linux/arch/sh/kernel/cpu/clock-cpg.c
Magnus Damm 4c7eb4ebc9 sh: use kzalloc() for cpg clocks
Convert the shared clock cpg code from bootmem to slab.
Without this patch the current bootmem code triggers
WARN_ON() because the slab is available.

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2009-06-17 15:39:53 +09:00

259 lines
5.7 KiB
C

#include <linux/clk.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <asm/clock.h>
static int sh_clk_mstp32_enable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit),
clk->enable_reg);
return 0;
}
static void sh_clk_mstp32_disable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) | (1 << clk->enable_bit),
clk->enable_reg);
}
static struct clk_ops sh_clk_mstp32_clk_ops = {
.enable = sh_clk_mstp32_enable,
.disable = sh_clk_mstp32_disable,
.recalc = followparent_recalc,
};
int __init sh_clk_mstp32_register(struct clk *clks, int nr)
{
struct clk *clkp;
int ret = 0;
int k;
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_mstp32_clk_ops;
ret |= clk_register(clkp);
}
return ret;
}
static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
{
return clk_rate_table_round(clk, clk->freq_table, rate);
}
static int sh_clk_div6_divisors[64] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
};
static struct clk_div_mult_table sh_clk_div6_table = {
.divisors = sh_clk_div6_divisors,
.nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
};
static unsigned long sh_clk_div6_recalc(struct clk *clk)
{
struct clk_div_mult_table *table = &sh_clk_div6_table;
unsigned int idx;
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, NULL);
idx = __raw_readl(clk->enable_reg) & 0x003f;
return clk->freq_table[idx].frequency;
}
static int sh_clk_div6_set_rate(struct clk *clk,
unsigned long rate, int algo_id)
{
unsigned long value;
int idx;
idx = clk_rate_table_find(clk, clk->freq_table, rate);
if (idx < 0)
return idx;
value = __raw_readl(clk->enable_reg);
value &= ~0x3f;
value |= idx;
__raw_writel(value, clk->enable_reg);
return 0;
}
static int sh_clk_div6_enable(struct clk *clk)
{
unsigned long value;
int ret;
ret = sh_clk_div6_set_rate(clk, clk->rate, 0);
if (ret == 0) {
value = __raw_readl(clk->enable_reg);
value &= ~0x100; /* clear stop bit to enable clock */
__raw_writel(value, clk->enable_reg);
}
return ret;
}
static void sh_clk_div6_disable(struct clk *clk)
{
unsigned long value;
value = __raw_readl(clk->enable_reg);
value |= 0x100; /* stop clock */
value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */
__raw_writel(value, clk->enable_reg);
}
static struct clk_ops sh_clk_div6_clk_ops = {
.recalc = sh_clk_div6_recalc,
.round_rate = sh_clk_div_round_rate,
.set_rate = sh_clk_div6_set_rate,
.enable = sh_clk_div6_enable,
.disable = sh_clk_div6_disable,
};
int __init sh_clk_div6_register(struct clk *clks, int nr)
{
struct clk *clkp;
void *freq_table;
int nr_divs = sh_clk_div6_table.nr_divisors;
int freq_table_size = sizeof(struct cpufreq_frequency_table);
int ret = 0;
int k;
freq_table_size *= (nr_divs + 1);
freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
if (!freq_table) {
pr_err("sh_clk_div6_register: unable to alloc memory\n");
return -ENOMEM;
}
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_div6_clk_ops;
clkp->id = -1;
clkp->freq_table = freq_table + (k * freq_table_size);
clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
ret = clk_register(clkp);
}
return ret;
}
static unsigned long sh_clk_div4_recalc(struct clk *clk)
{
struct clk_div_mult_table *table = clk->priv;
unsigned int idx;
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, &clk->arch_flags);
idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f;
return clk->freq_table[idx].frequency;
}
static struct clk_ops sh_clk_div4_clk_ops = {
.recalc = sh_clk_div4_recalc,
.round_rate = sh_clk_div_round_rate,
};
int __init sh_clk_div4_register(struct clk *clks, int nr,
struct clk_div_mult_table *table)
{
struct clk *clkp;
void *freq_table;
int nr_divs = table->nr_divisors;
int freq_table_size = sizeof(struct cpufreq_frequency_table);
int ret = 0;
int k;
freq_table_size *= (nr_divs + 1);
freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
if (!freq_table) {
pr_err("sh_clk_div4_register: unable to alloc memory\n");
return -ENOMEM;
}
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_div4_clk_ops;
clkp->id = -1;
clkp->priv = table;
clkp->freq_table = freq_table + (k * freq_table_size);
clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
ret = clk_register(clkp);
}
return ret;
}
#ifdef CONFIG_SH_CLK_CPG_LEGACY
static struct clk master_clk = {
.name = "master_clk",
.flags = CLK_ENABLE_ON_INIT,
.rate = CONFIG_SH_PCLK_FREQ,
};
static struct clk peripheral_clk = {
.name = "peripheral_clk",
.parent = &master_clk,
.flags = CLK_ENABLE_ON_INIT,
};
static struct clk bus_clk = {
.name = "bus_clk",
.parent = &master_clk,
.flags = CLK_ENABLE_ON_INIT,
};
static struct clk cpu_clk = {
.name = "cpu_clk",
.parent = &master_clk,
.flags = CLK_ENABLE_ON_INIT,
};
/*
* The ordering of these clocks matters, do not change it.
*/
static struct clk *onchip_clocks[] = {
&master_clk,
&peripheral_clk,
&bus_clk,
&cpu_clk,
};
int __init __deprecated cpg_clk_init(void)
{
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) {
struct clk *clk = onchip_clocks[i];
arch_init_clk_ops(&clk->ops, i);
if (clk->ops)
ret |= clk_register(clk);
}
return ret;
}
/*
* Placeholder for compatability, until the lazy CPUs do this
* on their own.
*/
int __init __weak arch_clk_init(void)
{
return cpg_clk_init();
}
#endif /* CONFIG_SH_CPG_CLK_LEGACY */