, 0))
goto out;
/*
* We are past the event already. So we crossed a
* jiffie boundary. Update jiffies and raise the
* softirq.
*/
tick_do_update_jiffies64(ktime_get());
}
raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
ts->next_jiffies = next_jiffies;
ts->last_jiffies = last_jiffies;
ts->sleep_length = ktime_sub(dev->next_event, now);
end:
local_irq_restore(flags);
}
/**
* tick_nohz_get_sleep_length - return the length of the current sleep
*
* Called from power state control code with interrupts disabled
*/
ktime_t tick_nohz_get_sleep_length(void)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
return ts->sleep_length;
}
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
hrtimer_cancel(&ts->sched_timer);
hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
while (1) {
/* Forward the time to expire in the future */
hrtimer_forward(&ts->sched_timer, now, tick_period);
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
hrtimer_start_expires(&ts->sched_timer,
HRTIMER_MODE_ABS_PINNED);
/* Check, if the timer was already in the past */
if (hrtimer_active(&ts->sched_timer))
break;
} else {
if (!tick_program_event(
hrtimer_get_expires(&ts->sched_timer), 0))
break;
}
/* Update jiffies and reread time */
tick_do_update_jiffies64(now);
now = ktime_get();
}
}
/**
* tick_nohz_restart_sched_tick - restart the idle tick from the idle task
*
* Restart the idle tick when the CPU is woken up from idle
*/
void tick_nohz_restart_sched_tick(void)
{
int cpu = smp_processor_id();
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
unsigned long ticks;
#endif
ktime_t now;
local_irq_disable();
if (ts->idle_active || (ts->inidle && ts->tick_stopped))
now = ktime_get();
if (ts->idle_active)
tick_nohz_stop_idle(cpu, now);
if (!ts->inidle || !ts->tick_stopped) {
ts->inidle = 0;
local_irq_enable();
return;
}
ts->inidle = 0;
rcu_exit_nohz();
/* Update jiffies first */
select_nohz_load_balancer(0);
tick_do_update_jiffies64(now);
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
/*
* We stopped the tick in idle. Update process times would miss the
* time we slept as update_process_times does only a 1 tick
* accounting. Enforce that this is accounted to idle !
*/
ticks = jiffies - ts->idle_jiffies;
/*
* We might be one off. Do not randomly account a huge number of ticks!
*/
if (ticks && ticks < LONG_MAX)
account_idle_ticks(ticks);
#endif
touch_softlockup_watchdog();
/*
* Cancel the scheduled timer and restore the tick
*/
ts->tick_stopped = 0;
ts->idle_exittime = now;
tick_nohz_restart(ts, now);
local_irq_enable();
}
static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
hrtimer_forward(&ts->sched_timer, now, tick_period);
return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
}
/*
* The nohz low res interrupt handler
*/
static void tick_nohz_handler(struct clock_event_device *dev)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
struct pt_regs *regs = get_irq_regs();
int cpu = smp_processor_id();
ktime_t now = ktime_get();
dev->next_event.tv64 = KTIME_MAX;
/*
* Check if the do_timer duty was dropped. We don't care about
* concurrency: This happens only when the cpu in charge went
* into a long sleep. If two cpus happen to assign themself to
* this duty, then the jiffies update is still serialized by
* xtime_lock.
*/
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
tick_do_timer_cpu = cpu;
/* Check, if the jiffies need an update */
if (tick_do_timer_cpu == cpu)
tick_do_update_jiffies64(now);
/*
* When we are idle and the tick is stopped, we have to touch
* the watchdog as we might not schedule for a really long
* time. This happens on complete idle SMP systems while
* waiting on the login prompt. We also increment the "start
* of idle" jiffy stamp so the idle accounting adjustment we
* do when we go busy again does not account too much ticks.
*/
if (ts->tick_stopped) {
touch_softlockup_watchdog();
ts->idle_jiffies++;
}
update_process_times(user_mode(regs));
profile_tick(CPU_PROFILING);
while (tick_nohz_reprogram(ts, now)) {
now = ktime_get();
tick_do_update_jiffies64(now);
}
}
/**
* tick_nohz_switch_to_nohz - switch to nohz mode
*/
static void tick_nohz_switch_to_nohz(void)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
ktime_t next;
if (!tick_nohz_enabled)
return;
local_irq_disable();
if (tick_switch_to_oneshot(tick_nohz_handler)) {
local_irq_enable();
return;
}
ts->nohz_mode = NOHZ_MODE_LOWRES;
/*
* Recycle the hrtimer in ts, so we can share the
* hrtimer_forward with the highres code.
*/
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
/* Get the next period */
next = tick_init_jiffy_update();
for (;;) {
hrtimer_set_expires(&ts->sched_timer, next);
if (!tick_program_event(next, 0))
break;
next = ktime_add(next, tick_period);
}
local_irq_enable();
printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
}
/*
* When NOHZ is enabled and the tick is stopped, we need to kick the
* tick timer from irq_enter() so that the jiffies update is kept
* alive during long running softirqs. That's ugly as hell, but
* correctness is key even if we need to fix the offending softirq in
* the first place.
*
* Note, this is different to tick_nohz_restart. We just kick the
* timer and do not touch the other magic bits which need to be done
* when idle is left.
*/
static void tick_nohz_kick_tick(int cpu, ktime_t now)
{
#if 0
/* Switch back to 2.6.27 behaviour */
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
ktime_t delta;
/*
* Do not touch the tick device, when the next expiry is either
* already reached or less/equal than the tick period.
*/
delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
if (delta.tv64 <= tick_period.tv64)
return;
tick_nohz_restart(ts, now);
#endif
}
static inline void tick_check_nohz(int cpu)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
ktime_t now;
if (!ts->idle_active && !ts->tick_stopped)
return;
now = ktime_get();
if (ts->idle_active)
tick_nohz_stop_idle(cpu, now);
if (ts->tick_stopped) {
tick_nohz_update_jiffies(now);
tick_nohz_kick_tick(cpu, now);
}
}
#else
static inline void tick_nohz_switch_to_nohz(void) { }
static inline void tick_check_nohz(int cpu) { }
#endif /* NO_HZ */
/*
* Called from irq_enter to notify about the possible interruption of idle()
*/
void tick_check_idle(int cpu)
{
tick_check_oneshot_broadcast(cpu);
tick_check_nohz(cpu);
}
/*
* High resolution timer specific code
*/
#ifdef CONFIG_HIGH_RES_TIMERS
/*
* We rearm the timer until we get disabled by the idle code.
* Called with interrupts disabled and timer->base->cpu_base->lock held.
*/
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
struct tick_sched *ts =
container_of(timer, struct tick_sched, sched_timer);
struct pt_regs *regs = get_irq_regs();
ktime_t now = ktime_get();
int cpu = smp_processor_id();
#ifdef CONFIG_NO_HZ
/*
* Check if the do_timer duty was dropped. We don't care about
* concurrency: This happens only when the cpu in charge went
* into a long sleep. If two cpus happen to assign themself to
* this duty, then the jiffies update is still serialized by
* xtime_lock.
*/
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
tick_do_timer_cpu = cpu;
#endif
/* Check, if the jiffies need an update */
if (tick_do_timer_cpu == cpu)
tick_do_update_jiffies64(now);
/*
* Do not call, when we are not in irq context and have
* no valid regs pointer
*/
if (regs) {
/*
* When we are idle and the tick is stopped, we have to touch
* the watchdog as we might not schedule for a really long
* time. This happens on complete idle SMP systems while
* waiting on the login prompt. We also increment the "start of
* idle" jiffy stamp so the idle accounting adjustment we do
* when we go busy again does not account too much ticks.
*/
if (ts->tick_stopped) {
touch_softlockup_watchdog();
ts->idle_jiffies++;
}
update_process_times(user_mode(regs));
profile_tick(CPU_PROFILING);
}
hrtimer_forward(timer, now, tick_period);
return HRTIMER_RESTART;
}
/**
* tick_setup_sched_timer - setup the tick emulation timer
*/
void tick_setup_sched_timer(void)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
ktime_t now = ktime_get();
/*
* Emulate tick processing via per-CPU hrtimers:
*/
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ts->sched_timer.function = tick_sched_timer;
/* Get the next period (per cpu) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
for (;;) {
hrtimer_forward(&ts->sched_timer, now, tick_period);
hrtimer_start_expires(&ts->sched_timer,
HRTIMER_MODE_ABS_PINNED);
/* Check, if the timer was already in the past */
if (hrtimer_active(&ts->sched_timer))
break;
now = ktime_get();
}
#ifdef CONFIG_NO_HZ
if (tick_nohz_enabled) {
ts->nohz_mode = NOHZ_MODE_HIGHRES;
printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
}
#endif
}
#endif /* HIGH_RES_TIMERS */
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
void tick_cancel_sched_timer(int cpu)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
# ifdef CONFIG_HIGH_RES_TIMERS
if (ts->sched_timer.base)
hrtimer_cancel(&ts->sched_timer);
# endif
ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
#endif
/**
* Async notification about clocksource changes
*/
void tick_clock_notify(void)
{
int cpu;
for_each_possible_cpu(cpu)
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}
/*
* Async notification about clock event changes
*/
void tick_oneshot_notify(void)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
set_bit(0, &ts->check_clocks);
}
/**
* Check, if a change happened, which makes oneshot possible.
*
* Called cyclic from the hrtimer softirq (driven by the timer
* softirq) allow_nohz signals, that we can switch into low-res nohz
* mode, because high resolution timers are disabled (either compile
* or runtime).
*/
int tick_check_oneshot_change(int allow_nohz)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
if (!test_and_clear_bit(0, &ts->check_clocks))
return 0;
if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
return 0;
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
return 0;
if (!allow_nohz)
return 1;
tick_nohz_switch_to_nohz();
return 0;
}