mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 08:31:55 +00:00
d3135846f6
None of these files use any of the functionality promised by asm/semaphore.h. It's possible that they rely on it dragging in some unrelated header file, but I can't build all these files, so we'll have fix any build failures as they come up. Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
1114 lines
37 KiB
C
1114 lines
37 KiB
C
/*
|
|
** -----------------------------------------------------------------------------
|
|
**
|
|
** Perle Specialix driver for Linux
|
|
** Ported from existing RIO Driver for SCO sources.
|
|
*
|
|
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
**
|
|
** Module : rioboot.c
|
|
** SID : 1.3
|
|
** Last Modified : 11/6/98 10:33:36
|
|
** Retrieved : 11/6/98 10:33:48
|
|
**
|
|
** ident @(#)rioboot.c 1.3
|
|
**
|
|
** -----------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/termios.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/generic_serial.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/io.h>
|
|
#include <asm/system.h>
|
|
#include <asm/string.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
|
|
#include "linux_compat.h"
|
|
#include "rio_linux.h"
|
|
#include "pkt.h"
|
|
#include "daemon.h"
|
|
#include "rio.h"
|
|
#include "riospace.h"
|
|
#include "cmdpkt.h"
|
|
#include "map.h"
|
|
#include "rup.h"
|
|
#include "port.h"
|
|
#include "riodrvr.h"
|
|
#include "rioinfo.h"
|
|
#include "func.h"
|
|
#include "errors.h"
|
|
#include "pci.h"
|
|
|
|
#include "parmmap.h"
|
|
#include "unixrup.h"
|
|
#include "board.h"
|
|
#include "host.h"
|
|
#include "phb.h"
|
|
#include "link.h"
|
|
#include "cmdblk.h"
|
|
#include "route.h"
|
|
|
|
static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
|
|
|
|
static const unsigned char RIOAtVec2Ctrl[] = {
|
|
/* 0 */ INTERRUPT_DISABLE,
|
|
/* 1 */ INTERRUPT_DISABLE,
|
|
/* 2 */ INTERRUPT_DISABLE,
|
|
/* 3 */ INTERRUPT_DISABLE,
|
|
/* 4 */ INTERRUPT_DISABLE,
|
|
/* 5 */ INTERRUPT_DISABLE,
|
|
/* 6 */ INTERRUPT_DISABLE,
|
|
/* 7 */ INTERRUPT_DISABLE,
|
|
/* 8 */ INTERRUPT_DISABLE,
|
|
/* 9 */ IRQ_9 | INTERRUPT_ENABLE,
|
|
/* 10 */ INTERRUPT_DISABLE,
|
|
/* 11 */ IRQ_11 | INTERRUPT_ENABLE,
|
|
/* 12 */ IRQ_12 | INTERRUPT_ENABLE,
|
|
/* 13 */ INTERRUPT_DISABLE,
|
|
/* 14 */ INTERRUPT_DISABLE,
|
|
/* 15 */ IRQ_15 | INTERRUPT_ENABLE
|
|
};
|
|
|
|
/**
|
|
* RIOBootCodeRTA - Load RTA boot code
|
|
* @p: RIO to load
|
|
* @rbp: Download descriptor
|
|
*
|
|
* Called when the user process initiates booting of the card firmware.
|
|
* Lads the firmware
|
|
*/
|
|
|
|
int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
|
|
{
|
|
int offset;
|
|
|
|
func_enter();
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
|
|
|
|
/*
|
|
** Check that we have set asside enough memory for this
|
|
*/
|
|
if (rbp->Count > SIXTY_FOUR_K) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
|
|
p->RIOError.Error = HOST_FILE_TOO_LARGE;
|
|
func_exit();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (p->RIOBooting) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
|
|
p->RIOError.Error = BOOT_IN_PROGRESS;
|
|
func_exit();
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
|
|
** so calculate how far we have to move the data up the buffer
|
|
** to achieve this.
|
|
*/
|
|
offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
|
|
|
|
/*
|
|
** Be clean, and clear the 'unused' portion of the boot buffer,
|
|
** because it will (eventually) be part of the Rta run time environment
|
|
** and so should be zeroed.
|
|
*/
|
|
memset(p->RIOBootPackets, 0, offset);
|
|
|
|
/*
|
|
** Copy the data from user space into the array
|
|
*/
|
|
|
|
if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
|
|
p->RIOError.Error = COPYIN_FAILED;
|
|
func_exit();
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
** Make sure that our copy of the size includes that offset we discussed
|
|
** earlier.
|
|
*/
|
|
p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
|
|
p->RIOBootCount = rbp->Count;
|
|
|
|
func_exit();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rio_start_card_running - host card start
|
|
* @HostP: The RIO to kick off
|
|
*
|
|
* Start a RIO processor unit running. Encapsulates the knowledge
|
|
* of the card type.
|
|
*/
|
|
|
|
void rio_start_card_running(struct Host *HostP)
|
|
{
|
|
switch (HostP->Type) {
|
|
case RIO_AT:
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
|
|
writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
|
|
break;
|
|
case RIO_PCI:
|
|
/*
|
|
** PCI is much the same as MCA. Everything is once again memory
|
|
** mapped, so we are writing to memory registers instead of io
|
|
** ports.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
|
|
writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
|
|
break;
|
|
default:
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Load in the host boot code - load it directly onto all halted hosts
|
|
** of the correct type.
|
|
**
|
|
** Put your rubber pants on before messing with this code - even the magic
|
|
** numbers have trouble understanding what they are doing here.
|
|
*/
|
|
|
|
int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
|
|
{
|
|
struct Host *HostP;
|
|
u8 __iomem *Cad;
|
|
PARM_MAP __iomem *ParmMapP;
|
|
int RupN;
|
|
int PortN;
|
|
unsigned int host;
|
|
u8 __iomem *StartP;
|
|
u8 __iomem *DestP;
|
|
int wait_count;
|
|
u16 OldParmMap;
|
|
u16 offset; /* It is very important that this is a u16 */
|
|
u8 *DownCode = NULL;
|
|
unsigned long flags;
|
|
|
|
HostP = NULL; /* Assure the compiler we've initialized it */
|
|
|
|
|
|
/* Walk the hosts */
|
|
for (host = 0; host < p->RIONumHosts; host++) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
|
|
HostP = &p->RIOHosts[host];
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
|
|
|
|
/* Don't boot hosts already running */
|
|
if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
** Grab a pointer to the card (ioremapped)
|
|
*/
|
|
Cad = HostP->Caddr;
|
|
|
|
/*
|
|
** We are going to (try) and load in rbp->Count bytes.
|
|
** The last byte will reside at p->RIOConf.HostLoadBase-1;
|
|
** Therefore, we need to start copying at address
|
|
** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
|
|
*/
|
|
StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
|
|
|
|
/* Make sure it fits */
|
|
if (p->RIOConf.HostLoadBase < rbp->Count) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
|
|
p->RIOError.Error = HOST_FILE_TOO_LARGE;
|
|
func_exit();
|
|
return -EFBIG;
|
|
}
|
|
/*
|
|
** Ensure that the host really is stopped.
|
|
** Disable it's external bus & twang its reset line.
|
|
*/
|
|
RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
|
|
|
|
/*
|
|
** Copy the data directly from user space to the SRAM.
|
|
** This ain't going to be none too clever if the download
|
|
** code is bigger than this segment.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
|
|
|
|
/* Buffer to local memory as we want to use I/O space and
|
|
some cards only do 8 or 16 bit I/O */
|
|
|
|
DownCode = vmalloc(rbp->Count);
|
|
if (!DownCode) {
|
|
p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
|
|
func_exit();
|
|
return -ENOMEM;
|
|
}
|
|
if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
|
|
kfree(DownCode);
|
|
p->RIOError.Error = COPYIN_FAILED;
|
|
func_exit();
|
|
return -EFAULT;
|
|
}
|
|
HostP->Copy(DownCode, StartP, rbp->Count);
|
|
vfree(DownCode);
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
|
|
|
|
/*
|
|
** S T O P !
|
|
**
|
|
** Upto this point the code has been fairly rational, and possibly
|
|
** even straight forward. What follows is a pile of crud that will
|
|
** magically turn into six bytes of transputer assembler. Normally
|
|
** you would expect an array or something, but, being me, I have
|
|
** chosen [been told] to use a technique whereby the startup code
|
|
** will be correct if we change the loadbase for the code. Which
|
|
** brings us onto another issue - the loadbase is the *end* of the
|
|
** code, not the start.
|
|
**
|
|
** If I were you I wouldn't start from here.
|
|
*/
|
|
|
|
/*
|
|
** We now need to insert a short boot section into
|
|
** the memory at the end of Sram2. This is normally (de)composed
|
|
** of the last eight bytes of the download code. The
|
|
** download has been assembled/compiled to expect to be
|
|
** loaded from 0x7FFF downwards. We have loaded it
|
|
** at some other address. The startup code goes into the small
|
|
** ram window at Sram2, in the last 8 bytes, which are really
|
|
** at addresses 0x7FF8-0x7FFF.
|
|
**
|
|
** If the loadbase is, say, 0x7C00, then we need to branch to
|
|
** address 0x7BFE to run the host.bin startup code. We assemble
|
|
** this jump manually.
|
|
**
|
|
** The two byte sequence 60 08 is loaded into memory at address
|
|
** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
|
|
** which adds '0' to the .O register, complements .O, and then shifts
|
|
** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
|
|
** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
|
|
** location. Now, the branch starts from the value of .PC (or .IP or
|
|
** whatever the bloody register is called on this chip), and the .PC
|
|
** will be pointing to the location AFTER the branch, in this case
|
|
** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
|
|
**
|
|
** A long branch is coded at 0x7FF8. This consists of loading a four
|
|
** byte offset into .O using nfix (as above) and pfix operators. The
|
|
** pfix operates in exactly the same way as the nfix operator, but
|
|
** without the complement operation. The offset, of course, must be
|
|
** relative to the address of the byte AFTER the branch instruction,
|
|
** which will be (urm) 0x7FFC, so, our final destination of the branch
|
|
** (loadbase-2), has to be reached from here. Imagine that the loadbase
|
|
** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
|
|
** is the first byte of the initial two byte short local branch of the
|
|
** download code).
|
|
**
|
|
** To code a jump from 0x7FFC (which is where the branch will start
|
|
** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
|
|
** 0x7BFE.
|
|
** This will be coded as four bytes:
|
|
** 60 2C 20 02
|
|
** being nfix .O+0
|
|
** pfix .O+C
|
|
** pfix .O+0
|
|
** jump .O+2
|
|
**
|
|
** The nfix operator is used, so that the startup code will be
|
|
** compatible with the whole Tp family. (lies, damn lies, it'll never
|
|
** work in a month of Sundays).
|
|
**
|
|
** The nfix nyble is the 1s complement of the nyble value you
|
|
** want to load - in this case we wanted 'F' so we nfix loaded '0'.
|
|
*/
|
|
|
|
|
|
/*
|
|
** Dest points to the top 8 bytes of Sram2. The Tp jumps
|
|
** to 0x7FFE at reset time, and starts executing. This is
|
|
** a short branch to 0x7FF8, where a long branch is coded.
|
|
*/
|
|
|
|
DestP = &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
|
|
|
|
#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
|
|
#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
|
|
#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
|
|
|
|
/*
|
|
** 0x7FFC is the address of the location following the last byte of
|
|
** the four byte jump instruction.
|
|
** READ THE ABOVE COMMENTS
|
|
**
|
|
** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
|
|
** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
|
|
** cos I don't understand 2's complement).
|
|
*/
|
|
offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
|
|
|
|
writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
|
|
writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
|
|
writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
|
|
writeb(JUMP(offset & 0xF), DestP + 3);
|
|
|
|
writeb(NFIX(0), DestP + 6);
|
|
writeb(JUMP(8), DestP + 7);
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
|
|
|
|
/*
|
|
** Flag what is going on
|
|
*/
|
|
HostP->Flags &= ~RUN_STATE;
|
|
HostP->Flags |= RC_STARTUP;
|
|
|
|
/*
|
|
** Grab a copy of the current ParmMap pointer, so we
|
|
** can tell when it has changed.
|
|
*/
|
|
OldParmMap = readw(&HostP->__ParmMapR);
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
|
|
|
|
/*
|
|
** And start it running (I hope).
|
|
** As there is nothing dodgy or obscure about the
|
|
** above code, this is guaranteed to work every time.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
|
|
|
|
rio_start_card_running(HostP);
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
|
|
|
|
/*
|
|
** Now, wait for upto five seconds for the Tp to setup the parmmap
|
|
** pointer:
|
|
*/
|
|
for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
|
|
mdelay(100);
|
|
|
|
}
|
|
|
|
/*
|
|
** If the parmmap pointer is unchanged, then the host code
|
|
** has crashed & burned in a really spectacular way
|
|
*/
|
|
if (readw(&HostP->__ParmMapR) == OldParmMap) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
|
|
HostP->Flags &= ~RUN_STATE;
|
|
HostP->Flags |= RC_STUFFED;
|
|
RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
|
|
continue;
|
|
}
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
|
|
|
|
/*
|
|
** Well, the board thought it was OK, and setup its parmmap
|
|
** pointer. For the time being, we will pretend that this
|
|
** board is running, and check out what the error flag says.
|
|
*/
|
|
|
|
/*
|
|
** Grab a 32 bit pointer to the parmmap structure
|
|
*/
|
|
ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
|
|
rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
|
|
ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
|
|
rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
|
|
|
|
/*
|
|
** The links entry should be 0xFFFF; we set it up
|
|
** with a mask to say how many PHBs to use, and
|
|
** which links to use.
|
|
*/
|
|
if (readw(&ParmMapP->links) != 0xFFFF) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
|
|
HostP->Flags &= ~RUN_STATE;
|
|
HostP->Flags |= RC_STUFFED;
|
|
RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
|
|
continue;
|
|
}
|
|
|
|
writew(RIO_LINK_ENABLE, &ParmMapP->links);
|
|
|
|
/*
|
|
** now wait for the card to set all the parmmap->XXX stuff
|
|
** this is a wait of upto two seconds....
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
|
|
HostP->timeout_id = 0;
|
|
for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
|
|
mdelay(100);
|
|
}
|
|
rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
|
|
|
|
if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
|
|
HostP->Flags &= ~RUN_STATE;
|
|
HostP->Flags |= RC_STUFFED;
|
|
RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
|
|
continue;
|
|
}
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
|
|
|
|
/*
|
|
** It runs! It runs!
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
|
|
|
|
/*
|
|
** set the time period between interrupts.
|
|
*/
|
|
writew(p->RIOConf.Timer, &ParmMapP->timer);
|
|
|
|
/*
|
|
** Translate all the 16 bit pointers in the __ParmMapR into
|
|
** 32 bit pointers for the driver in ioremap space.
|
|
*/
|
|
HostP->ParmMapP = ParmMapP;
|
|
HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
|
|
HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
|
|
HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
|
|
HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
|
|
|
|
/*
|
|
** point the UnixRups at the real Rups
|
|
*/
|
|
for (RupN = 0; RupN < MAX_RUP; RupN++) {
|
|
HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
|
|
HostP->UnixRups[RupN].Id = RupN + 1;
|
|
HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
|
|
spin_lock_init(&HostP->UnixRups[RupN].RupLock);
|
|
}
|
|
|
|
for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
|
|
HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
|
|
HostP->UnixRups[RupN + MAX_RUP].Id = 0;
|
|
HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
|
|
spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
|
|
}
|
|
|
|
/*
|
|
** point the PortP->Phbs at the real Phbs
|
|
*/
|
|
for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
|
|
if (p->RIOPortp[PortN]->HostP == HostP) {
|
|
struct Port *PortP = p->RIOPortp[PortN];
|
|
struct PHB __iomem *PhbP;
|
|
/* int oldspl; */
|
|
|
|
if (!PortP->Mapped)
|
|
continue;
|
|
|
|
PhbP = &HostP->PhbP[PortP->HostPort];
|
|
rio_spin_lock_irqsave(&PortP->portSem, flags);
|
|
|
|
PortP->PhbP = PhbP;
|
|
|
|
PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
|
|
PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
|
|
PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
|
|
PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
|
|
PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
|
|
PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
|
|
|
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
|
/*
|
|
** point the UnixRup at the base SysPort
|
|
*/
|
|
if (!(PortN % PORTS_PER_RTA))
|
|
HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
|
|
}
|
|
}
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
|
|
/*
|
|
** last thing - show the world that everything is in place
|
|
*/
|
|
HostP->Flags &= ~RUN_STATE;
|
|
HostP->Flags |= RC_RUNNING;
|
|
}
|
|
/*
|
|
** MPX always uses a poller. This is actually patched into the system
|
|
** configuration and called directly from each clock tick.
|
|
**
|
|
*/
|
|
p->RIOPolling = 1;
|
|
|
|
p->RIOSystemUp++;
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
|
|
func_exit();
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* RIOBootRup - Boot an RTA
|
|
* @p: rio we are working with
|
|
* @Rup: Rup number
|
|
* @HostP: host object
|
|
* @PacketP: packet to use
|
|
*
|
|
* If we have successfully processed this boot, then
|
|
* return 1. If we havent, then return 0.
|
|
*/
|
|
|
|
int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
|
|
{
|
|
struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
|
|
struct PktCmd_M *PktReplyP;
|
|
struct CmdBlk *CmdBlkP;
|
|
unsigned int sequence;
|
|
|
|
/*
|
|
** If we haven't been told what to boot, we can't boot it.
|
|
*/
|
|
if (p->RIONumBootPkts == 0) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Special case of boot completed - if we get one of these then we
|
|
** don't need a command block. For all other cases we do, so handle
|
|
** this first and then get a command block, then handle every other
|
|
** case, relinquishing the command block if disaster strikes!
|
|
*/
|
|
if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
|
|
return RIOBootComplete(p, HostP, Rup, PktCmdP);
|
|
|
|
/*
|
|
** Try to allocate a command block. This is in kernel space
|
|
*/
|
|
if (!(CmdBlkP = RIOGetCmdBlk())) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Fill in the default info on the command block
|
|
*/
|
|
CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
|
|
CmdBlkP->Packet.dest_port = BOOT_RUP;
|
|
CmdBlkP->Packet.src_unit = 0;
|
|
CmdBlkP->Packet.src_port = BOOT_RUP;
|
|
|
|
CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
|
|
PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
|
|
|
|
/*
|
|
** process COMMANDS on the boot rup!
|
|
*/
|
|
if (readb(&PacketP->len) & PKT_CMD_BIT) {
|
|
/*
|
|
** We only expect one type of command - a BOOT_REQUEST!
|
|
*/
|
|
if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
|
|
RIOFreeCmdBlk(CmdBlkP);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Build a Boot Sequence command block
|
|
**
|
|
** We no longer need to use "Boot Mode", we'll always allow
|
|
** boot requests - the boot will not complete if the device
|
|
** appears in the bindings table.
|
|
**
|
|
** We'll just (always) set the command field in packet reply
|
|
** to allow an attempted boot sequence :
|
|
*/
|
|
PktReplyP->Command = BOOT_SEQUENCE;
|
|
|
|
PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
|
|
PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
|
|
PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
|
|
|
|
CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
|
|
|
|
memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
|
|
|
|
/*
|
|
** If this host is in slave mode, send the RTA an invalid boot
|
|
** sequence command block to force it to kill the boot. We wait
|
|
** for half a second before sending this packet to prevent the RTA
|
|
** attempting to boot too often. The master host should then grab
|
|
** the RTA and make it its own.
|
|
*/
|
|
p->RIOBooting++;
|
|
RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** It is a request for boot data.
|
|
*/
|
|
sequence = readw(&PktCmdP->Sequence);
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
|
|
|
|
if (sequence >= p->RIONumBootPkts) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
|
|
}
|
|
|
|
PktReplyP->Sequence = sequence;
|
|
memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
|
|
CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
|
|
RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* RIOBootComplete - RTA boot is done
|
|
* @p: RIO we are working with
|
|
* @HostP: Host structure
|
|
* @Rup: RUP being used
|
|
* @PktCmdP: Packet command that was used
|
|
*
|
|
* This function is called when an RTA been booted.
|
|
* If booted by a host, HostP->HostUniqueNum is the booting host.
|
|
* If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
|
|
* RtaUniq is the booted RTA.
|
|
*/
|
|
|
|
static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
|
|
{
|
|
struct Map *MapP = NULL;
|
|
struct Map *MapP2 = NULL;
|
|
int Flag;
|
|
int found;
|
|
int host, rta;
|
|
int EmptySlot = -1;
|
|
int entry, entry2;
|
|
char *MyType, *MyName;
|
|
unsigned int MyLink;
|
|
unsigned short RtaType;
|
|
u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
|
|
|
|
p->RIOBooting = 0;
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
|
|
|
|
/*
|
|
** Determine type of unit (16/8 port RTA).
|
|
*/
|
|
|
|
RtaType = GetUnitType(RtaUniq);
|
|
if (Rup >= (unsigned short) MAX_RUP)
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
|
|
else
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
|
|
|
|
if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** If this RTA has just booted an RTA which doesn't belong to this
|
|
** system, or the system is in slave mode, do not attempt to create
|
|
** a new table entry for it.
|
|
*/
|
|
|
|
if (!RIOBootOk(p, HostP, RtaUniq)) {
|
|
MyLink = readb(&PktCmdP->LinkNum);
|
|
if (Rup < (unsigned short) MAX_RUP) {
|
|
/*
|
|
** RtaUniq was clone booted (by this RTA). Instruct this RTA
|
|
** to hold off further attempts to boot on this link for 30
|
|
** seconds.
|
|
*/
|
|
if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
|
|
}
|
|
} else
|
|
/*
|
|
** RtaUniq was booted by this host. Set the booting link
|
|
** to hold off for 30 seconds to give another unit a
|
|
** chance to boot it.
|
|
*/
|
|
writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Check for a SLOT_IN_USE entry for this RTA attached to the
|
|
** current host card in the driver table.
|
|
**
|
|
** If it exists, make a note that we have booted it. Other parts of
|
|
** the driver are interested in this information at a later date,
|
|
** in particular when the booting RTA asks for an ID for this unit,
|
|
** we must have set the BOOTED flag, and the NEWBOOT flag is used
|
|
** to force an open on any ports that where previously open on this
|
|
** unit.
|
|
*/
|
|
for (entry = 0; entry < MAX_RUP; entry++) {
|
|
unsigned int sysport;
|
|
|
|
if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
|
|
HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
|
|
if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
|
|
if (sysport < p->RIOFirstPortsBooted)
|
|
p->RIOFirstPortsBooted = sysport;
|
|
if (sysport > p->RIOLastPortsBooted)
|
|
p->RIOLastPortsBooted = sysport;
|
|
/*
|
|
** For a 16 port RTA, check the second bank of 8 ports
|
|
*/
|
|
if (RtaType == TYPE_RTA16) {
|
|
entry2 = HostP->Mapping[entry].ID2 - 1;
|
|
HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
|
|
sysport = HostP->Mapping[entry2].SysPort;
|
|
if (sysport < p->RIOFirstPortsBooted)
|
|
p->RIOFirstPortsBooted = sysport;
|
|
if (sysport > p->RIOLastPortsBooted)
|
|
p->RIOLastPortsBooted = sysport;
|
|
}
|
|
}
|
|
if (RtaType == TYPE_RTA16)
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
|
|
else
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
|
|
|
|
if (Rup >= (unsigned short) MAX_RUP) {
|
|
/*
|
|
** It was a host that did the booting
|
|
*/
|
|
MyType = "Host";
|
|
MyName = HostP->Name;
|
|
} else {
|
|
/*
|
|
** It was an RTA that did the booting
|
|
*/
|
|
MyType = "RTA";
|
|
MyName = HostP->Mapping[Rup].Name;
|
|
}
|
|
MyLink = readb(&PktCmdP->LinkNum);
|
|
|
|
/*
|
|
** There is no SLOT_IN_USE entry for this RTA attached to the current
|
|
** host card in the driver table.
|
|
**
|
|
** Check for a SLOT_TENTATIVE entry for this RTA attached to the
|
|
** current host card in the driver table.
|
|
**
|
|
** If we find one, then we re-use that slot.
|
|
*/
|
|
for (entry = 0; entry < MAX_RUP; entry++) {
|
|
if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
|
|
if (RtaType == TYPE_RTA16) {
|
|
entry2 = HostP->Mapping[entry].ID2 - 1;
|
|
if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
|
|
else
|
|
continue;
|
|
} else
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
|
|
if (!p->RIONoMessage)
|
|
printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
|
|
** attached to the current host card in the driver table.
|
|
**
|
|
** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
|
|
** host for this RTA in the driver table.
|
|
**
|
|
** For a SLOT_IN_USE entry on another host, we need to delete the RTA
|
|
** entry from the other host and add it to this host (using some of
|
|
** the functions from table.c which do this).
|
|
** For a SLOT_TENTATIVE entry on another host, we must cope with the
|
|
** following scenario:
|
|
**
|
|
** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
|
|
** in table)
|
|
** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
|
|
** entries)
|
|
** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
|
|
** + Unplug RTA and plug back into host A.
|
|
** + Configure RTA on host A. We now have the same RTA configured
|
|
** with different ports on two different hosts.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
|
|
found = 0;
|
|
Flag = 0; /* Convince the compiler this variable is initialized */
|
|
for (host = 0; !found && (host < p->RIONumHosts); host++) {
|
|
for (rta = 0; rta < MAX_RUP; rta++) {
|
|
if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
|
|
Flag = p->RIOHosts[host].Mapping[rta].Flags;
|
|
MapP = &p->RIOHosts[host].Mapping[rta];
|
|
if (RtaType == TYPE_RTA16) {
|
|
MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
|
|
rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
|
|
} else
|
|
rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
|
|
** attached to the current host card in the driver table.
|
|
**
|
|
** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
|
|
** another host for this RTA in the driver table...
|
|
**
|
|
** Check for a SLOT_IN_USE entry for this RTA in the config table.
|
|
*/
|
|
if (!MapP) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
|
|
for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
|
|
|
|
if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
|
|
MapP = &p->RIOSavedTable[rta];
|
|
Flag = p->RIOSavedTable[rta].Flags;
|
|
if (RtaType == TYPE_RTA16) {
|
|
for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
|
|
if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
|
|
break;
|
|
}
|
|
MapP2 = &p->RIOSavedTable[entry2];
|
|
rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
|
|
} else
|
|
rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
|
|
** attached to the current host card in the driver table.
|
|
**
|
|
** We may have found a SLOT_IN_USE entry on another host for this
|
|
** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
|
|
** on another host for this RTA in the driver table.
|
|
**
|
|
** Check the driver table for room to fit this newly discovered RTA.
|
|
** RIOFindFreeID() first looks for free slots and if it does not
|
|
** find any free slots it will then attempt to oust any
|
|
** tentative entry in the table.
|
|
*/
|
|
EmptySlot = 1;
|
|
if (RtaType == TYPE_RTA16) {
|
|
if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
|
|
RIODefaultName(p, HostP, entry);
|
|
rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
|
|
EmptySlot = 0;
|
|
}
|
|
} else {
|
|
if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
|
|
RIODefaultName(p, HostP, entry);
|
|
rio_fill_host_slot(entry, 0, RtaUniq, HostP);
|
|
EmptySlot = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
|
|
** attached to the current host card in the driver table.
|
|
**
|
|
** If we found a SLOT_IN_USE entry on another host for this
|
|
** RTA in the config or driver table, and there are enough free
|
|
** slots in the driver table, then we need to move it over and
|
|
** delete it from the other host.
|
|
** If we found a SLOT_TENTATIVE entry on another host for this
|
|
** RTA in the driver table, just delete the other host entry.
|
|
*/
|
|
if (EmptySlot == 0) {
|
|
if (MapP) {
|
|
if (Flag & SLOT_IN_USE) {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
|
|
HostP->Mapping[entry].SysPort = MapP->SysPort;
|
|
memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
|
|
HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
|
|
RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
|
|
if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
|
|
p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
|
|
if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
|
|
p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
|
|
rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
|
|
} else {
|
|
rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
|
|
HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
|
|
}
|
|
if (RtaType == TYPE_RTA16) {
|
|
if (Flag & SLOT_IN_USE) {
|
|
HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
|
|
HostP->Mapping[entry2].SysPort = MapP2->SysPort;
|
|
/*
|
|
** Map second block of ttys for 16 port RTA
|
|
*/
|
|
RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
|
|
if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
|
|
p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
|
|
if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
|
|
p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
|
|
rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
|
|
} else
|
|
HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
|
|
memset(MapP2, 0, sizeof(struct Map));
|
|
}
|
|
memset(MapP, 0, sizeof(struct Map));
|
|
if (!p->RIONoMessage)
|
|
printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
|
|
} else if (!p->RIONoMessage)
|
|
printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
|
|
RIOSetChange(p);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** There is no room in the driver table to make an entry for the
|
|
** booted RTA. Keep a note of its Uniq Num in the overflow table,
|
|
** so we can ignore it's ID requests.
|
|
*/
|
|
if (!p->RIONoMessage)
|
|
printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
|
|
for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
|
|
if (HostP->ExtraUnits[entry] == RtaUniq) {
|
|
/*
|
|
** already got it!
|
|
*/
|
|
return 1;
|
|
}
|
|
}
|
|
/*
|
|
** If there is room, add the unit to the list of extras
|
|
*/
|
|
if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
|
|
HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** If the RTA or its host appears in the RIOBindTab[] structure then
|
|
** we mustn't boot the RTA and should return 0.
|
|
** This operation is slightly different from the other drivers for RIO
|
|
** in that this is designed to work with the new utilities
|
|
** not config.rio and is FAR SIMPLER.
|
|
** We no longer support the RIOBootMode variable. It is all done from the
|
|
** "boot/noboot" field in the rio.cf file.
|
|
*/
|
|
int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
|
|
{
|
|
int Entry;
|
|
unsigned int HostUniq = HostP->UniqueNum;
|
|
|
|
/*
|
|
** Search bindings table for RTA or its parent.
|
|
** If it exists, return 0, else 1.
|
|
*/
|
|
for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
|
|
if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Make an empty slot tentative. If this is a 16 port RTA, make both
|
|
** slots tentative, and the second one RTA_SECOND_SLOT as well.
|
|
*/
|
|
|
|
void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
|
|
{
|
|
int link;
|
|
|
|
rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
|
|
|
|
host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
|
|
host->Mapping[entry].SysPort = NO_PORT;
|
|
host->Mapping[entry].RtaUniqueNum = rta_uniq;
|
|
host->Mapping[entry].HostUniqueNum = host->UniqueNum;
|
|
host->Mapping[entry].ID = entry + 1;
|
|
host->Mapping[entry].ID2 = 0;
|
|
if (entry2) {
|
|
host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
|
|
host->Mapping[entry2].SysPort = NO_PORT;
|
|
host->Mapping[entry2].RtaUniqueNum = rta_uniq;
|
|
host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
|
|
host->Mapping[entry2].Name[0] = '\0';
|
|
host->Mapping[entry2].ID = entry2 + 1;
|
|
host->Mapping[entry2].ID2 = entry + 1;
|
|
host->Mapping[entry].ID2 = entry2 + 1;
|
|
}
|
|
/*
|
|
** Must set these up, so that utilities show
|
|
** topology of 16 port RTAs correctly
|
|
*/
|
|
for (link = 0; link < LINKS_PER_UNIT; link++) {
|
|
host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
|
|
host->Mapping[entry].Topology[link].Link = NO_LINK;
|
|
if (entry2) {
|
|
host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
|
|
host->Mapping[entry2].Topology[link].Link = NO_LINK;
|
|
}
|
|
}
|
|
}
|