linux/arch/arm/mach-msm/timer.c
Stephen Boyd 4080d2d11a ARM: msm: Stop counting before reprogramming clockevent
If the clockevent is forcibly reprogrammed to have a different
match value we mistakenly assume the timer is not ticking and
program a new match value while the timer is running. Although we
clear the timer before programming a new match, it's better to
stop the timer before clearing it so that we're sure the proper
amount of ticks are counted. Failure to do so can lead to missed
ticks and system hangs.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: David Brown <davidb@codeaurora.org>
2013-03-22 10:45:39 -07:00

340 lines
8.4 KiB
C

/*
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <asm/mach/time.h>
#include <asm/localtimer.h>
#include <asm/sched_clock.h>
#include "common.h"
#define TIMER_MATCH_VAL 0x0000
#define TIMER_COUNT_VAL 0x0004
#define TIMER_ENABLE 0x0008
#define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
#define TIMER_ENABLE_EN BIT(0)
#define TIMER_CLEAR 0x000C
#define DGT_CLK_CTL_DIV_4 0x3
#define GPT_HZ 32768
#define MSM_DGT_SHIFT 5
static void __iomem *event_base;
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
/* Stop the timer tick */
if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~TIMER_ENABLE_EN;
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
}
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~TIMER_ENABLE_EN;
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
writel_relaxed(ctrl, event_base + TIMER_CLEAR);
writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
return 0;
}
static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
u32 ctrl;
ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
switch (mode) {
case CLOCK_EVT_MODE_RESUME:
case CLOCK_EVT_MODE_PERIODIC:
break;
case CLOCK_EVT_MODE_ONESHOT:
/* Timer is enabled in set_next_event */
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
break;
}
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
}
static struct clock_event_device msm_clockevent = {
.name = "gp_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.rating = 200,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
};
static union {
struct clock_event_device *evt;
struct clock_event_device * __percpu *percpu_evt;
} msm_evt;
static void __iomem *source_base;
static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
{
return readl_relaxed(source_base + TIMER_COUNT_VAL);
}
static notrace cycle_t msm_read_timer_count_shift(struct clocksource *cs)
{
/*
* Shift timer count down by a constant due to unreliable lower bits
* on some targets.
*/
return msm_read_timer_count(cs) >> MSM_DGT_SHIFT;
}
static struct clocksource msm_clocksource = {
.name = "dg_timer",
.rating = 300,
.read = msm_read_timer_count,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#ifdef CONFIG_LOCAL_TIMERS
static int __cpuinit msm_local_timer_setup(struct clock_event_device *evt)
{
/* Use existing clock_event for cpu 0 */
if (!smp_processor_id())
return 0;
writel_relaxed(0, event_base + TIMER_ENABLE);
writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
evt->irq = msm_clockevent.irq;
evt->name = "local_timer";
evt->features = msm_clockevent.features;
evt->rating = msm_clockevent.rating;
evt->set_mode = msm_timer_set_mode;
evt->set_next_event = msm_timer_set_next_event;
*__this_cpu_ptr(msm_evt.percpu_evt) = evt;
clockevents_config_and_register(evt, GPT_HZ, 4, 0xf0000000);
enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
return 0;
}
static void msm_local_timer_stop(struct clock_event_device *evt)
{
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
disable_percpu_irq(evt->irq);
}
static struct local_timer_ops msm_local_timer_ops __cpuinitdata = {
.setup = msm_local_timer_setup,
.stop = msm_local_timer_stop,
};
#endif /* CONFIG_LOCAL_TIMERS */
static notrace u32 msm_sched_clock_read(void)
{
return msm_clocksource.read(&msm_clocksource);
}
static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
bool percpu)
{
struct clock_event_device *ce = &msm_clockevent;
struct clocksource *cs = &msm_clocksource;
int res;
writel_relaxed(0, event_base + TIMER_ENABLE);
writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
ce->cpumask = cpumask_of(0);
ce->irq = irq;
clockevents_config_and_register(ce, GPT_HZ, 4, 0xffffffff);
if (percpu) {
msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *);
if (!msm_evt.percpu_evt) {
pr_err("memory allocation failed for %s\n", ce->name);
goto err;
}
*__this_cpu_ptr(msm_evt.percpu_evt) = ce;
res = request_percpu_irq(ce->irq, msm_timer_interrupt,
ce->name, msm_evt.percpu_evt);
if (!res) {
enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING);
#ifdef CONFIG_LOCAL_TIMERS
local_timer_register(&msm_local_timer_ops);
#endif
}
} else {
msm_evt.evt = ce;
res = request_irq(ce->irq, msm_timer_interrupt,
IRQF_TIMER | IRQF_NOBALANCING |
IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt);
}
if (res)
pr_err("request_irq failed for %s\n", ce->name);
err:
writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
res = clocksource_register_hz(cs, dgt_hz);
if (res)
pr_err("clocksource_register failed\n");
setup_sched_clock(msm_sched_clock_read, sched_bits, dgt_hz);
}
#ifdef CONFIG_OF
static const struct of_device_id msm_dgt_match[] __initconst = {
{ .compatible = "qcom,msm-dgt" },
{ },
};
static const struct of_device_id msm_gpt_match[] __initconst = {
{ .compatible = "qcom,msm-gpt" },
{ },
};
void __init msm_dt_timer_init(void)
{
struct device_node *np;
u32 freq;
int irq;
struct resource res;
u32 percpu_offset;
void __iomem *dgt_clk_ctl;
np = of_find_matching_node(NULL, msm_gpt_match);
if (!np) {
pr_err("Can't find GPT DT node\n");
return;
}
event_base = of_iomap(np, 0);
if (!event_base) {
pr_err("Failed to map event base\n");
return;
}
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("Can't get irq\n");
return;
}
of_node_put(np);
np = of_find_matching_node(NULL, msm_dgt_match);
if (!np) {
pr_err("Can't find DGT DT node\n");
return;
}
if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
percpu_offset = 0;
if (of_address_to_resource(np, 0, &res)) {
pr_err("Failed to parse DGT resource\n");
return;
}
source_base = ioremap(res.start + percpu_offset, resource_size(&res));
if (!source_base) {
pr_err("Failed to map source base\n");
return;
}
if (!of_address_to_resource(np, 1, &res)) {
dgt_clk_ctl = ioremap(res.start + percpu_offset,
resource_size(&res));
if (!dgt_clk_ctl) {
pr_err("Failed to map DGT control base\n");
return;
}
writel_relaxed(DGT_CLK_CTL_DIV_4, dgt_clk_ctl);
iounmap(dgt_clk_ctl);
}
if (of_property_read_u32(np, "clock-frequency", &freq)) {
pr_err("Unknown frequency\n");
return;
}
of_node_put(np);
msm_timer_init(freq, 32, irq, !!percpu_offset);
}
#endif
static int __init msm_timer_map(phys_addr_t event, phys_addr_t source)
{
event_base = ioremap(event, SZ_64);
if (!event_base) {
pr_err("Failed to map event base\n");
return 1;
}
source_base = ioremap(source, SZ_64);
if (!source_base) {
pr_err("Failed to map source base\n");
return 1;
}
return 0;
}
void __init msm7x01_timer_init(void)
{
struct clocksource *cs = &msm_clocksource;
if (msm_timer_map(0xc0100000, 0xc0100010))
return;
cs->read = msm_read_timer_count_shift;
cs->mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT));
/* 600 KHz */
msm_timer_init(19200000 >> MSM_DGT_SHIFT, 32 - MSM_DGT_SHIFT, 7,
false);
}
void __init msm7x30_timer_init(void)
{
if (msm_timer_map(0xc0100004, 0xc0100024))
return;
msm_timer_init(24576000 / 4, 32, 1, false);
}
void __init qsd8x50_timer_init(void)
{
if (msm_timer_map(0xAC100000, 0xAC100010))
return;
msm_timer_init(19200000 / 4, 32, 7, false);
}