linux/drivers/memory/omap-gpmc.c
Uwe Kleine-König 6a4edb1a4f memory: omap-gpmc: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.

To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new(), which already returns void. Eventually after all drivers
are converted, .remove_new() will be renamed to .remove().

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reviewed-by: Tony Lindgren <tony@atomide.com>
Link: https://lore.kernel.org/r/019d9dc31af9b30a6b675fec219e64b667475efd.1702822744.git.u.kleine-koenig@pengutronix.de
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
2023-12-19 09:05:17 +01:00

2760 lines
74 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* GPMC support functions
*
* Copyright (C) 2005-2006 Nokia Corporation
*
* Author: Juha Yrjola
*
* Copyright (C) 2009 Texas Instruments
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*/
#include <linux/cpu_pm.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/gpio/driver.h>
#include <linux/gpio/consumer.h> /* GPIO descriptor enum */
#include <linux/gpio/machine.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/omap-gpmc.h>
#include <linux/pm_runtime.h>
#include <linux/sizes.h>
#include <linux/platform_data/mtd-nand-omap2.h>
#define DEVICE_NAME "omap-gpmc"
/* GPMC register offsets */
#define GPMC_REVISION 0x00
#define GPMC_SYSCONFIG 0x10
#define GPMC_SYSSTATUS 0x14
#define GPMC_IRQSTATUS 0x18
#define GPMC_IRQENABLE 0x1c
#define GPMC_TIMEOUT_CONTROL 0x40
#define GPMC_ERR_ADDRESS 0x44
#define GPMC_ERR_TYPE 0x48
#define GPMC_CONFIG 0x50
#define GPMC_STATUS 0x54
#define GPMC_PREFETCH_CONFIG1 0x1e0
#define GPMC_PREFETCH_CONFIG2 0x1e4
#define GPMC_PREFETCH_CONTROL 0x1ec
#define GPMC_PREFETCH_STATUS 0x1f0
#define GPMC_ECC_CONFIG 0x1f4
#define GPMC_ECC_CONTROL 0x1f8
#define GPMC_ECC_SIZE_CONFIG 0x1fc
#define GPMC_ECC1_RESULT 0x200
#define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */
/* GPMC ECC control settings */
#define GPMC_ECC_CTRL_ECCCLEAR 0x100
#define GPMC_ECC_CTRL_ECCDISABLE 0x000
#define GPMC_ECC_CTRL_ECCREG1 0x001
#define GPMC_ECC_CTRL_ECCREG2 0x002
#define GPMC_ECC_CTRL_ECCREG3 0x003
#define GPMC_ECC_CTRL_ECCREG4 0x004
#define GPMC_ECC_CTRL_ECCREG5 0x005
#define GPMC_ECC_CTRL_ECCREG6 0x006
#define GPMC_ECC_CTRL_ECCREG7 0x007
#define GPMC_ECC_CTRL_ECCREG8 0x008
#define GPMC_ECC_CTRL_ECCREG9 0x009
#define GPMC_CONFIG_LIMITEDADDRESS BIT(1)
#define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0)
#define GPMC_CONFIG2_CSEXTRADELAY BIT(7)
#define GPMC_CONFIG3_ADVEXTRADELAY BIT(7)
#define GPMC_CONFIG4_OEEXTRADELAY BIT(7)
#define GPMC_CONFIG4_WEEXTRADELAY BIT(23)
#define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6)
#define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7)
#define GPMC_CS0_OFFSET 0x60
#define GPMC_CS_SIZE 0x30
#define GPMC_BCH_SIZE 0x10
/*
* The first 1MB of GPMC address space is typically mapped to
* the internal ROM. Never allocate the first page, to
* facilitate bug detection; even if we didn't boot from ROM.
* As GPMC minimum partition size is 16MB we can only start from
* there.
*/
#define GPMC_MEM_START 0x1000000
#define GPMC_MEM_END 0x3FFFFFFF
#define GPMC_CHUNK_SHIFT 24 /* 16 MB */
#define GPMC_SECTION_SHIFT 28 /* 128 MB */
#define CS_NUM_SHIFT 24
#define ENABLE_PREFETCH (0x1 << 7)
#define DMA_MPU_MODE 2
#define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf)
#define GPMC_REVISION_MINOR(l) ((l) & 0xf)
#define GPMC_HAS_WR_ACCESS 0x1
#define GPMC_HAS_WR_DATA_MUX_BUS 0x2
#define GPMC_HAS_MUX_AAD 0x4
#define GPMC_NR_WAITPINS 4
#define GPMC_CS_CONFIG1 0x00
#define GPMC_CS_CONFIG2 0x04
#define GPMC_CS_CONFIG3 0x08
#define GPMC_CS_CONFIG4 0x0c
#define GPMC_CS_CONFIG5 0x10
#define GPMC_CS_CONFIG6 0x14
#define GPMC_CS_CONFIG7 0x18
#define GPMC_CS_NAND_COMMAND 0x1c
#define GPMC_CS_NAND_ADDRESS 0x20
#define GPMC_CS_NAND_DATA 0x24
/* Control Commands */
#define GPMC_CONFIG_RDY_BSY 0x00000001
#define GPMC_CONFIG_DEV_SIZE 0x00000002
#define GPMC_CONFIG_DEV_TYPE 0x00000003
#define GPMC_CONFIG_WAITPINPOLARITY(pin) (BIT(pin) << 8)
#define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31)
#define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30)
#define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29)
#define GPMC_CONFIG1_READTYPE_SYNC (1 << 29)
#define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
#define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27)
#define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27)
#define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
/** CLKACTIVATIONTIME Max Ticks */
#define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
#define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23)
/** ATTACHEDDEVICEPAGELENGTH Max Value */
#define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
#define GPMC_CONFIG1_WAIT_READ_MON (1 << 22)
#define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21)
#define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
/** WAITMONITORINGTIME Max Ticks */
#define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2
#define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16)
#define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12)
#define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1)
/** DEVICESIZE Max Value */
#define GPMC_CONFIG1_DEVICESIZE_MAX 1
#define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10)
#define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0)
#define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8)
#define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4)
#define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3)
#define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1))
#define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2))
#define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3))
#define GPMC_CONFIG7_CSVALID (1 << 6)
#define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f
#define GPMC_CONFIG7_CSVALID_MASK BIT(6)
#define GPMC_CONFIG7_MASKADDRESS_OFFSET 8
#define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
/* All CONFIG7 bits except reserved bits */
#define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \
GPMC_CONFIG7_CSVALID_MASK | \
GPMC_CONFIG7_MASKADDRESS_MASK)
#define GPMC_DEVICETYPE_NOR 0
#define GPMC_DEVICETYPE_NAND 2
#define GPMC_CONFIG_WRITEPROTECT 0x00000010
#define WR_RD_PIN_MONITORING 0x00600000
/* ECC commands */
#define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */
#define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */
#define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */
#define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */
enum gpmc_clk_domain {
GPMC_CD_FCLK,
GPMC_CD_CLK
};
struct gpmc_cs_data {
const char *name;
#define GPMC_CS_RESERVED (1 << 0)
u32 flags;
struct resource mem;
};
/* Structure to save gpmc cs context */
struct gpmc_cs_config {
u32 config1;
u32 config2;
u32 config3;
u32 config4;
u32 config5;
u32 config6;
u32 config7;
int is_valid;
};
/*
* Structure to save/restore gpmc context
* to support core off on OMAP3
*/
struct omap3_gpmc_regs {
u32 sysconfig;
u32 irqenable;
u32 timeout_ctrl;
u32 config;
u32 prefetch_config1;
u32 prefetch_config2;
u32 prefetch_control;
struct gpmc_cs_config cs_context[GPMC_CS_NUM];
};
struct gpmc_waitpin {
u32 pin;
u32 polarity;
struct gpio_desc *desc;
};
struct gpmc_device {
struct device *dev;
int irq;
struct irq_chip irq_chip;
struct gpio_chip gpio_chip;
struct notifier_block nb;
struct omap3_gpmc_regs context;
struct gpmc_waitpin *waitpins;
int nirqs;
unsigned int is_suspended:1;
struct resource *data;
};
static struct irq_domain *gpmc_irq_domain;
static struct resource gpmc_mem_root;
static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
static DEFINE_SPINLOCK(gpmc_mem_lock);
/* Define chip-selects as reserved by default until probe completes */
static unsigned int gpmc_cs_num = GPMC_CS_NUM;
static unsigned int gpmc_nr_waitpins;
static unsigned int gpmc_capability;
static void __iomem *gpmc_base;
static struct clk *gpmc_l3_clk;
static irqreturn_t gpmc_handle_irq(int irq, void *dev);
static void gpmc_write_reg(int idx, u32 val)
{
writel_relaxed(val, gpmc_base + idx);
}
static u32 gpmc_read_reg(int idx)
{
return readl_relaxed(gpmc_base + idx);
}
void gpmc_cs_write_reg(int cs, int idx, u32 val)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
writel_relaxed(val, reg_addr);
}
static u32 gpmc_cs_read_reg(int cs, int idx)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
return readl_relaxed(reg_addr);
}
/* TODO: Add support for gpmc_fck to clock framework and use it */
static unsigned long gpmc_get_fclk_period(void)
{
unsigned long rate = clk_get_rate(gpmc_l3_clk);
rate /= 1000;
rate = 1000000000 / rate; /* In picoseconds */
return rate;
}
/**
* gpmc_get_clk_period - get period of selected clock domain in ps
* @cs: Chip Select Region.
* @cd: Clock Domain.
*
* GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
* prior to calling this function with GPMC_CD_CLK.
*/
static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
{
unsigned long tick_ps = gpmc_get_fclk_period();
u32 l;
int div;
switch (cd) {
case GPMC_CD_CLK:
/* get current clk divider */
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
div = (l & 0x03) + 1;
/* get GPMC_CLK period */
tick_ps *= div;
break;
case GPMC_CD_FCLK:
default:
break;
}
return tick_ps;
}
static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
enum gpmc_clk_domain cd)
{
unsigned long tick_ps;
/* Calculate in picosecs to yield more exact results */
tick_ps = gpmc_get_clk_period(cs, cd);
return (time_ns * 1000 + tick_ps - 1) / tick_ps;
}
static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
{
return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
}
static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
{
unsigned long tick_ps;
/* Calculate in picosecs to yield more exact results */
tick_ps = gpmc_get_fclk_period();
return (time_ps + tick_ps - 1) / tick_ps;
}
static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
enum gpmc_clk_domain cd)
{
return ticks * gpmc_get_clk_period(cs, cd) / 1000;
}
unsigned int gpmc_ticks_to_ns(unsigned int ticks)
{
return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
}
static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
{
return ticks * gpmc_get_fclk_period();
}
static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
{
unsigned long ticks = gpmc_ps_to_ticks(time_ps);
return ticks * gpmc_get_fclk_period();
}
static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
{
u32 l;
l = gpmc_cs_read_reg(cs, reg);
if (value)
l |= mask;
else
l &= ~mask;
gpmc_cs_write_reg(cs, reg, l);
}
static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
{
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
GPMC_CONFIG1_TIME_PARA_GRAN,
p->time_para_granularity);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
p->cycle2cyclesamecsen);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
p->cycle2cyclediffcsen);
}
#ifdef CONFIG_OMAP_GPMC_DEBUG
/**
* get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
* @cs: Chip Select Region
* @reg: GPMC_CS_CONFIGn register offset.
* @st_bit: Start Bit
* @end_bit: End Bit. Must be >= @st_bit.
* @max: Maximum parameter value (before optional @shift).
* If 0, maximum is as high as @st_bit and @end_bit allow.
* @name: DTS node name, w/o "gpmc,"
* @cd: Clock Domain of timing parameter.
* @shift: Parameter value left shifts @shift, which is then printed instead of value.
* @raw: Raw Format Option.
* raw format: gpmc,name = <value>
* tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
* Where x ns -- y ns result in the same tick value.
* When @max is exceeded, "invalid" is printed inside comment.
* @noval: Parameter values equal to 0 are not printed.
* @return: Specified timing parameter (after optional @shift).
*
*/
static int get_gpmc_timing_reg(
/* timing specifiers */
int cs, int reg, int st_bit, int end_bit, int max,
const char *name, const enum gpmc_clk_domain cd,
/* value transform */
int shift,
/* format specifiers */
bool raw, bool noval)
{
u32 l;
int nr_bits;
int mask;
bool invalid;
l = gpmc_cs_read_reg(cs, reg);
nr_bits = end_bit - st_bit + 1;
mask = (1 << nr_bits) - 1;
l = (l >> st_bit) & mask;
if (!max)
max = mask;
invalid = l > max;
if (shift)
l = (shift << l);
if (noval && (l == 0))
return 0;
if (!raw) {
/* DTS tick format for timings in ns */
unsigned int time_ns;
unsigned int time_ns_min = 0;
if (l)
time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
name, time_ns, time_ns_min, time_ns, l,
invalid ? "; invalid " : " ");
} else {
/* raw format */
pr_info("gpmc,%s = <%u>;%s\n", name, l,
invalid ? " /* invalid */" : "");
}
return l;
}
#define GPMC_PRINT_CONFIG(cs, config) \
pr_info("cs%i %s: 0x%08x\n", cs, #config, \
gpmc_cs_read_reg(cs, config))
#define GPMC_GET_RAW(reg, st, end, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
#define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
#define GPMC_GET_RAW_BOOL(reg, st, end, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
#define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
#define GPMC_GET_TICKS(reg, st, end, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
#define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
#define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
static void gpmc_show_regs(int cs, const char *desc)
{
pr_info("gpmc cs%i %s:\n", cs, desc);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
}
/*
* Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
* see commit c9fb809.
*/
static void gpmc_cs_show_timings(int cs, const char *desc)
{
gpmc_show_regs(cs, desc);
pr_info("gpmc cs%i access configuration:\n", cs);
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity");
GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data");
GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
"burst-length");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen");
pr_info("gpmc cs%i timings configuration:\n", cs);
GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
"adv-aad-mux-rd-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
"adv-aad-mux-wr-off-ns");
}
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns");
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
}
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
"wait-monitoring-ns", GPMC_CD_CLK);
GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
"clk-activation-ns", GPMC_CD_FCLK);
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
}
#else
static inline void gpmc_cs_show_timings(int cs, const char *desc)
{
}
#endif
/**
* set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
* Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
* prior to calling this function with @cd equal to GPMC_CD_CLK.
*
* @cs: Chip Select Region.
* @reg: GPMC_CS_CONFIGn register offset.
* @st_bit: Start Bit
* @end_bit: End Bit. Must be >= @st_bit.
* @max: Maximum parameter value.
* If 0, maximum is as high as @st_bit and @end_bit allow.
* @time: Timing parameter in ns.
* @cd: Timing parameter clock domain.
* @name: Timing parameter name.
* @return: 0 on success, -1 on error.
*/
static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
int time, enum gpmc_clk_domain cd, const char *name)
{
u32 l;
int ticks, mask, nr_bits;
if (time == 0)
ticks = 0;
else
ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
nr_bits = end_bit - st_bit + 1;
mask = (1 << nr_bits) - 1;
if (!max)
max = mask;
if (ticks > max) {
pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
__func__, cs, name, time, ticks, max);
return -1;
}
l = gpmc_cs_read_reg(cs, reg);
#ifdef CONFIG_OMAP_GPMC_DEBUG
pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
(l >> st_bit) & mask, time);
#endif
l &= ~(mask << st_bit);
l |= ticks << st_bit;
gpmc_cs_write_reg(cs, reg, l);
return 0;
}
/**
* gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
* WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
* read --> don't sample bus too early
* write --> data is longer on bus
*
* Formula:
* gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
* / waitmonitoring_ticks)
* WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
* div <= 0 check.
*
* @wait_monitoring: WAITMONITORINGTIME in ns.
* @return: -1 on failure to scale, else proper divider > 0.
*/
static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
{
int div = gpmc_ns_to_ticks(wait_monitoring);
div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
if (div > 4)
return -1;
if (div <= 0)
div = 1;
return div;
}
/**
* gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
* @sync_clk: GPMC_CLK period in ps.
* @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
* Else, returns -1.
*/
int gpmc_calc_divider(unsigned int sync_clk)
{
int div = gpmc_ps_to_ticks(sync_clk);
if (div > 4)
return -1;
if (div <= 0)
div = 1;
return div;
}
/**
* gpmc_cs_set_timings - program timing parameters for Chip Select Region.
* @cs: Chip Select Region.
* @t: GPMC timing parameters.
* @s: GPMC timing settings.
* @return: 0 on success, -1 on error.
*/
int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
const struct gpmc_settings *s)
{
int div, ret;
u32 l;
div = gpmc_calc_divider(t->sync_clk);
if (div < 0)
return -EINVAL;
/*
* See if we need to change the divider for waitmonitoringtime.
*
* Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
* pure asynchronous accesses, i.e. both read and write asynchronous.
* However, only do so if WAITMONITORINGTIME is actually used, i.e.
* either WAITREADMONITORING or WAITWRITEMONITORING is set.
*
* This statement must not change div to scale async WAITMONITORINGTIME
* to protect mixed synchronous and asynchronous accesses.
*
* We raise an error later if WAITMONITORINGTIME does not fit.
*/
if (!s->sync_read && !s->sync_write &&
(s->wait_on_read || s->wait_on_write)
) {
div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
if (div < 0) {
pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
__func__,
t->wait_monitoring
);
return -ENXIO;
}
}
ret = 0;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
GPMC_CD_FCLK, "cs_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
GPMC_CD_FCLK, "cs_rd_off");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
GPMC_CD_FCLK, "cs_wr_off");
if (ret)
return -ENXIO;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
GPMC_CD_FCLK, "adv_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
GPMC_CD_FCLK, "adv_rd_off");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
GPMC_CD_FCLK, "adv_wr_off");
if (ret)
return -ENXIO;
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
t->adv_aad_mux_on, GPMC_CD_FCLK,
"adv_aad_mux_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
"adv_aad_mux_rd_off");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
"adv_aad_mux_wr_off");
if (ret)
return -ENXIO;
}
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
GPMC_CD_FCLK, "oe_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
GPMC_CD_FCLK, "oe_off");
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
t->oe_aad_mux_on, GPMC_CD_FCLK,
"oe_aad_mux_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
t->oe_aad_mux_off, GPMC_CD_FCLK,
"oe_aad_mux_off");
}
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
GPMC_CD_FCLK, "we_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
GPMC_CD_FCLK, "we_off");
if (ret)
return -ENXIO;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
GPMC_CD_FCLK, "rd_cycle");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
GPMC_CD_FCLK, "wr_cycle");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
GPMC_CD_FCLK, "access");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
t->page_burst_access, GPMC_CD_FCLK,
"page_burst_access");
if (ret)
return -ENXIO;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
t->bus_turnaround, GPMC_CD_FCLK,
"bus_turnaround");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
t->cycle2cycle_delay, GPMC_CD_FCLK,
"cycle2cycle_delay");
if (ret)
return -ENXIO;
if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
t->wr_data_mux_bus, GPMC_CD_FCLK,
"wr_data_mux_bus");
if (ret)
return -ENXIO;
}
if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
t->wr_access, GPMC_CD_FCLK,
"wr_access");
if (ret)
return -ENXIO;
}
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
l &= ~0x03;
l |= (div - 1);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
ret = 0;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
t->wait_monitoring, GPMC_CD_CLK,
"wait_monitoring");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
t->clk_activation, GPMC_CD_FCLK,
"clk_activation");
if (ret)
return -ENXIO;
#ifdef CONFIG_OMAP_GPMC_DEBUG
pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
cs, (div * gpmc_get_fclk_period()) / 1000, div);
#endif
gpmc_cs_bool_timings(cs, &t->bool_timings);
gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
return 0;
}
static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
{
u32 l;
u32 mask;
/*
* Ensure that base address is aligned on a
* boundary equal to or greater than size.
*/
if (base & (size - 1))
return -EINVAL;
base >>= GPMC_CHUNK_SHIFT;
mask = (1 << GPMC_SECTION_SHIFT) - size;
mask >>= GPMC_CHUNK_SHIFT;
mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l &= ~GPMC_CONFIG7_MASK;
l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
l |= GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
return 0;
}
static void gpmc_cs_enable_mem(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l |= GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}
static void gpmc_cs_disable_mem(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l &= ~GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}
static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
{
u32 l;
u32 mask;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
mask = (l >> 8) & 0x0f;
*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
}
static int gpmc_cs_mem_enabled(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
return l & GPMC_CONFIG7_CSVALID;
}
static void gpmc_cs_set_reserved(int cs, int reserved)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
gpmc->flags |= GPMC_CS_RESERVED;
}
static bool gpmc_cs_reserved(int cs)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
return gpmc->flags & GPMC_CS_RESERVED;
}
static unsigned long gpmc_mem_align(unsigned long size)
{
int order;
size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
order = GPMC_CHUNK_SHIFT - 1;
do {
size >>= 1;
order++;
} while (size);
size = 1 << order;
return size;
}
static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
struct resource *res = &gpmc->mem;
int r;
size = gpmc_mem_align(size);
spin_lock(&gpmc_mem_lock);
res->start = base;
res->end = base + size - 1;
r = request_resource(&gpmc_mem_root, res);
spin_unlock(&gpmc_mem_lock);
return r;
}
static int gpmc_cs_delete_mem(int cs)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
struct resource *res = &gpmc->mem;
int r;
spin_lock(&gpmc_mem_lock);
r = release_resource(res);
res->start = 0;
res->end = 0;
spin_unlock(&gpmc_mem_lock);
return r;
}
int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
struct resource *res = &gpmc->mem;
int r = -1;
if (cs >= gpmc_cs_num) {
pr_err("%s: requested chip-select is disabled\n", __func__);
return -ENODEV;
}
size = gpmc_mem_align(size);
if (size > (1 << GPMC_SECTION_SHIFT))
return -ENOMEM;
spin_lock(&gpmc_mem_lock);
if (gpmc_cs_reserved(cs)) {
r = -EBUSY;
goto out;
}
if (gpmc_cs_mem_enabled(cs))
r = adjust_resource(res, res->start & ~(size - 1), size);
if (r < 0)
r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
size, NULL, NULL);
if (r < 0)
goto out;
/* Disable CS while changing base address and size mask */
gpmc_cs_disable_mem(cs);
r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
if (r < 0) {
release_resource(res);
goto out;
}
/* Enable CS */
gpmc_cs_enable_mem(cs);
*base = res->start;
gpmc_cs_set_reserved(cs, 1);
out:
spin_unlock(&gpmc_mem_lock);
return r;
}
EXPORT_SYMBOL(gpmc_cs_request);
void gpmc_cs_free(int cs)
{
struct gpmc_cs_data *gpmc;
struct resource *res;
spin_lock(&gpmc_mem_lock);
if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
spin_unlock(&gpmc_mem_lock);
return;
}
gpmc = &gpmc_cs[cs];
res = &gpmc->mem;
gpmc_cs_disable_mem(cs);
if (res->flags)
release_resource(res);
gpmc_cs_set_reserved(cs, 0);
spin_unlock(&gpmc_mem_lock);
}
EXPORT_SYMBOL(gpmc_cs_free);
static bool gpmc_is_valid_waitpin(u32 waitpin)
{
return waitpin < gpmc_nr_waitpins;
}
static int gpmc_alloc_waitpin(struct gpmc_device *gpmc,
struct gpmc_settings *p)
{
int ret;
struct gpmc_waitpin *waitpin;
struct gpio_desc *waitpin_desc;
if (!gpmc_is_valid_waitpin(p->wait_pin))
return -EINVAL;
waitpin = &gpmc->waitpins[p->wait_pin];
if (!waitpin->desc) {
/* Reserve the GPIO for wait pin usage.
* GPIO polarity doesn't matter here. Wait pin polarity
* is set in GPMC_CONFIG register.
*/
waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
p->wait_pin, "WAITPIN",
GPIO_ACTIVE_HIGH,
GPIOD_IN);
ret = PTR_ERR(waitpin_desc);
if (IS_ERR(waitpin_desc) && ret != -EBUSY)
return ret;
/* New wait pin */
waitpin->desc = waitpin_desc;
waitpin->pin = p->wait_pin;
waitpin->polarity = p->wait_pin_polarity;
} else {
/* Shared wait pin */
if (p->wait_pin_polarity != waitpin->polarity ||
p->wait_pin != waitpin->pin) {
dev_err(gpmc->dev,
"shared-wait-pin: invalid configuration\n");
return -EINVAL;
}
dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin);
}
return 0;
}
static void gpmc_free_waitpin(struct gpmc_device *gpmc,
int wait_pin)
{
if (gpmc_is_valid_waitpin(wait_pin))
gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc);
}
/**
* gpmc_configure - write request to configure gpmc
* @cmd: command type
* @wval: value to write
* @return status of the operation
*/
int gpmc_configure(int cmd, int wval)
{
u32 regval;
switch (cmd) {
case GPMC_CONFIG_WP:
regval = gpmc_read_reg(GPMC_CONFIG);
if (wval)
regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
else
regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
gpmc_write_reg(GPMC_CONFIG, regval);
break;
default:
pr_err("%s: command not supported\n", __func__);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(gpmc_configure);
static bool gpmc_nand_writebuffer_empty(void)
{
if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
return true;
return false;
}
static struct gpmc_nand_ops nand_ops = {
.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
};
/**
* gpmc_omap_get_nand_ops - Get the GPMC NAND interface
* @reg: the GPMC NAND register map exclusive for NAND use.
* @cs: GPMC chip select number on which the NAND sits. The
* register map returned will be specific to this chip select.
*
* Returns NULL on error e.g. invalid cs.
*/
struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
{
int i;
if (cs >= gpmc_cs_num)
return NULL;
reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
i * GPMC_BCH_SIZE;
reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
i * GPMC_BCH_SIZE;
reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
i * GPMC_BCH_SIZE;
}
return &nand_ops;
}
EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
struct gpmc_settings *s,
int freq, int latency)
{
struct gpmc_device_timings dev_t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_wpl = 40;
const int t_wph = 30;
int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
switch (freq) {
case 104:
min_gpmc_clk_period = 9600; /* 104 MHz */
t_ces = 3;
t_avds = 4;
t_avdh = 2;
t_ach = 3;
t_aavdh = 6;
t_rdyo = 6;
break;
case 83:
min_gpmc_clk_period = 12000; /* 83 MHz */
t_ces = 5;
t_avds = 4;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 9;
break;
case 66:
min_gpmc_clk_period = 15000; /* 66 MHz */
t_ces = 6;
t_avds = 5;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 11;
break;
default:
min_gpmc_clk_period = 18500; /* 54 MHz */
t_ces = 7;
t_avds = 7;
t_avdh = 7;
t_ach = 9;
t_aavdh = 7;
t_rdyo = 15;
break;
}
/* Set synchronous read timings */
memset(&dev_t, 0, sizeof(dev_t));
if (!s->sync_write) {
dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
dev_t.t_wpl = t_wpl * 1000;
dev_t.t_wph = t_wph * 1000;
dev_t.t_aavdh = t_aavdh * 1000;
}
dev_t.ce_xdelay = true;
dev_t.avd_xdelay = true;
dev_t.oe_xdelay = true;
dev_t.we_xdelay = true;
dev_t.clk = min_gpmc_clk_period;
dev_t.t_bacc = dev_t.clk;
dev_t.t_ces = t_ces * 1000;
dev_t.t_avds = t_avds * 1000;
dev_t.t_avdh = t_avdh * 1000;
dev_t.t_ach = t_ach * 1000;
dev_t.cyc_iaa = (latency + 1);
dev_t.t_cez_r = t_cez * 1000;
dev_t.t_cez_w = dev_t.t_cez_r;
dev_t.cyc_aavdh_oe = 1;
dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
gpmc_calc_timings(t, s, &dev_t);
}
int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
int latency,
struct gpmc_onenand_info *info)
{
int ret;
struct gpmc_timings gpmc_t;
struct gpmc_settings gpmc_s;
gpmc_read_settings_dt(dev->of_node, &gpmc_s);
info->sync_read = gpmc_s.sync_read;
info->sync_write = gpmc_s.sync_write;
info->burst_len = gpmc_s.burst_len;
if (!gpmc_s.sync_read && !gpmc_s.sync_write)
return 0;
gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
ret = gpmc_cs_program_settings(cs, &gpmc_s);
if (ret < 0)
return ret;
return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
}
EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
int gpmc_get_client_irq(unsigned int irq_config)
{
if (!gpmc_irq_domain) {
pr_warn("%s called before GPMC IRQ domain available\n",
__func__);
return 0;
}
/* we restrict this to NAND IRQs only */
if (irq_config >= GPMC_NR_NAND_IRQS)
return 0;
return irq_create_mapping(gpmc_irq_domain, irq_config);
}
static int gpmc_irq_endis(unsigned long hwirq, bool endis)
{
u32 regval;
/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
if (hwirq >= GPMC_NR_NAND_IRQS)
hwirq += 8 - GPMC_NR_NAND_IRQS;
regval = gpmc_read_reg(GPMC_IRQENABLE);
if (endis)
regval |= BIT(hwirq);
else
regval &= ~BIT(hwirq);
gpmc_write_reg(GPMC_IRQENABLE, regval);
return 0;
}
static void gpmc_irq_disable(struct irq_data *p)
{
gpmc_irq_endis(p->hwirq, false);
}
static void gpmc_irq_enable(struct irq_data *p)
{
gpmc_irq_endis(p->hwirq, true);
}
static void gpmc_irq_mask(struct irq_data *d)
{
gpmc_irq_endis(d->hwirq, false);
}
static void gpmc_irq_unmask(struct irq_data *d)
{
gpmc_irq_endis(d->hwirq, true);
}
static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
{
u32 regval;
/* NAND IRQs polarity is not configurable */
if (hwirq < GPMC_NR_NAND_IRQS)
return;
/* WAITPIN starts at BIT 8 */
hwirq += 8 - GPMC_NR_NAND_IRQS;
regval = gpmc_read_reg(GPMC_CONFIG);
if (rising_edge)
regval &= ~BIT(hwirq);
else
regval |= BIT(hwirq);
gpmc_write_reg(GPMC_CONFIG, regval);
}
static void gpmc_irq_ack(struct irq_data *d)
{
unsigned int hwirq = d->hwirq;
/* skip reserved bits */
if (hwirq >= GPMC_NR_NAND_IRQS)
hwirq += 8 - GPMC_NR_NAND_IRQS;
/* Setting bit to 1 clears (or Acks) the interrupt */
gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
}
static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
{
/* can't set type for NAND IRQs */
if (d->hwirq < GPMC_NR_NAND_IRQS)
return -EINVAL;
/* We can support either rising or falling edge at a time */
if (trigger == IRQ_TYPE_EDGE_FALLING)
gpmc_irq_edge_config(d->hwirq, false);
else if (trigger == IRQ_TYPE_EDGE_RISING)
gpmc_irq_edge_config(d->hwirq, true);
else
return -EINVAL;
return 0;
}
static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
irq_hw_number_t hw)
{
struct gpmc_device *gpmc = d->host_data;
irq_set_chip_data(virq, gpmc);
if (hw < GPMC_NR_NAND_IRQS) {
irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
irq_set_chip_and_handler(virq, &gpmc->irq_chip,
handle_simple_irq);
} else {
irq_set_chip_and_handler(virq, &gpmc->irq_chip,
handle_edge_irq);
}
return 0;
}
static const struct irq_domain_ops gpmc_irq_domain_ops = {
.map = gpmc_irq_map,
.xlate = irq_domain_xlate_twocell,
};
static irqreturn_t gpmc_handle_irq(int irq, void *data)
{
int hwirq, virq;
u32 regval, regvalx;
struct gpmc_device *gpmc = data;
regval = gpmc_read_reg(GPMC_IRQSTATUS);
regvalx = regval;
if (!regval)
return IRQ_NONE;
for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
/* skip reserved status bits */
if (hwirq == GPMC_NR_NAND_IRQS)
regvalx >>= 8 - GPMC_NR_NAND_IRQS;
if (regvalx & BIT(hwirq)) {
virq = irq_find_mapping(gpmc_irq_domain, hwirq);
if (!virq) {
dev_warn(gpmc->dev,
"spurious irq detected hwirq %d, virq %d\n",
hwirq, virq);
}
generic_handle_irq(virq);
}
}
gpmc_write_reg(GPMC_IRQSTATUS, regval);
return IRQ_HANDLED;
}
static int gpmc_setup_irq(struct gpmc_device *gpmc)
{
u32 regval;
int rc;
/* Disable interrupts */
gpmc_write_reg(GPMC_IRQENABLE, 0);
/* clear interrupts */
regval = gpmc_read_reg(GPMC_IRQSTATUS);
gpmc_write_reg(GPMC_IRQSTATUS, regval);
gpmc->irq_chip.name = "gpmc";
gpmc->irq_chip.irq_enable = gpmc_irq_enable;
gpmc->irq_chip.irq_disable = gpmc_irq_disable;
gpmc->irq_chip.irq_ack = gpmc_irq_ack;
gpmc->irq_chip.irq_mask = gpmc_irq_mask;
gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
gpmc->nirqs,
&gpmc_irq_domain_ops,
gpmc);
if (!gpmc_irq_domain) {
dev_err(gpmc->dev, "IRQ domain add failed\n");
return -ENODEV;
}
rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
if (rc) {
dev_err(gpmc->dev, "failed to request irq %d: %d\n",
gpmc->irq, rc);
irq_domain_remove(gpmc_irq_domain);
gpmc_irq_domain = NULL;
}
return rc;
}
static int gpmc_free_irq(struct gpmc_device *gpmc)
{
int hwirq;
free_irq(gpmc->irq, gpmc);
for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
irq_domain_remove(gpmc_irq_domain);
gpmc_irq_domain = NULL;
return 0;
}
static void gpmc_mem_exit(void)
{
int cs;
for (cs = 0; cs < gpmc_cs_num; cs++) {
if (!gpmc_cs_mem_enabled(cs))
continue;
gpmc_cs_delete_mem(cs);
}
}
static void gpmc_mem_init(struct gpmc_device *gpmc)
{
int cs;
if (!gpmc->data) {
/* All legacy devices have same data IO window */
gpmc_mem_root.start = GPMC_MEM_START;
gpmc_mem_root.end = GPMC_MEM_END;
} else {
gpmc_mem_root.start = gpmc->data->start;
gpmc_mem_root.end = gpmc->data->end;
}
/* Reserve all regions that has been set up by bootloader */
for (cs = 0; cs < gpmc_cs_num; cs++) {
u32 base, size;
if (!gpmc_cs_mem_enabled(cs))
continue;
gpmc_cs_get_memconf(cs, &base, &size);
if (gpmc_cs_insert_mem(cs, base, size)) {
pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
__func__, cs, base, base + size);
gpmc_cs_disable_mem(cs);
}
}
}
static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
{
u32 temp;
int div;
div = gpmc_calc_divider(sync_clk);
temp = gpmc_ps_to_ticks(time_ps);
temp = (temp + div - 1) / div;
return gpmc_ticks_to_ps(temp * div);
}
/* XXX: can the cycles be avoided ? */
static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_rd_off */
temp = dev_t->t_avdp_r;
/* XXX: mux check required ? */
if (mux) {
/* XXX: t_avdp not to be required for sync, only added for tusb
* this indirectly necessitates requirement of t_avdp_r and
* t_avdp_w instead of having a single t_avdp
*/
temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
}
gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
/* oe_on */
temp = dev_t->t_oeasu; /* XXX: remove this ? */
if (mux) {
temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
temp = max_t(u32, temp, gpmc_t->adv_rd_off +
gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
}
gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
/* access */
/* XXX: any scope for improvement ?, by combining oe_on
* and clk_activation, need to check whether
* access = clk_activation + round to sync clk ?
*/
temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
temp += gpmc_t->clk_activation;
if (dev_t->cyc_oe)
temp = max_t(u32, temp, gpmc_t->oe_on +
gpmc_ticks_to_ps(dev_t->cyc_oe));
gpmc_t->access = gpmc_round_ps_to_ticks(temp);
gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
gpmc_t->cs_rd_off = gpmc_t->oe_off;
/* rd_cycle */
temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
gpmc_t->access;
/* XXX: barter t_ce_rdyz with t_cez_r ? */
if (dev_t->t_ce_rdyz)
temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_wr_off */
temp = dev_t->t_avdp_w;
if (mux) {
temp = max_t(u32, temp,
gpmc_t->clk_activation + dev_t->t_avdh);
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
}
gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
/* wr_data_mux_bus */
temp = max_t(u32, dev_t->t_weasu,
gpmc_t->clk_activation + dev_t->t_rdyo);
/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
* and in that case remember to handle we_on properly
*/
if (mux) {
temp = max_t(u32, temp,
gpmc_t->adv_wr_off + dev_t->t_aavdh);
temp = max_t(u32, temp, gpmc_t->adv_wr_off +
gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
}
gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
/* we_on */
if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
else
gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
/* wr_access */
/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
gpmc_t->wr_access = gpmc_t->access;
/* we_off */
temp = gpmc_t->we_on + dev_t->t_wpl;
temp = max_t(u32, temp,
gpmc_t->wr_access + gpmc_ticks_to_ps(1));
temp = max_t(u32, temp,
gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
dev_t->t_wph);
/* wr_cycle */
temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
temp += gpmc_t->wr_access;
/* XXX: barter t_ce_rdyz with t_cez_w ? */
if (dev_t->t_ce_rdyz)
temp = max_t(u32, temp,
gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_rd_off */
temp = dev_t->t_avdp_r;
if (mux)
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
/* oe_on */
temp = dev_t->t_oeasu;
if (mux)
temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
/* access */
temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
gpmc_t->oe_on + dev_t->t_oe);
temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
gpmc_t->access = gpmc_round_ps_to_ticks(temp);
gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
gpmc_t->cs_rd_off = gpmc_t->oe_off;
/* rd_cycle */
temp = max_t(u32, dev_t->t_rd_cycle,
gpmc_t->cs_rd_off + dev_t->t_cez_r);
temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_wr_off */
temp = dev_t->t_avdp_w;
if (mux)
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
/* wr_data_mux_bus */
temp = dev_t->t_weasu;
if (mux) {
temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
temp = max_t(u32, temp, gpmc_t->adv_wr_off +
gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
}
gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
/* we_on */
if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
else
gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
/* we_off */
temp = gpmc_t->we_on + dev_t->t_wpl;
gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
dev_t->t_wph);
/* wr_cycle */
temp = max_t(u32, dev_t->t_wr_cycle,
gpmc_t->cs_wr_off + dev_t->t_cez_w);
gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t)
{
u32 temp;
gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
gpmc_get_fclk_period();
gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
dev_t->t_bacc,
gpmc_t->sync_clk);
temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
return 0;
if (dev_t->ce_xdelay)
gpmc_t->bool_timings.cs_extra_delay = true;
if (dev_t->avd_xdelay)
gpmc_t->bool_timings.adv_extra_delay = true;
if (dev_t->oe_xdelay)
gpmc_t->bool_timings.oe_extra_delay = true;
if (dev_t->we_xdelay)
gpmc_t->bool_timings.we_extra_delay = true;
return 0;
}
static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool sync)
{
u32 temp;
/* cs_on */
gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
/* adv_on */
temp = dev_t->t_avdasu;
if (dev_t->t_ce_avd)
temp = max_t(u32, temp,
gpmc_t->cs_on + dev_t->t_ce_avd);
gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
if (sync)
gpmc_calc_sync_common_timings(gpmc_t, dev_t);
return 0;
}
/*
* TODO: remove this function once all peripherals are confirmed to
* work with generic timing. Simultaneously gpmc_cs_set_timings()
* has to be modified to handle timings in ps instead of ns
*/
static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
{
t->cs_on /= 1000;
t->cs_rd_off /= 1000;
t->cs_wr_off /= 1000;
t->adv_on /= 1000;
t->adv_rd_off /= 1000;
t->adv_wr_off /= 1000;
t->we_on /= 1000;
t->we_off /= 1000;
t->oe_on /= 1000;
t->oe_off /= 1000;
t->page_burst_access /= 1000;
t->access /= 1000;
t->rd_cycle /= 1000;
t->wr_cycle /= 1000;
t->bus_turnaround /= 1000;
t->cycle2cycle_delay /= 1000;
t->wait_monitoring /= 1000;
t->clk_activation /= 1000;
t->wr_access /= 1000;
t->wr_data_mux_bus /= 1000;
}
int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
struct gpmc_settings *gpmc_s,
struct gpmc_device_timings *dev_t)
{
bool mux = false, sync = false;
if (gpmc_s) {
mux = gpmc_s->mux_add_data ? true : false;
sync = (gpmc_s->sync_read || gpmc_s->sync_write);
}
memset(gpmc_t, 0, sizeof(*gpmc_t));
gpmc_calc_common_timings(gpmc_t, dev_t, sync);
if (gpmc_s && gpmc_s->sync_read)
gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
else
gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
if (gpmc_s && gpmc_s->sync_write)
gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
else
gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
/* TODO: remove, see function definition */
gpmc_convert_ps_to_ns(gpmc_t);
return 0;
}
/**
* gpmc_cs_program_settings - programs non-timing related settings
* @cs: GPMC chip-select to program
* @p: pointer to GPMC settings structure
*
* Programs non-timing related settings for a GPMC chip-select, such as
* bus-width, burst configuration, etc. Function should be called once
* for each chip-select that is being used and must be called before
* calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
* register will be initialised to zero by this function. Returns 0 on
* success and appropriate negative error code on failure.
*/
int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
{
u32 config1;
if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
pr_err("%s: invalid width %d!", __func__, p->device_width);
return -EINVAL;
}
/* Address-data multiplexing not supported for NAND devices */
if (p->device_nand && p->mux_add_data) {
pr_err("%s: invalid configuration!\n", __func__);
return -EINVAL;
}
if ((p->mux_add_data > GPMC_MUX_AD) ||
((p->mux_add_data == GPMC_MUX_AAD) &&
!(gpmc_capability & GPMC_HAS_MUX_AAD))) {
pr_err("%s: invalid multiplex configuration!\n", __func__);
return -EINVAL;
}
/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
if (p->burst_read || p->burst_write) {
switch (p->burst_len) {
case GPMC_BURST_4:
case GPMC_BURST_8:
case GPMC_BURST_16:
break;
default:
pr_err("%s: invalid page/burst-length (%d)\n",
__func__, p->burst_len);
return -EINVAL;
}
}
if (p->wait_pin != GPMC_WAITPIN_INVALID &&
p->wait_pin > gpmc_nr_waitpins) {
pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
return -EINVAL;
}
config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
if (p->sync_read)
config1 |= GPMC_CONFIG1_READTYPE_SYNC;
if (p->sync_write)
config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
if (p->wait_on_read)
config1 |= GPMC_CONFIG1_WAIT_READ_MON;
if (p->wait_on_write)
config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
if (p->wait_on_read || p->wait_on_write)
config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
if (p->device_nand)
config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
if (p->mux_add_data)
config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
if (p->burst_read)
config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
if (p->burst_write)
config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
if (p->burst_read || p->burst_write) {
config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
}
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) {
config1 = gpmc_read_reg(GPMC_CONFIG);
if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW)
config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH)
config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
gpmc_write_reg(GPMC_CONFIG, config1);
}
return 0;
}
#ifdef CONFIG_OF
static void gpmc_cs_set_name(int cs, const char *name)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
gpmc->name = name;
}
static const char *gpmc_cs_get_name(int cs)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
return gpmc->name;
}
/**
* gpmc_cs_remap - remaps a chip-select physical base address
* @cs: chip-select to remap
* @base: physical base address to re-map chip-select to
*
* Re-maps a chip-select to a new physical base address specified by
* "base". Returns 0 on success and appropriate negative error code
* on failure.
*/
static int gpmc_cs_remap(int cs, u32 base)
{
int ret;
u32 old_base, size;
if (cs >= gpmc_cs_num) {
pr_err("%s: requested chip-select is disabled\n", __func__);
return -ENODEV;
}
/*
* Make sure we ignore any device offsets from the GPMC partition
* allocated for the chip select and that the new base confirms
* to the GPMC 16MB minimum granularity.
*/
base &= ~(SZ_16M - 1);
gpmc_cs_get_memconf(cs, &old_base, &size);
if (base == old_base)
return 0;
ret = gpmc_cs_delete_mem(cs);
if (ret < 0)
return ret;
ret = gpmc_cs_insert_mem(cs, base, size);
if (ret < 0)
return ret;
ret = gpmc_cs_set_memconf(cs, base, size);
return ret;
}
/**
* gpmc_read_settings_dt - read gpmc settings from device-tree
* @np: pointer to device-tree node for a gpmc child device
* @p: pointer to gpmc settings structure
*
* Reads the GPMC settings for a GPMC child device from device-tree and
* stores them in the GPMC settings structure passed. The GPMC settings
* structure is initialised to zero by this function and so any
* previously stored settings will be cleared.
*/
void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
{
memset(p, 0, sizeof(struct gpmc_settings));
p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
of_property_read_u32(np, "gpmc,device-width", &p->device_width);
of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
if (!p->burst_read && !p->burst_write)
pr_warn("%s: page/burst-length set but not used!\n",
__func__);
}
p->wait_pin = GPMC_WAITPIN_INVALID;
p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
if (!gpmc_is_valid_waitpin(p->wait_pin)) {
pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin);
p->wait_pin = GPMC_WAITPIN_INVALID;
}
if (!of_property_read_u32(np, "ti,wait-pin-polarity",
&p->wait_pin_polarity)) {
if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH &&
p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) {
pr_err("%s: Invalid wait-pin-polarity (%d)\n",
__func__, p->wait_pin_polarity);
p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
}
}
p->wait_on_read = of_property_read_bool(np,
"gpmc,wait-on-read");
p->wait_on_write = of_property_read_bool(np,
"gpmc,wait-on-write");
if (!p->wait_on_read && !p->wait_on_write)
pr_debug("%s: rd/wr wait monitoring not enabled!\n",
__func__);
}
}
static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
struct gpmc_timings *gpmc_t)
{
struct gpmc_bool_timings *p;
if (!np || !gpmc_t)
return;
memset(gpmc_t, 0, sizeof(*gpmc_t));
/* minimum clock period for syncronous mode */
of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
/* chip select timtings */
of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
/* ADV signal timings */
of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
&gpmc_t->adv_aad_mux_on);
of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
&gpmc_t->adv_aad_mux_rd_off);
of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
&gpmc_t->adv_aad_mux_wr_off);
/* WE signal timings */
of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
/* OE signal timings */
of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
&gpmc_t->oe_aad_mux_on);
of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
&gpmc_t->oe_aad_mux_off);
/* access and cycle timings */
of_property_read_u32(np, "gpmc,page-burst-access-ns",
&gpmc_t->page_burst_access);
of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
of_property_read_u32(np, "gpmc,bus-turnaround-ns",
&gpmc_t->bus_turnaround);
of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
&gpmc_t->cycle2cycle_delay);
of_property_read_u32(np, "gpmc,wait-monitoring-ns",
&gpmc_t->wait_monitoring);
of_property_read_u32(np, "gpmc,clk-activation-ns",
&gpmc_t->clk_activation);
/* only applicable to OMAP3+ */
of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
&gpmc_t->wr_data_mux_bus);
/* bool timing parameters */
p = &gpmc_t->bool_timings;
p->cycle2cyclediffcsen =
of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
p->cycle2cyclesamecsen =
of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
p->time_para_granularity =
of_property_read_bool(np, "gpmc,time-para-granularity");
}
/**
* gpmc_probe_generic_child - configures the gpmc for a child device
* @pdev: pointer to gpmc platform device
* @child: pointer to device-tree node for child device
*
* Allocates and configures a GPMC chip-select for a child device.
* Returns 0 on success and appropriate negative error code on failure.
*/
static int gpmc_probe_generic_child(struct platform_device *pdev,
struct device_node *child)
{
struct gpmc_settings gpmc_s;
struct gpmc_timings gpmc_t;
struct resource res;
unsigned long base;
const char *name;
int ret, cs;
u32 val;
struct gpmc_device *gpmc = platform_get_drvdata(pdev);
if (of_property_read_u32(child, "reg", &cs) < 0) {
dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
child);
return -ENODEV;
}
if (of_address_to_resource(child, 0, &res) < 0) {
dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
child);
return -ENODEV;
}
/*
* Check if we have multiple instances of the same device
* on a single chip select. If so, use the already initialized
* timings.
*/
name = gpmc_cs_get_name(cs);
if (name && of_node_name_eq(child, name))
goto no_timings;
ret = gpmc_cs_request(cs, resource_size(&res), &base);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
return ret;
}
gpmc_cs_set_name(cs, child->full_name);
gpmc_read_settings_dt(child, &gpmc_s);
gpmc_read_timings_dt(child, &gpmc_t);
/*
* For some GPMC devices we still need to rely on the bootloader
* timings because the devices can be connected via FPGA.
* REVISIT: Add timing support from slls644g.pdf.
*/
if (!gpmc_t.cs_rd_off) {
WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
cs);
gpmc_cs_show_timings(cs,
"please add GPMC bootloader timings to .dts");
goto no_timings;
}
/* CS must be disabled while making changes to gpmc configuration */
gpmc_cs_disable_mem(cs);
/*
* FIXME: gpmc_cs_request() will map the CS to an arbitrary
* location in the gpmc address space. When booting with
* device-tree we want the NOR flash to be mapped to the
* location specified in the device-tree blob. So remap the
* CS to this location. Once DT migration is complete should
* just make gpmc_cs_request() map a specific address.
*/
ret = gpmc_cs_remap(cs, res.start);
if (ret < 0) {
dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
cs, &res.start);
if (res.start < GPMC_MEM_START) {
dev_info(&pdev->dev,
"GPMC CS %d start cannot be lesser than 0x%x\n",
cs, GPMC_MEM_START);
} else if (res.end > GPMC_MEM_END) {
dev_info(&pdev->dev,
"GPMC CS %d end cannot be greater than 0x%x\n",
cs, GPMC_MEM_END);
}
goto err;
}
if (of_node_name_eq(child, "nand")) {
/* Warn about older DT blobs with no compatible property */
if (!of_property_read_bool(child, "compatible")) {
dev_warn(&pdev->dev,
"Incompatible NAND node: missing compatible");
ret = -EINVAL;
goto err;
}
}
if (of_node_name_eq(child, "onenand")) {
/* Warn about older DT blobs with no compatible property */
if (!of_property_read_bool(child, "compatible")) {
dev_warn(&pdev->dev,
"Incompatible OneNAND node: missing compatible");
ret = -EINVAL;
goto err;
}
}
if (of_match_node(omap_nand_ids, child)) {
/* NAND specific setup */
val = 8;
of_property_read_u32(child, "nand-bus-width", &val);
switch (val) {
case 8:
gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
break;
case 16:
gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
break;
default:
dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
child);
ret = -EINVAL;
goto err;
}
/* disable write protect */
gpmc_configure(GPMC_CONFIG_WP, 0);
gpmc_s.device_nand = true;
} else {
ret = of_property_read_u32(child, "bank-width",
&gpmc_s.device_width);
if (ret < 0 && !gpmc_s.device_width) {
dev_err(&pdev->dev,
"%pOF has no 'gpmc,device-width' property\n",
child);
goto err;
}
}
/* Reserve wait pin if it is required and valid */
if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
ret = gpmc_alloc_waitpin(gpmc, &gpmc_s);
if (ret < 0)
goto err;
}
gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
ret = gpmc_cs_program_settings(cs, &gpmc_s);
if (ret < 0)
goto err_cs;
ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
if (ret) {
dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
child);
goto err_cs;
}
/* Clear limited address i.e. enable A26-A11 */
val = gpmc_read_reg(GPMC_CONFIG);
val &= ~GPMC_CONFIG_LIMITEDADDRESS;
gpmc_write_reg(GPMC_CONFIG, val);
/* Enable CS region */
gpmc_cs_enable_mem(cs);
no_timings:
/* create platform device, NULL on error or when disabled */
if (!of_platform_device_create(child, NULL, &pdev->dev))
goto err_child_fail;
/* create children and other common bus children */
if (of_platform_default_populate(child, NULL, &pdev->dev))
goto err_child_fail;
return 0;
err_child_fail:
dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
ret = -ENODEV;
err_cs:
gpmc_free_waitpin(gpmc, gpmc_s.wait_pin);
err:
gpmc_cs_free(cs);
return ret;
}
static const struct of_device_id gpmc_dt_ids[];
static int gpmc_probe_dt(struct platform_device *pdev)
{
int ret;
const struct of_device_id *of_id =
of_match_device(gpmc_dt_ids, &pdev->dev);
if (!of_id)
return 0;
ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
&gpmc_cs_num);
if (ret < 0) {
pr_err("%s: number of chip-selects not defined\n", __func__);
return ret;
} else if (gpmc_cs_num < 1) {
pr_err("%s: all chip-selects are disabled\n", __func__);
return -EINVAL;
} else if (gpmc_cs_num > GPMC_CS_NUM) {
pr_err("%s: number of supported chip-selects cannot be > %d\n",
__func__, GPMC_CS_NUM);
return -EINVAL;
}
ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
&gpmc_nr_waitpins);
if (ret < 0) {
pr_err("%s: number of wait pins not found!\n", __func__);
return ret;
}
return 0;
}
static void gpmc_probe_dt_children(struct platform_device *pdev)
{
int ret;
struct device_node *child;
for_each_available_child_of_node(pdev->dev.of_node, child) {
ret = gpmc_probe_generic_child(pdev, child);
if (ret) {
dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
child, ret);
}
}
}
#else
void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
{
memset(p, 0, sizeof(*p));
}
static int gpmc_probe_dt(struct platform_device *pdev)
{
return 0;
}
static void gpmc_probe_dt_children(struct platform_device *pdev)
{
}
#endif /* CONFIG_OF */
static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
{
return 1; /* we're input only */
}
static int gpmc_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
return 0; /* we're input only */
}
static int gpmc_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int value)
{
return -EINVAL; /* we're input only */
}
static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
int value)
{
}
static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
u32 reg;
offset += 8;
reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
return !!reg;
}
static int gpmc_gpio_init(struct gpmc_device *gpmc)
{
int ret;
gpmc->gpio_chip.parent = gpmc->dev;
gpmc->gpio_chip.owner = THIS_MODULE;
gpmc->gpio_chip.label = DEVICE_NAME;
gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
gpmc->gpio_chip.set = gpmc_gpio_set;
gpmc->gpio_chip.get = gpmc_gpio_get;
gpmc->gpio_chip.base = -1;
ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
if (ret < 0) {
dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
return ret;
}
return 0;
}
static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
{
struct omap3_gpmc_regs *gpmc_context;
int i;
if (!gpmc || !gpmc_base)
return;
gpmc_context = &gpmc->context;
gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
for (i = 0; i < gpmc_cs_num; i++) {
gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
if (gpmc_context->cs_context[i].is_valid) {
gpmc_context->cs_context[i].config1 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
gpmc_context->cs_context[i].config2 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
gpmc_context->cs_context[i].config3 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
gpmc_context->cs_context[i].config4 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
gpmc_context->cs_context[i].config5 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
gpmc_context->cs_context[i].config6 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
gpmc_context->cs_context[i].config7 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
}
}
}
static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
{
struct omap3_gpmc_regs *gpmc_context;
int i;
if (!gpmc || !gpmc_base)
return;
gpmc_context = &gpmc->context;
gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
for (i = 0; i < gpmc_cs_num; i++) {
if (gpmc_context->cs_context[i].is_valid) {
gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
gpmc_context->cs_context[i].config1);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
gpmc_context->cs_context[i].config2);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
gpmc_context->cs_context[i].config3);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
gpmc_context->cs_context[i].config4);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
gpmc_context->cs_context[i].config5);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
gpmc_context->cs_context[i].config6);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
gpmc_context->cs_context[i].config7);
} else {
gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
}
}
}
static int omap_gpmc_context_notifier(struct notifier_block *nb,
unsigned long cmd, void *v)
{
struct gpmc_device *gpmc;
gpmc = container_of(nb, struct gpmc_device, nb);
if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
return NOTIFY_OK;
switch (cmd) {
case CPU_CLUSTER_PM_ENTER:
omap3_gpmc_save_context(gpmc);
break;
case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */
break;
case CPU_CLUSTER_PM_EXIT:
omap3_gpmc_restore_context(gpmc);
break;
}
return NOTIFY_OK;
}
static int gpmc_probe(struct platform_device *pdev)
{
int rc, i;
u32 l;
struct resource *res;
struct gpmc_device *gpmc;
gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
if (!gpmc)
return -ENOMEM;
gpmc->dev = &pdev->dev;
platform_set_drvdata(pdev, gpmc);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
if (!res) {
/* legacy DT */
gpmc_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(gpmc_base))
return PTR_ERR(gpmc_base);
} else {
gpmc_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(gpmc_base))
return PTR_ERR(gpmc_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data");
if (!res) {
dev_err(&pdev->dev, "couldn't get data reg resource\n");
return -ENOENT;
}
gpmc->data = res;
}
gpmc->irq = platform_get_irq(pdev, 0);
if (gpmc->irq < 0)
return gpmc->irq;
gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(gpmc_l3_clk)) {
dev_err(&pdev->dev, "Failed to get GPMC fck\n");
return PTR_ERR(gpmc_l3_clk);
}
if (!clk_get_rate(gpmc_l3_clk)) {
dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
return -EINVAL;
}
if (pdev->dev.of_node) {
rc = gpmc_probe_dt(pdev);
if (rc)
return rc;
} else {
gpmc_cs_num = GPMC_CS_NUM;
gpmc_nr_waitpins = GPMC_NR_WAITPINS;
}
gpmc->waitpins = devm_kzalloc(&pdev->dev,
gpmc_nr_waitpins * sizeof(struct gpmc_waitpin),
GFP_KERNEL);
if (!gpmc->waitpins)
return -ENOMEM;
for (i = 0; i < gpmc_nr_waitpins; i++)
gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID;
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
l = gpmc_read_reg(GPMC_REVISION);
/*
* FIXME: Once device-tree migration is complete the below flags
* should be populated based upon the device-tree compatible
* string. For now just use the IP revision. OMAP3+ devices have
* the wr_access and wr_data_mux_bus register fields. OMAP4+
* devices support the addr-addr-data multiplex protocol.
*
* GPMC IP revisions:
* - OMAP24xx = 2.0
* - OMAP3xxx = 5.0
* - OMAP44xx/54xx/AM335x = 6.0
*/
if (GPMC_REVISION_MAJOR(l) > 0x4)
gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
if (GPMC_REVISION_MAJOR(l) > 0x5)
gpmc_capability |= GPMC_HAS_MUX_AAD;
dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
GPMC_REVISION_MINOR(l));
gpmc_mem_init(gpmc);
rc = gpmc_gpio_init(gpmc);
if (rc)
goto gpio_init_failed;
gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
rc = gpmc_setup_irq(gpmc);
if (rc) {
dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
goto gpio_init_failed;
}
gpmc_probe_dt_children(pdev);
gpmc->nb.notifier_call = omap_gpmc_context_notifier;
cpu_pm_register_notifier(&gpmc->nb);
return 0;
gpio_init_failed:
gpmc_mem_exit();
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return rc;
}
static void gpmc_remove(struct platform_device *pdev)
{
int i;
struct gpmc_device *gpmc = platform_get_drvdata(pdev);
cpu_pm_unregister_notifier(&gpmc->nb);
for (i = 0; i < gpmc_nr_waitpins; i++)
gpmc_free_waitpin(gpmc, i);
gpmc_free_irq(gpmc);
gpmc_mem_exit();
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
#ifdef CONFIG_PM_SLEEP
static int gpmc_suspend(struct device *dev)
{
struct gpmc_device *gpmc = dev_get_drvdata(dev);
omap3_gpmc_save_context(gpmc);
pm_runtime_put_sync(dev);
gpmc->is_suspended = 1;
return 0;
}
static int gpmc_resume(struct device *dev)
{
struct gpmc_device *gpmc = dev_get_drvdata(dev);
pm_runtime_get_sync(dev);
omap3_gpmc_restore_context(gpmc);
gpmc->is_suspended = 0;
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
#ifdef CONFIG_OF
static const struct of_device_id gpmc_dt_ids[] = {
{ .compatible = "ti,omap2420-gpmc" },
{ .compatible = "ti,omap2430-gpmc" },
{ .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */
{ .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */
{ .compatible = "ti,am3352-gpmc" }, /* am335x devices */
{ .compatible = "ti,am64-gpmc" },
{ }
};
MODULE_DEVICE_TABLE(of, gpmc_dt_ids);
#endif
static struct platform_driver gpmc_driver = {
.probe = gpmc_probe,
.remove_new = gpmc_remove,
.driver = {
.name = DEVICE_NAME,
.of_match_table = of_match_ptr(gpmc_dt_ids),
.pm = &gpmc_pm_ops,
},
};
module_platform_driver(gpmc_driver);
MODULE_DESCRIPTION("Texas Instruments GPMC driver");
MODULE_LICENSE("GPL");