mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
e96b293315
If the module is in SFP_MOD_ERROR, `sfp_sm_mod_remove()` will
not be run. As a consequence, `sfp_hwmon_remove()` is not getting
run either, leaving a stale `hwmon` device behind. `sfp_sm_mod_remove()`
itself checks `sfp->sm_mod_state` anyways, so this check was not
really needed in the first place.
Fixes: d2e816c029
("net: sfp: handle module remove outside state machine")
Signed-off-by: "Csókás, Bence" <csokas.bence@prolan.hu>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Link: https://lore.kernel.org/r/20240605084251.63502-1-csokas.bence@prolan.hu
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
3175 lines
78 KiB
C
3175 lines
78 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/hwmon.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/mdio/mdio-i2c.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/of.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include "sfp.h"
|
|
#include "swphy.h"
|
|
|
|
enum {
|
|
GPIO_MODDEF0,
|
|
GPIO_LOS,
|
|
GPIO_TX_FAULT,
|
|
GPIO_TX_DISABLE,
|
|
GPIO_RS0,
|
|
GPIO_RS1,
|
|
GPIO_MAX,
|
|
|
|
SFP_F_PRESENT = BIT(GPIO_MODDEF0),
|
|
SFP_F_LOS = BIT(GPIO_LOS),
|
|
SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
|
|
SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
|
|
SFP_F_RS0 = BIT(GPIO_RS0),
|
|
SFP_F_RS1 = BIT(GPIO_RS1),
|
|
|
|
SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
|
|
|
|
SFP_E_INSERT = 0,
|
|
SFP_E_REMOVE,
|
|
SFP_E_DEV_ATTACH,
|
|
SFP_E_DEV_DETACH,
|
|
SFP_E_DEV_DOWN,
|
|
SFP_E_DEV_UP,
|
|
SFP_E_TX_FAULT,
|
|
SFP_E_TX_CLEAR,
|
|
SFP_E_LOS_HIGH,
|
|
SFP_E_LOS_LOW,
|
|
SFP_E_TIMEOUT,
|
|
|
|
SFP_MOD_EMPTY = 0,
|
|
SFP_MOD_ERROR,
|
|
SFP_MOD_PROBE,
|
|
SFP_MOD_WAITDEV,
|
|
SFP_MOD_HPOWER,
|
|
SFP_MOD_WAITPWR,
|
|
SFP_MOD_PRESENT,
|
|
|
|
SFP_DEV_DETACHED = 0,
|
|
SFP_DEV_DOWN,
|
|
SFP_DEV_UP,
|
|
|
|
SFP_S_DOWN = 0,
|
|
SFP_S_FAIL,
|
|
SFP_S_WAIT,
|
|
SFP_S_INIT,
|
|
SFP_S_INIT_PHY,
|
|
SFP_S_INIT_TX_FAULT,
|
|
SFP_S_WAIT_LOS,
|
|
SFP_S_LINK_UP,
|
|
SFP_S_TX_FAULT,
|
|
SFP_S_REINIT,
|
|
SFP_S_TX_DISABLE,
|
|
};
|
|
|
|
static const char * const mod_state_strings[] = {
|
|
[SFP_MOD_EMPTY] = "empty",
|
|
[SFP_MOD_ERROR] = "error",
|
|
[SFP_MOD_PROBE] = "probe",
|
|
[SFP_MOD_WAITDEV] = "waitdev",
|
|
[SFP_MOD_HPOWER] = "hpower",
|
|
[SFP_MOD_WAITPWR] = "waitpwr",
|
|
[SFP_MOD_PRESENT] = "present",
|
|
};
|
|
|
|
static const char *mod_state_to_str(unsigned short mod_state)
|
|
{
|
|
if (mod_state >= ARRAY_SIZE(mod_state_strings))
|
|
return "Unknown module state";
|
|
return mod_state_strings[mod_state];
|
|
}
|
|
|
|
static const char * const dev_state_strings[] = {
|
|
[SFP_DEV_DETACHED] = "detached",
|
|
[SFP_DEV_DOWN] = "down",
|
|
[SFP_DEV_UP] = "up",
|
|
};
|
|
|
|
static const char *dev_state_to_str(unsigned short dev_state)
|
|
{
|
|
if (dev_state >= ARRAY_SIZE(dev_state_strings))
|
|
return "Unknown device state";
|
|
return dev_state_strings[dev_state];
|
|
}
|
|
|
|
static const char * const event_strings[] = {
|
|
[SFP_E_INSERT] = "insert",
|
|
[SFP_E_REMOVE] = "remove",
|
|
[SFP_E_DEV_ATTACH] = "dev_attach",
|
|
[SFP_E_DEV_DETACH] = "dev_detach",
|
|
[SFP_E_DEV_DOWN] = "dev_down",
|
|
[SFP_E_DEV_UP] = "dev_up",
|
|
[SFP_E_TX_FAULT] = "tx_fault",
|
|
[SFP_E_TX_CLEAR] = "tx_clear",
|
|
[SFP_E_LOS_HIGH] = "los_high",
|
|
[SFP_E_LOS_LOW] = "los_low",
|
|
[SFP_E_TIMEOUT] = "timeout",
|
|
};
|
|
|
|
static const char *event_to_str(unsigned short event)
|
|
{
|
|
if (event >= ARRAY_SIZE(event_strings))
|
|
return "Unknown event";
|
|
return event_strings[event];
|
|
}
|
|
|
|
static const char * const sm_state_strings[] = {
|
|
[SFP_S_DOWN] = "down",
|
|
[SFP_S_FAIL] = "fail",
|
|
[SFP_S_WAIT] = "wait",
|
|
[SFP_S_INIT] = "init",
|
|
[SFP_S_INIT_PHY] = "init_phy",
|
|
[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
|
|
[SFP_S_WAIT_LOS] = "wait_los",
|
|
[SFP_S_LINK_UP] = "link_up",
|
|
[SFP_S_TX_FAULT] = "tx_fault",
|
|
[SFP_S_REINIT] = "reinit",
|
|
[SFP_S_TX_DISABLE] = "tx_disable",
|
|
};
|
|
|
|
static const char *sm_state_to_str(unsigned short sm_state)
|
|
{
|
|
if (sm_state >= ARRAY_SIZE(sm_state_strings))
|
|
return "Unknown state";
|
|
return sm_state_strings[sm_state];
|
|
}
|
|
|
|
static const char *gpio_names[] = {
|
|
"mod-def0",
|
|
"los",
|
|
"tx-fault",
|
|
"tx-disable",
|
|
"rate-select0",
|
|
"rate-select1",
|
|
};
|
|
|
|
static const enum gpiod_flags gpio_flags[] = {
|
|
GPIOD_IN,
|
|
GPIOD_IN,
|
|
GPIOD_IN,
|
|
GPIOD_ASIS,
|
|
GPIOD_ASIS,
|
|
GPIOD_ASIS,
|
|
};
|
|
|
|
/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
|
|
* non-cooled module to initialise its laser safety circuitry. We wait
|
|
* an initial T_WAIT period before we check the tx fault to give any PHY
|
|
* on board (for a copper SFP) time to initialise.
|
|
*/
|
|
#define T_WAIT msecs_to_jiffies(50)
|
|
#define T_START_UP msecs_to_jiffies(300)
|
|
#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
|
|
|
|
/* t_reset is the time required to assert the TX_DISABLE signal to reset
|
|
* an indicated TX_FAULT.
|
|
*/
|
|
#define T_RESET_US 10
|
|
#define T_FAULT_RECOVER msecs_to_jiffies(1000)
|
|
|
|
/* N_FAULT_INIT is the number of recovery attempts at module initialisation
|
|
* time. If the TX_FAULT signal is not deasserted after this number of
|
|
* attempts at clearing it, we decide that the module is faulty.
|
|
* N_FAULT is the same but after the module has initialised.
|
|
*/
|
|
#define N_FAULT_INIT 5
|
|
#define N_FAULT 5
|
|
|
|
/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
|
|
* R_PHY_RETRY is the number of attempts.
|
|
*/
|
|
#define T_PHY_RETRY msecs_to_jiffies(50)
|
|
#define R_PHY_RETRY 25
|
|
|
|
/* SFP module presence detection is poor: the three MOD DEF signals are
|
|
* the same length on the PCB, which means it's possible for MOD DEF 0 to
|
|
* connect before the I2C bus on MOD DEF 1/2.
|
|
*
|
|
* The SFF-8472 specifies t_serial ("Time from power on until module is
|
|
* ready for data transmission over the two wire serial bus.") as 300ms.
|
|
*/
|
|
#define T_SERIAL msecs_to_jiffies(300)
|
|
#define T_HPOWER_LEVEL msecs_to_jiffies(300)
|
|
#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
|
|
#define R_PROBE_RETRY_INIT 10
|
|
#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
|
|
#define R_PROBE_RETRY_SLOW 12
|
|
|
|
/* SFP modules appear to always have their PHY configured for bus address
|
|
* 0x56 (which with mdio-i2c, translates to a PHY address of 22).
|
|
* RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
|
|
* via address 0x51 (mdio-i2c will use RollBall protocol on this address).
|
|
*/
|
|
#define SFP_PHY_ADDR 22
|
|
#define SFP_PHY_ADDR_ROLLBALL 17
|
|
|
|
/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
|
|
* at a time. Some SFP modules and also some Linux I2C drivers do not like
|
|
* reads longer than 16 bytes.
|
|
*/
|
|
#define SFP_EEPROM_BLOCK_SIZE 16
|
|
|
|
struct sff_data {
|
|
unsigned int gpios;
|
|
bool (*module_supported)(const struct sfp_eeprom_id *id);
|
|
};
|
|
|
|
struct sfp {
|
|
struct device *dev;
|
|
struct i2c_adapter *i2c;
|
|
struct mii_bus *i2c_mii;
|
|
struct sfp_bus *sfp_bus;
|
|
enum mdio_i2c_proto mdio_protocol;
|
|
struct phy_device *mod_phy;
|
|
const struct sff_data *type;
|
|
size_t i2c_block_size;
|
|
u32 max_power_mW;
|
|
|
|
unsigned int (*get_state)(struct sfp *);
|
|
void (*set_state)(struct sfp *, unsigned int);
|
|
int (*read)(struct sfp *, bool, u8, void *, size_t);
|
|
int (*write)(struct sfp *, bool, u8, void *, size_t);
|
|
|
|
struct gpio_desc *gpio[GPIO_MAX];
|
|
int gpio_irq[GPIO_MAX];
|
|
|
|
bool need_poll;
|
|
|
|
/* Access rules:
|
|
* state_hw_drive: st_mutex held
|
|
* state_hw_mask: st_mutex held
|
|
* state_soft_mask: st_mutex held
|
|
* state: st_mutex held unless reading input bits
|
|
*/
|
|
struct mutex st_mutex; /* Protects state */
|
|
unsigned int state_hw_drive;
|
|
unsigned int state_hw_mask;
|
|
unsigned int state_soft_mask;
|
|
unsigned int state_ignore_mask;
|
|
unsigned int state;
|
|
|
|
struct delayed_work poll;
|
|
struct delayed_work timeout;
|
|
struct mutex sm_mutex; /* Protects state machine */
|
|
unsigned char sm_mod_state;
|
|
unsigned char sm_mod_tries_init;
|
|
unsigned char sm_mod_tries;
|
|
unsigned char sm_dev_state;
|
|
unsigned short sm_state;
|
|
unsigned char sm_fault_retries;
|
|
unsigned char sm_phy_retries;
|
|
|
|
struct sfp_eeprom_id id;
|
|
unsigned int module_power_mW;
|
|
unsigned int module_t_start_up;
|
|
unsigned int module_t_wait;
|
|
unsigned int phy_t_retry;
|
|
|
|
unsigned int rate_kbd;
|
|
unsigned int rs_threshold_kbd;
|
|
unsigned int rs_state_mask;
|
|
|
|
bool have_a2;
|
|
|
|
const struct sfp_quirk *quirk;
|
|
|
|
#if IS_ENABLED(CONFIG_HWMON)
|
|
struct sfp_diag diag;
|
|
struct delayed_work hwmon_probe;
|
|
unsigned int hwmon_tries;
|
|
struct device *hwmon_dev;
|
|
char *hwmon_name;
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
|
struct dentry *debugfs_dir;
|
|
#endif
|
|
};
|
|
|
|
static bool sff_module_supported(const struct sfp_eeprom_id *id)
|
|
{
|
|
return id->base.phys_id == SFF8024_ID_SFF_8472 &&
|
|
id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
|
|
}
|
|
|
|
static const struct sff_data sff_data = {
|
|
.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
|
|
.module_supported = sff_module_supported,
|
|
};
|
|
|
|
static bool sfp_module_supported(const struct sfp_eeprom_id *id)
|
|
{
|
|
if (id->base.phys_id == SFF8024_ID_SFP &&
|
|
id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
|
|
return true;
|
|
|
|
/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
|
|
* phys id SFF instead of SFP. Therefore mark this module explicitly
|
|
* as supported based on vendor name and pn match.
|
|
*/
|
|
if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
|
|
id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
|
|
!memcmp(id->base.vendor_name, "UBNT ", 16) &&
|
|
!memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static const struct sff_data sfp_data = {
|
|
.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
|
|
SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
|
|
.module_supported = sfp_module_supported,
|
|
};
|
|
|
|
static const struct of_device_id sfp_of_match[] = {
|
|
{ .compatible = "sff,sff", .data = &sff_data, },
|
|
{ .compatible = "sff,sfp", .data = &sfp_data, },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sfp_of_match);
|
|
|
|
static void sfp_fixup_long_startup(struct sfp *sfp)
|
|
{
|
|
sfp->module_t_start_up = T_START_UP_BAD_GPON;
|
|
}
|
|
|
|
static void sfp_fixup_ignore_los(struct sfp *sfp)
|
|
{
|
|
/* This forces LOS to zero, so we ignore transitions */
|
|
sfp->state_ignore_mask |= SFP_F_LOS;
|
|
/* Make sure that LOS options are clear */
|
|
sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
|
|
SFP_OPTIONS_LOS_NORMAL);
|
|
}
|
|
|
|
static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
|
|
{
|
|
sfp->state_ignore_mask |= SFP_F_TX_FAULT;
|
|
}
|
|
|
|
static void sfp_fixup_nokia(struct sfp *sfp)
|
|
{
|
|
sfp_fixup_long_startup(sfp);
|
|
sfp_fixup_ignore_los(sfp);
|
|
}
|
|
|
|
// For 10GBASE-T short-reach modules
|
|
static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
|
|
{
|
|
sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
|
|
sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
|
|
}
|
|
|
|
static void sfp_fixup_rollball(struct sfp *sfp)
|
|
{
|
|
sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
|
|
|
|
/* RollBall modules may disallow access to PHY registers for up to 25
|
|
* seconds, and the reads return 0xffff before that. Increase the time
|
|
* between PHY probe retries from 50ms to 1s so that we will wait for
|
|
* the PHY for a sufficient amount of time.
|
|
*/
|
|
sfp->phy_t_retry = msecs_to_jiffies(1000);
|
|
}
|
|
|
|
static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
|
|
{
|
|
sfp_fixup_rollball(sfp);
|
|
|
|
/* The RollBall fixup is not enough for FS modules, the PHY chip inside
|
|
* them does not return 0xffff for PHY ID registers in all MMDs for the
|
|
* while initializing. They need a 4 second wait before accessing PHY.
|
|
*/
|
|
sfp->module_t_wait = msecs_to_jiffies(4000);
|
|
}
|
|
|
|
static void sfp_fixup_fs_10gt(struct sfp *sfp)
|
|
{
|
|
sfp_fixup_10gbaset_30m(sfp);
|
|
sfp_fixup_fs_2_5gt(sfp);
|
|
}
|
|
|
|
static void sfp_fixup_halny_gsfp(struct sfp *sfp)
|
|
{
|
|
/* Ignore the TX_FAULT and LOS signals on this module.
|
|
* these are possibly used for other purposes on this
|
|
* module, e.g. a serial port.
|
|
*/
|
|
sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
|
|
}
|
|
|
|
static void sfp_fixup_rollball_cc(struct sfp *sfp)
|
|
{
|
|
sfp_fixup_rollball(sfp);
|
|
|
|
/* Some RollBall SFPs may have wrong (zero) extended compliance code
|
|
* burned in EEPROM. For PHY probing we need the correct one.
|
|
*/
|
|
sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
|
|
}
|
|
|
|
static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
|
|
unsigned long *modes,
|
|
unsigned long *interfaces)
|
|
{
|
|
linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
|
|
__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
|
|
}
|
|
|
|
static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
|
|
unsigned long *modes,
|
|
unsigned long *interfaces)
|
|
{
|
|
linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
|
|
}
|
|
|
|
static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
|
|
unsigned long *modes,
|
|
unsigned long *interfaces)
|
|
{
|
|
/* Copper 2.5G SFP */
|
|
linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
|
|
__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
|
|
sfp_quirk_disable_autoneg(id, modes, interfaces);
|
|
}
|
|
|
|
static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
|
|
unsigned long *modes,
|
|
unsigned long *interfaces)
|
|
{
|
|
/* Ubiquiti U-Fiber Instant module claims that support all transceiver
|
|
* types including 10G Ethernet which is not truth. So clear all claimed
|
|
* modes and set only one mode which module supports: 1000baseX_Full.
|
|
*/
|
|
linkmode_zero(modes);
|
|
linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
|
|
}
|
|
|
|
#define SFP_QUIRK(_v, _p, _m, _f) \
|
|
{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
|
|
#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
|
|
#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
|
|
|
|
static const struct sfp_quirk sfp_quirks[] = {
|
|
// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
|
|
// report 2500MBd NRZ in their EEPROM
|
|
SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
|
|
|
|
// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
|
|
// NRZ in their EEPROM
|
|
SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
|
|
sfp_fixup_nokia),
|
|
|
|
// Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
|
|
// protocol to talk to the PHY and needs 4 sec wait before probing the
|
|
// PHY.
|
|
SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
|
|
|
|
// Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
|
|
// needs 4 sec wait before probing the PHY.
|
|
SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
|
|
|
|
// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
|
|
// NRZ in their EEPROM
|
|
SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
|
|
sfp_fixup_ignore_tx_fault),
|
|
|
|
SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
|
|
|
|
// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
|
|
// 2600MBd in their EERPOM
|
|
SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
|
|
|
|
// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
|
|
// their EEPROM
|
|
SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
|
|
sfp_fixup_ignore_tx_fault),
|
|
|
|
// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
|
|
// 2500MBd NRZ in their EEPROM
|
|
SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
|
|
|
|
SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
|
|
|
|
// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
|
|
// Rollball protocol to talk to the PHY.
|
|
SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
|
|
SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
|
|
|
|
// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
|
|
SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
|
|
|
|
SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
|
|
SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
|
|
SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
|
|
SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
|
|
SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
|
|
SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
|
|
SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
|
|
};
|
|
|
|
static size_t sfp_strlen(const char *str, size_t maxlen)
|
|
{
|
|
size_t size, i;
|
|
|
|
/* Trailing characters should be filled with space chars, but
|
|
* some manufacturers can't read SFF-8472 and use NUL.
|
|
*/
|
|
for (i = 0, size = 0; i < maxlen; i++)
|
|
if (str[i] != ' ' && str[i] != '\0')
|
|
size = i + 1;
|
|
|
|
return size;
|
|
}
|
|
|
|
static bool sfp_match(const char *qs, const char *str, size_t len)
|
|
{
|
|
if (!qs)
|
|
return true;
|
|
if (strlen(qs) != len)
|
|
return false;
|
|
return !strncmp(qs, str, len);
|
|
}
|
|
|
|
static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
|
|
{
|
|
const struct sfp_quirk *q;
|
|
unsigned int i;
|
|
size_t vs, ps;
|
|
|
|
vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
|
|
ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
|
|
|
|
for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
|
|
if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
|
|
sfp_match(q->part, id->base.vendor_pn, ps))
|
|
return q;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long poll_jiffies;
|
|
|
|
static unsigned int sfp_gpio_get_state(struct sfp *sfp)
|
|
{
|
|
unsigned int i, state, v;
|
|
|
|
for (i = state = 0; i < GPIO_MAX; i++) {
|
|
if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
|
|
continue;
|
|
|
|
v = gpiod_get_value_cansleep(sfp->gpio[i]);
|
|
if (v)
|
|
state |= BIT(i);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static unsigned int sff_gpio_get_state(struct sfp *sfp)
|
|
{
|
|
return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
|
|
}
|
|
|
|
static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
|
|
{
|
|
unsigned int drive;
|
|
|
|
if (state & SFP_F_PRESENT)
|
|
/* If the module is present, drive the requested signals */
|
|
drive = sfp->state_hw_drive;
|
|
else
|
|
/* Otherwise, let them float to the pull-ups */
|
|
drive = 0;
|
|
|
|
if (sfp->gpio[GPIO_TX_DISABLE]) {
|
|
if (drive & SFP_F_TX_DISABLE)
|
|
gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
|
|
state & SFP_F_TX_DISABLE);
|
|
else
|
|
gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
|
|
}
|
|
|
|
if (sfp->gpio[GPIO_RS0]) {
|
|
if (drive & SFP_F_RS0)
|
|
gpiod_direction_output(sfp->gpio[GPIO_RS0],
|
|
state & SFP_F_RS0);
|
|
else
|
|
gpiod_direction_input(sfp->gpio[GPIO_RS0]);
|
|
}
|
|
|
|
if (sfp->gpio[GPIO_RS1]) {
|
|
if (drive & SFP_F_RS1)
|
|
gpiod_direction_output(sfp->gpio[GPIO_RS1],
|
|
state & SFP_F_RS1);
|
|
else
|
|
gpiod_direction_input(sfp->gpio[GPIO_RS1]);
|
|
}
|
|
}
|
|
|
|
static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
|
|
size_t len)
|
|
{
|
|
struct i2c_msg msgs[2];
|
|
u8 bus_addr = a2 ? 0x51 : 0x50;
|
|
size_t block_size = sfp->i2c_block_size;
|
|
size_t this_len;
|
|
int ret;
|
|
|
|
msgs[0].addr = bus_addr;
|
|
msgs[0].flags = 0;
|
|
msgs[0].len = 1;
|
|
msgs[0].buf = &dev_addr;
|
|
msgs[1].addr = bus_addr;
|
|
msgs[1].flags = I2C_M_RD;
|
|
msgs[1].len = len;
|
|
msgs[1].buf = buf;
|
|
|
|
while (len) {
|
|
this_len = len;
|
|
if (this_len > block_size)
|
|
this_len = block_size;
|
|
|
|
msgs[1].len = this_len;
|
|
|
|
ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret != ARRAY_SIZE(msgs))
|
|
break;
|
|
|
|
msgs[1].buf += this_len;
|
|
dev_addr += this_len;
|
|
len -= this_len;
|
|
}
|
|
|
|
return msgs[1].buf - (u8 *)buf;
|
|
}
|
|
|
|
static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
|
|
size_t len)
|
|
{
|
|
struct i2c_msg msgs[1];
|
|
u8 bus_addr = a2 ? 0x51 : 0x50;
|
|
int ret;
|
|
|
|
msgs[0].addr = bus_addr;
|
|
msgs[0].flags = 0;
|
|
msgs[0].len = 1 + len;
|
|
msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
|
|
if (!msgs[0].buf)
|
|
return -ENOMEM;
|
|
|
|
msgs[0].buf[0] = dev_addr;
|
|
memcpy(&msgs[0].buf[1], buf, len);
|
|
|
|
ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
|
|
|
|
kfree(msgs[0].buf);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret == ARRAY_SIZE(msgs) ? len : 0;
|
|
}
|
|
|
|
static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
|
|
{
|
|
if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
|
|
return -EINVAL;
|
|
|
|
sfp->i2c = i2c;
|
|
sfp->read = sfp_i2c_read;
|
|
sfp->write = sfp_i2c_write;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_i2c_mdiobus_create(struct sfp *sfp)
|
|
{
|
|
struct mii_bus *i2c_mii;
|
|
int ret;
|
|
|
|
i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
|
|
if (IS_ERR(i2c_mii))
|
|
return PTR_ERR(i2c_mii);
|
|
|
|
i2c_mii->name = "SFP I2C Bus";
|
|
i2c_mii->phy_mask = ~0;
|
|
|
|
ret = mdiobus_register(i2c_mii);
|
|
if (ret < 0) {
|
|
mdiobus_free(i2c_mii);
|
|
return ret;
|
|
}
|
|
|
|
sfp->i2c_mii = i2c_mii;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
|
|
{
|
|
mdiobus_unregister(sfp->i2c_mii);
|
|
sfp->i2c_mii = NULL;
|
|
}
|
|
|
|
/* Interface */
|
|
static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
|
|
{
|
|
return sfp->read(sfp, a2, addr, buf, len);
|
|
}
|
|
|
|
static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
|
|
{
|
|
return sfp->write(sfp, a2, addr, buf, len);
|
|
}
|
|
|
|
static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
|
|
{
|
|
int ret;
|
|
u8 old, v;
|
|
|
|
ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
|
|
if (ret != sizeof(old))
|
|
return ret;
|
|
|
|
v = (old & ~mask) | (val & mask);
|
|
if (v == old)
|
|
return sizeof(v);
|
|
|
|
return sfp_write(sfp, a2, addr, &v, sizeof(v));
|
|
}
|
|
|
|
static unsigned int sfp_soft_get_state(struct sfp *sfp)
|
|
{
|
|
unsigned int state = 0;
|
|
u8 status;
|
|
int ret;
|
|
|
|
ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
|
|
if (ret == sizeof(status)) {
|
|
if (status & SFP_STATUS_RX_LOS)
|
|
state |= SFP_F_LOS;
|
|
if (status & SFP_STATUS_TX_FAULT)
|
|
state |= SFP_F_TX_FAULT;
|
|
} else {
|
|
dev_err_ratelimited(sfp->dev,
|
|
"failed to read SFP soft status: %pe\n",
|
|
ERR_PTR(ret));
|
|
/* Preserve the current state */
|
|
state = sfp->state;
|
|
}
|
|
|
|
return state & sfp->state_soft_mask;
|
|
}
|
|
|
|
static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
|
|
unsigned int soft)
|
|
{
|
|
u8 mask = 0;
|
|
u8 val = 0;
|
|
|
|
if (soft & SFP_F_TX_DISABLE)
|
|
mask |= SFP_STATUS_TX_DISABLE_FORCE;
|
|
if (state & SFP_F_TX_DISABLE)
|
|
val |= SFP_STATUS_TX_DISABLE_FORCE;
|
|
|
|
if (soft & SFP_F_RS0)
|
|
mask |= SFP_STATUS_RS0_SELECT;
|
|
if (state & SFP_F_RS0)
|
|
val |= SFP_STATUS_RS0_SELECT;
|
|
|
|
if (mask)
|
|
sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
|
|
|
|
val = mask = 0;
|
|
if (soft & SFP_F_RS1)
|
|
mask |= SFP_EXT_STATUS_RS1_SELECT;
|
|
if (state & SFP_F_RS1)
|
|
val |= SFP_EXT_STATUS_RS1_SELECT;
|
|
|
|
if (mask)
|
|
sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
|
|
}
|
|
|
|
static void sfp_soft_start_poll(struct sfp *sfp)
|
|
{
|
|
const struct sfp_eeprom_id *id = &sfp->id;
|
|
unsigned int mask = 0;
|
|
|
|
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
|
|
mask |= SFP_F_TX_DISABLE;
|
|
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
|
|
mask |= SFP_F_TX_FAULT;
|
|
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
|
|
mask |= SFP_F_LOS;
|
|
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
|
|
mask |= sfp->rs_state_mask;
|
|
|
|
mutex_lock(&sfp->st_mutex);
|
|
// Poll the soft state for hardware pins we want to ignore
|
|
sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
|
|
mask;
|
|
|
|
if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
|
|
!sfp->need_poll)
|
|
mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
|
|
mutex_unlock(&sfp->st_mutex);
|
|
}
|
|
|
|
static void sfp_soft_stop_poll(struct sfp *sfp)
|
|
{
|
|
mutex_lock(&sfp->st_mutex);
|
|
sfp->state_soft_mask = 0;
|
|
mutex_unlock(&sfp->st_mutex);
|
|
}
|
|
|
|
/* sfp_get_state() - must be called with st_mutex held, or in the
|
|
* initialisation path.
|
|
*/
|
|
static unsigned int sfp_get_state(struct sfp *sfp)
|
|
{
|
|
unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
|
|
unsigned int state;
|
|
|
|
state = sfp->get_state(sfp) & sfp->state_hw_mask;
|
|
if (state & SFP_F_PRESENT && soft)
|
|
state |= sfp_soft_get_state(sfp);
|
|
|
|
return state;
|
|
}
|
|
|
|
/* sfp_set_state() - must be called with st_mutex held, or in the
|
|
* initialisation path.
|
|
*/
|
|
static void sfp_set_state(struct sfp *sfp, unsigned int state)
|
|
{
|
|
unsigned int soft;
|
|
|
|
sfp->set_state(sfp, state);
|
|
|
|
soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
|
|
if (state & SFP_F_PRESENT && soft)
|
|
sfp_soft_set_state(sfp, state, soft);
|
|
}
|
|
|
|
static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
|
|
{
|
|
mutex_lock(&sfp->st_mutex);
|
|
sfp->state = (sfp->state & ~mask) | set;
|
|
sfp_set_state(sfp, sfp->state);
|
|
mutex_unlock(&sfp->st_mutex);
|
|
}
|
|
|
|
static unsigned int sfp_check(void *buf, size_t len)
|
|
{
|
|
u8 *p, check;
|
|
|
|
for (p = buf, check = 0; len; p++, len--)
|
|
check += *p;
|
|
|
|
return check;
|
|
}
|
|
|
|
/* hwmon */
|
|
#if IS_ENABLED(CONFIG_HWMON)
|
|
static umode_t sfp_hwmon_is_visible(const void *data,
|
|
enum hwmon_sensor_types type,
|
|
u32 attr, int channel)
|
|
{
|
|
const struct sfp *sfp = data;
|
|
|
|
switch (type) {
|
|
case hwmon_temp:
|
|
switch (attr) {
|
|
case hwmon_temp_min_alarm:
|
|
case hwmon_temp_max_alarm:
|
|
case hwmon_temp_lcrit_alarm:
|
|
case hwmon_temp_crit_alarm:
|
|
case hwmon_temp_min:
|
|
case hwmon_temp_max:
|
|
case hwmon_temp_lcrit:
|
|
case hwmon_temp_crit:
|
|
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
|
|
return 0;
|
|
fallthrough;
|
|
case hwmon_temp_input:
|
|
case hwmon_temp_label:
|
|
return 0444;
|
|
default:
|
|
return 0;
|
|
}
|
|
case hwmon_in:
|
|
switch (attr) {
|
|
case hwmon_in_min_alarm:
|
|
case hwmon_in_max_alarm:
|
|
case hwmon_in_lcrit_alarm:
|
|
case hwmon_in_crit_alarm:
|
|
case hwmon_in_min:
|
|
case hwmon_in_max:
|
|
case hwmon_in_lcrit:
|
|
case hwmon_in_crit:
|
|
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
|
|
return 0;
|
|
fallthrough;
|
|
case hwmon_in_input:
|
|
case hwmon_in_label:
|
|
return 0444;
|
|
default:
|
|
return 0;
|
|
}
|
|
case hwmon_curr:
|
|
switch (attr) {
|
|
case hwmon_curr_min_alarm:
|
|
case hwmon_curr_max_alarm:
|
|
case hwmon_curr_lcrit_alarm:
|
|
case hwmon_curr_crit_alarm:
|
|
case hwmon_curr_min:
|
|
case hwmon_curr_max:
|
|
case hwmon_curr_lcrit:
|
|
case hwmon_curr_crit:
|
|
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
|
|
return 0;
|
|
fallthrough;
|
|
case hwmon_curr_input:
|
|
case hwmon_curr_label:
|
|
return 0444;
|
|
default:
|
|
return 0;
|
|
}
|
|
case hwmon_power:
|
|
/* External calibration of receive power requires
|
|
* floating point arithmetic. Doing that in the kernel
|
|
* is not easy, so just skip it. If the module does
|
|
* not require external calibration, we can however
|
|
* show receiver power, since FP is then not needed.
|
|
*/
|
|
if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
|
|
channel == 1)
|
|
return 0;
|
|
switch (attr) {
|
|
case hwmon_power_min_alarm:
|
|
case hwmon_power_max_alarm:
|
|
case hwmon_power_lcrit_alarm:
|
|
case hwmon_power_crit_alarm:
|
|
case hwmon_power_min:
|
|
case hwmon_power_max:
|
|
case hwmon_power_lcrit:
|
|
case hwmon_power_crit:
|
|
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
|
|
return 0;
|
|
fallthrough;
|
|
case hwmon_power_input:
|
|
case hwmon_power_label:
|
|
return 0444;
|
|
default:
|
|
return 0;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
|
|
{
|
|
__be16 val;
|
|
int err;
|
|
|
|
err = sfp_read(sfp, true, reg, &val, sizeof(val));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = be16_to_cpu(val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_hwmon_to_rx_power(long *value)
|
|
{
|
|
*value = DIV_ROUND_CLOSEST(*value, 10);
|
|
}
|
|
|
|
static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
|
|
long *value)
|
|
{
|
|
if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
|
|
*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
|
|
}
|
|
|
|
static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
|
|
{
|
|
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
|
|
be16_to_cpu(sfp->diag.cal_t_offset), value);
|
|
|
|
if (*value >= 0x8000)
|
|
*value -= 0x10000;
|
|
|
|
*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
|
|
}
|
|
|
|
static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
|
|
{
|
|
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
|
|
be16_to_cpu(sfp->diag.cal_v_offset), value);
|
|
|
|
*value = DIV_ROUND_CLOSEST(*value, 10);
|
|
}
|
|
|
|
static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
|
|
{
|
|
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
|
|
be16_to_cpu(sfp->diag.cal_txi_offset), value);
|
|
|
|
*value = DIV_ROUND_CLOSEST(*value, 500);
|
|
}
|
|
|
|
static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
|
|
{
|
|
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
|
|
be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
|
|
|
|
*value = DIV_ROUND_CLOSEST(*value, 10);
|
|
}
|
|
|
|
static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
|
|
{
|
|
int err;
|
|
|
|
err = sfp_hwmon_read_sensor(sfp, reg, value);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sfp_hwmon_calibrate_temp(sfp, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
|
|
{
|
|
int err;
|
|
|
|
err = sfp_hwmon_read_sensor(sfp, reg, value);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sfp_hwmon_calibrate_vcc(sfp, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
|
|
{
|
|
int err;
|
|
|
|
err = sfp_hwmon_read_sensor(sfp, reg, value);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sfp_hwmon_calibrate_bias(sfp, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
|
|
{
|
|
int err;
|
|
|
|
err = sfp_hwmon_read_sensor(sfp, reg, value);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sfp_hwmon_calibrate_tx_power(sfp, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
|
|
{
|
|
int err;
|
|
|
|
err = sfp_hwmon_read_sensor(sfp, reg, value);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sfp_hwmon_to_rx_power(value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
|
|
{
|
|
u8 status;
|
|
int err;
|
|
|
|
switch (attr) {
|
|
case hwmon_temp_input:
|
|
return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
|
|
|
|
case hwmon_temp_lcrit:
|
|
*value = be16_to_cpu(sfp->diag.temp_low_alarm);
|
|
sfp_hwmon_calibrate_temp(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_temp_min:
|
|
*value = be16_to_cpu(sfp->diag.temp_low_warn);
|
|
sfp_hwmon_calibrate_temp(sfp, value);
|
|
return 0;
|
|
case hwmon_temp_max:
|
|
*value = be16_to_cpu(sfp->diag.temp_high_warn);
|
|
sfp_hwmon_calibrate_temp(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_temp_crit:
|
|
*value = be16_to_cpu(sfp->diag.temp_high_alarm);
|
|
sfp_hwmon_calibrate_temp(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_temp_lcrit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_TEMP_LOW);
|
|
return 0;
|
|
|
|
case hwmon_temp_min_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_TEMP_LOW);
|
|
return 0;
|
|
|
|
case hwmon_temp_max_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_TEMP_HIGH);
|
|
return 0;
|
|
|
|
case hwmon_temp_crit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_TEMP_HIGH);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
|
|
{
|
|
u8 status;
|
|
int err;
|
|
|
|
switch (attr) {
|
|
case hwmon_in_input:
|
|
return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
|
|
|
|
case hwmon_in_lcrit:
|
|
*value = be16_to_cpu(sfp->diag.volt_low_alarm);
|
|
sfp_hwmon_calibrate_vcc(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_in_min:
|
|
*value = be16_to_cpu(sfp->diag.volt_low_warn);
|
|
sfp_hwmon_calibrate_vcc(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_in_max:
|
|
*value = be16_to_cpu(sfp->diag.volt_high_warn);
|
|
sfp_hwmon_calibrate_vcc(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_in_crit:
|
|
*value = be16_to_cpu(sfp->diag.volt_high_alarm);
|
|
sfp_hwmon_calibrate_vcc(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_in_lcrit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_VCC_LOW);
|
|
return 0;
|
|
|
|
case hwmon_in_min_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_VCC_LOW);
|
|
return 0;
|
|
|
|
case hwmon_in_max_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_VCC_HIGH);
|
|
return 0;
|
|
|
|
case hwmon_in_crit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_VCC_HIGH);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
|
|
{
|
|
u8 status;
|
|
int err;
|
|
|
|
switch (attr) {
|
|
case hwmon_curr_input:
|
|
return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
|
|
|
|
case hwmon_curr_lcrit:
|
|
*value = be16_to_cpu(sfp->diag.bias_low_alarm);
|
|
sfp_hwmon_calibrate_bias(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_curr_min:
|
|
*value = be16_to_cpu(sfp->diag.bias_low_warn);
|
|
sfp_hwmon_calibrate_bias(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_curr_max:
|
|
*value = be16_to_cpu(sfp->diag.bias_high_warn);
|
|
sfp_hwmon_calibrate_bias(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_curr_crit:
|
|
*value = be16_to_cpu(sfp->diag.bias_high_alarm);
|
|
sfp_hwmon_calibrate_bias(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_curr_lcrit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
|
|
return 0;
|
|
|
|
case hwmon_curr_min_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
|
|
return 0;
|
|
|
|
case hwmon_curr_max_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
|
|
return 0;
|
|
|
|
case hwmon_curr_crit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
|
|
{
|
|
u8 status;
|
|
int err;
|
|
|
|
switch (attr) {
|
|
case hwmon_power_input:
|
|
return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
|
|
|
|
case hwmon_power_lcrit:
|
|
*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
|
|
sfp_hwmon_calibrate_tx_power(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_power_min:
|
|
*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
|
|
sfp_hwmon_calibrate_tx_power(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_power_max:
|
|
*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
|
|
sfp_hwmon_calibrate_tx_power(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_power_crit:
|
|
*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
|
|
sfp_hwmon_calibrate_tx_power(sfp, value);
|
|
return 0;
|
|
|
|
case hwmon_power_lcrit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_TXPWR_LOW);
|
|
return 0;
|
|
|
|
case hwmon_power_min_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_TXPWR_LOW);
|
|
return 0;
|
|
|
|
case hwmon_power_max_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN0_TXPWR_HIGH);
|
|
return 0;
|
|
|
|
case hwmon_power_crit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
|
|
{
|
|
u8 status;
|
|
int err;
|
|
|
|
switch (attr) {
|
|
case hwmon_power_input:
|
|
return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
|
|
|
|
case hwmon_power_lcrit:
|
|
*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
|
|
sfp_hwmon_to_rx_power(value);
|
|
return 0;
|
|
|
|
case hwmon_power_min:
|
|
*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
|
|
sfp_hwmon_to_rx_power(value);
|
|
return 0;
|
|
|
|
case hwmon_power_max:
|
|
*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
|
|
sfp_hwmon_to_rx_power(value);
|
|
return 0;
|
|
|
|
case hwmon_power_crit:
|
|
*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
|
|
sfp_hwmon_to_rx_power(value);
|
|
return 0;
|
|
|
|
case hwmon_power_lcrit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM1_RXPWR_LOW);
|
|
return 0;
|
|
|
|
case hwmon_power_min_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN1_RXPWR_LOW);
|
|
return 0;
|
|
|
|
case hwmon_power_max_alarm:
|
|
err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_WARN1_RXPWR_HIGH);
|
|
return 0;
|
|
|
|
case hwmon_power_crit_alarm:
|
|
err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
|
|
u32 attr, int channel, long *value)
|
|
{
|
|
struct sfp *sfp = dev_get_drvdata(dev);
|
|
|
|
switch (type) {
|
|
case hwmon_temp:
|
|
return sfp_hwmon_temp(sfp, attr, value);
|
|
case hwmon_in:
|
|
return sfp_hwmon_vcc(sfp, attr, value);
|
|
case hwmon_curr:
|
|
return sfp_hwmon_bias(sfp, attr, value);
|
|
case hwmon_power:
|
|
switch (channel) {
|
|
case 0:
|
|
return sfp_hwmon_tx_power(sfp, attr, value);
|
|
case 1:
|
|
return sfp_hwmon_rx_power(sfp, attr, value);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static const char *const sfp_hwmon_power_labels[] = {
|
|
"TX_power",
|
|
"RX_power",
|
|
};
|
|
|
|
static int sfp_hwmon_read_string(struct device *dev,
|
|
enum hwmon_sensor_types type,
|
|
u32 attr, int channel, const char **str)
|
|
{
|
|
switch (type) {
|
|
case hwmon_curr:
|
|
switch (attr) {
|
|
case hwmon_curr_label:
|
|
*str = "bias";
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case hwmon_temp:
|
|
switch (attr) {
|
|
case hwmon_temp_label:
|
|
*str = "temperature";
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case hwmon_in:
|
|
switch (attr) {
|
|
case hwmon_in_label:
|
|
*str = "VCC";
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case hwmon_power:
|
|
switch (attr) {
|
|
case hwmon_power_label:
|
|
*str = sfp_hwmon_power_labels[channel];
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static const struct hwmon_ops sfp_hwmon_ops = {
|
|
.is_visible = sfp_hwmon_is_visible,
|
|
.read = sfp_hwmon_read,
|
|
.read_string = sfp_hwmon_read_string,
|
|
};
|
|
|
|
static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
|
|
HWMON_CHANNEL_INFO(chip,
|
|
HWMON_C_REGISTER_TZ),
|
|
HWMON_CHANNEL_INFO(in,
|
|
HWMON_I_INPUT |
|
|
HWMON_I_MAX | HWMON_I_MIN |
|
|
HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
|
|
HWMON_I_CRIT | HWMON_I_LCRIT |
|
|
HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
|
|
HWMON_I_LABEL),
|
|
HWMON_CHANNEL_INFO(temp,
|
|
HWMON_T_INPUT |
|
|
HWMON_T_MAX | HWMON_T_MIN |
|
|
HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
|
|
HWMON_T_CRIT | HWMON_T_LCRIT |
|
|
HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
|
|
HWMON_T_LABEL),
|
|
HWMON_CHANNEL_INFO(curr,
|
|
HWMON_C_INPUT |
|
|
HWMON_C_MAX | HWMON_C_MIN |
|
|
HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
|
|
HWMON_C_CRIT | HWMON_C_LCRIT |
|
|
HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
|
|
HWMON_C_LABEL),
|
|
HWMON_CHANNEL_INFO(power,
|
|
/* Transmit power */
|
|
HWMON_P_INPUT |
|
|
HWMON_P_MAX | HWMON_P_MIN |
|
|
HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
|
|
HWMON_P_CRIT | HWMON_P_LCRIT |
|
|
HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
|
|
HWMON_P_LABEL,
|
|
/* Receive power */
|
|
HWMON_P_INPUT |
|
|
HWMON_P_MAX | HWMON_P_MIN |
|
|
HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
|
|
HWMON_P_CRIT | HWMON_P_LCRIT |
|
|
HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
|
|
HWMON_P_LABEL),
|
|
NULL,
|
|
};
|
|
|
|
static const struct hwmon_chip_info sfp_hwmon_chip_info = {
|
|
.ops = &sfp_hwmon_ops,
|
|
.info = sfp_hwmon_info,
|
|
};
|
|
|
|
static void sfp_hwmon_probe(struct work_struct *work)
|
|
{
|
|
struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
|
|
int err;
|
|
|
|
/* hwmon interface needs to access 16bit registers in atomic way to
|
|
* guarantee coherency of the diagnostic monitoring data. If it is not
|
|
* possible to guarantee coherency because EEPROM is broken in such way
|
|
* that does not support atomic 16bit read operation then we have to
|
|
* skip registration of hwmon device.
|
|
*/
|
|
if (sfp->i2c_block_size < 2) {
|
|
dev_info(sfp->dev,
|
|
"skipping hwmon device registration due to broken EEPROM\n");
|
|
dev_info(sfp->dev,
|
|
"diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
|
|
return;
|
|
}
|
|
|
|
err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
|
|
if (err < 0) {
|
|
if (sfp->hwmon_tries--) {
|
|
mod_delayed_work(system_wq, &sfp->hwmon_probe,
|
|
T_PROBE_RETRY_SLOW);
|
|
} else {
|
|
dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
|
|
ERR_PTR(err));
|
|
}
|
|
return;
|
|
}
|
|
|
|
sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
|
|
if (IS_ERR(sfp->hwmon_name)) {
|
|
dev_err(sfp->dev, "out of memory for hwmon name\n");
|
|
return;
|
|
}
|
|
|
|
sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
|
|
sfp->hwmon_name, sfp,
|
|
&sfp_hwmon_chip_info,
|
|
NULL);
|
|
if (IS_ERR(sfp->hwmon_dev))
|
|
dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
|
|
PTR_ERR(sfp->hwmon_dev));
|
|
}
|
|
|
|
static int sfp_hwmon_insert(struct sfp *sfp)
|
|
{
|
|
if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
|
|
mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
|
|
sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_hwmon_remove(struct sfp *sfp)
|
|
{
|
|
cancel_delayed_work_sync(&sfp->hwmon_probe);
|
|
if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
|
|
hwmon_device_unregister(sfp->hwmon_dev);
|
|
sfp->hwmon_dev = NULL;
|
|
kfree(sfp->hwmon_name);
|
|
}
|
|
}
|
|
|
|
static int sfp_hwmon_init(struct sfp *sfp)
|
|
{
|
|
INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_hwmon_exit(struct sfp *sfp)
|
|
{
|
|
cancel_delayed_work_sync(&sfp->hwmon_probe);
|
|
}
|
|
#else
|
|
static int sfp_hwmon_insert(struct sfp *sfp)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_hwmon_remove(struct sfp *sfp)
|
|
{
|
|
}
|
|
|
|
static int sfp_hwmon_init(struct sfp *sfp)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_hwmon_exit(struct sfp *sfp)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Helpers */
|
|
static void sfp_module_tx_disable(struct sfp *sfp)
|
|
{
|
|
dev_dbg(sfp->dev, "tx disable %u -> %u\n",
|
|
sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
|
|
sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
|
|
}
|
|
|
|
static void sfp_module_tx_enable(struct sfp *sfp)
|
|
{
|
|
dev_dbg(sfp->dev, "tx disable %u -> %u\n",
|
|
sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
|
|
sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
|
static int sfp_debug_state_show(struct seq_file *s, void *data)
|
|
{
|
|
struct sfp *sfp = s->private;
|
|
|
|
seq_printf(s, "Module state: %s\n",
|
|
mod_state_to_str(sfp->sm_mod_state));
|
|
seq_printf(s, "Module probe attempts: %d %d\n",
|
|
R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
|
|
R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
|
|
seq_printf(s, "Device state: %s\n",
|
|
dev_state_to_str(sfp->sm_dev_state));
|
|
seq_printf(s, "Main state: %s\n",
|
|
sm_state_to_str(sfp->sm_state));
|
|
seq_printf(s, "Fault recovery remaining retries: %d\n",
|
|
sfp->sm_fault_retries);
|
|
seq_printf(s, "PHY probe remaining retries: %d\n",
|
|
sfp->sm_phy_retries);
|
|
seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
|
|
seq_printf(s, "Rate select threshold: %u kBd\n",
|
|
sfp->rs_threshold_kbd);
|
|
seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
|
|
seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
|
|
seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
|
|
seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
|
|
seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
|
|
seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
|
|
|
|
static void sfp_debugfs_init(struct sfp *sfp)
|
|
{
|
|
sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
|
|
|
|
debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
|
|
&sfp_debug_state_fops);
|
|
}
|
|
|
|
static void sfp_debugfs_exit(struct sfp *sfp)
|
|
{
|
|
debugfs_remove_recursive(sfp->debugfs_dir);
|
|
}
|
|
#else
|
|
static void sfp_debugfs_init(struct sfp *sfp)
|
|
{
|
|
}
|
|
|
|
static void sfp_debugfs_exit(struct sfp *sfp)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void sfp_module_tx_fault_reset(struct sfp *sfp)
|
|
{
|
|
unsigned int state;
|
|
|
|
mutex_lock(&sfp->st_mutex);
|
|
state = sfp->state;
|
|
if (!(state & SFP_F_TX_DISABLE)) {
|
|
sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
|
|
|
|
udelay(T_RESET_US);
|
|
|
|
sfp_set_state(sfp, state);
|
|
}
|
|
mutex_unlock(&sfp->st_mutex);
|
|
}
|
|
|
|
/* SFP state machine */
|
|
static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
|
|
{
|
|
if (timeout)
|
|
mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
|
|
timeout);
|
|
else
|
|
cancel_delayed_work(&sfp->timeout);
|
|
}
|
|
|
|
static void sfp_sm_next(struct sfp *sfp, unsigned int state,
|
|
unsigned int timeout)
|
|
{
|
|
sfp->sm_state = state;
|
|
sfp_sm_set_timer(sfp, timeout);
|
|
}
|
|
|
|
static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
|
|
unsigned int timeout)
|
|
{
|
|
sfp->sm_mod_state = state;
|
|
sfp_sm_set_timer(sfp, timeout);
|
|
}
|
|
|
|
static void sfp_sm_phy_detach(struct sfp *sfp)
|
|
{
|
|
sfp_remove_phy(sfp->sfp_bus);
|
|
phy_device_remove(sfp->mod_phy);
|
|
phy_device_free(sfp->mod_phy);
|
|
sfp->mod_phy = NULL;
|
|
}
|
|
|
|
static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
|
|
{
|
|
struct phy_device *phy;
|
|
int err;
|
|
|
|
phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
|
|
if (phy == ERR_PTR(-ENODEV))
|
|
return PTR_ERR(phy);
|
|
if (IS_ERR(phy)) {
|
|
dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
|
|
return PTR_ERR(phy);
|
|
}
|
|
|
|
/* Mark this PHY as being on a SFP module */
|
|
phy->is_on_sfp_module = true;
|
|
|
|
err = phy_device_register(phy);
|
|
if (err) {
|
|
phy_device_free(phy);
|
|
dev_err(sfp->dev, "phy_device_register failed: %pe\n",
|
|
ERR_PTR(err));
|
|
return err;
|
|
}
|
|
|
|
err = sfp_add_phy(sfp->sfp_bus, phy);
|
|
if (err) {
|
|
phy_device_remove(phy);
|
|
phy_device_free(phy);
|
|
dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
|
|
return err;
|
|
}
|
|
|
|
sfp->mod_phy = phy;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_sm_link_up(struct sfp *sfp)
|
|
{
|
|
sfp_link_up(sfp->sfp_bus);
|
|
sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
|
|
}
|
|
|
|
static void sfp_sm_link_down(struct sfp *sfp)
|
|
{
|
|
sfp_link_down(sfp->sfp_bus);
|
|
}
|
|
|
|
static void sfp_sm_link_check_los(struct sfp *sfp)
|
|
{
|
|
const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
|
|
const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
|
|
__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
|
|
bool los = false;
|
|
|
|
/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
|
|
* are set, we assume that no LOS signal is available. If both are
|
|
* set, we assume LOS is not implemented (and is meaningless.)
|
|
*/
|
|
if (los_options == los_inverted)
|
|
los = !(sfp->state & SFP_F_LOS);
|
|
else if (los_options == los_normal)
|
|
los = !!(sfp->state & SFP_F_LOS);
|
|
|
|
if (los)
|
|
sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
|
|
else
|
|
sfp_sm_link_up(sfp);
|
|
}
|
|
|
|
static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
|
|
{
|
|
const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
|
|
const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
|
|
__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
|
|
|
|
return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
|
|
(los_options == los_normal && event == SFP_E_LOS_HIGH);
|
|
}
|
|
|
|
static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
|
|
{
|
|
const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
|
|
const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
|
|
__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
|
|
|
|
return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
|
|
(los_options == los_normal && event == SFP_E_LOS_LOW);
|
|
}
|
|
|
|
static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
|
|
{
|
|
if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
|
|
dev_err(sfp->dev,
|
|
"module persistently indicates fault, disabling\n");
|
|
sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
|
|
} else {
|
|
if (warn)
|
|
dev_err(sfp->dev, "module transmit fault indicated\n");
|
|
|
|
sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
|
|
}
|
|
}
|
|
|
|
static int sfp_sm_add_mdio_bus(struct sfp *sfp)
|
|
{
|
|
if (sfp->mdio_protocol != MDIO_I2C_NONE)
|
|
return sfp_i2c_mdiobus_create(sfp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Probe a SFP for a PHY device if the module supports copper - the PHY
|
|
* normally sits at I2C bus address 0x56, and may either be a clause 22
|
|
* or clause 45 PHY.
|
|
*
|
|
* Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
|
|
* negotiation enabled, but some may be in 1000base-X - which is for the
|
|
* PHY driver to determine.
|
|
*
|
|
* Clause 45 copper SFP+ modules (10G) appear to switch their interface
|
|
* mode according to the negotiated line speed.
|
|
*/
|
|
static int sfp_sm_probe_for_phy(struct sfp *sfp)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (sfp->mdio_protocol) {
|
|
case MDIO_I2C_NONE:
|
|
break;
|
|
|
|
case MDIO_I2C_MARVELL_C22:
|
|
err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
|
|
break;
|
|
|
|
case MDIO_I2C_C45:
|
|
err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
|
|
break;
|
|
|
|
case MDIO_I2C_ROLLBALL:
|
|
err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int sfp_module_parse_power(struct sfp *sfp)
|
|
{
|
|
u32 power_mW = 1000;
|
|
bool supports_a2;
|
|
|
|
if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
|
|
sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
|
|
power_mW = 1500;
|
|
/* Added in Rev 11.9, but there is no compliance code for this */
|
|
if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
|
|
sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
|
|
power_mW = 2000;
|
|
|
|
/* Power level 1 modules (max. 1W) are always supported. */
|
|
if (power_mW <= 1000) {
|
|
sfp->module_power_mW = power_mW;
|
|
return 0;
|
|
}
|
|
|
|
supports_a2 = sfp->id.ext.sff8472_compliance !=
|
|
SFP_SFF8472_COMPLIANCE_NONE ||
|
|
sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
|
|
|
|
if (power_mW > sfp->max_power_mW) {
|
|
/* Module power specification exceeds the allowed maximum. */
|
|
if (!supports_a2) {
|
|
/* The module appears not to implement bus address
|
|
* 0xa2, so assume that the module powers up in the
|
|
* indicated mode.
|
|
*/
|
|
dev_err(sfp->dev,
|
|
"Host does not support %u.%uW modules\n",
|
|
power_mW / 1000, (power_mW / 100) % 10);
|
|
return -EINVAL;
|
|
} else {
|
|
dev_warn(sfp->dev,
|
|
"Host does not support %u.%uW modules, module left in power mode 1\n",
|
|
power_mW / 1000, (power_mW / 100) % 10);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!supports_a2) {
|
|
/* The module power level is below the host maximum and the
|
|
* module appears not to implement bus address 0xa2, so assume
|
|
* that the module powers up in the indicated mode.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* If the module requires a higher power mode, but also requires
|
|
* an address change sequence, warn the user that the module may
|
|
* not be functional.
|
|
*/
|
|
if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
|
|
dev_warn(sfp->dev,
|
|
"Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
|
|
power_mW / 1000, (power_mW / 100) % 10);
|
|
return 0;
|
|
}
|
|
|
|
sfp->module_power_mW = power_mW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
|
|
{
|
|
int err;
|
|
|
|
err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
|
|
SFP_EXT_STATUS_PWRLVL_SELECT,
|
|
enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
|
|
if (err != sizeof(u8)) {
|
|
dev_err(sfp->dev, "failed to %sable high power: %pe\n",
|
|
enable ? "en" : "dis", ERR_PTR(err));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (enable)
|
|
dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
|
|
sfp->module_power_mW / 1000,
|
|
(sfp->module_power_mW / 100) % 10);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_module_parse_rate_select(struct sfp *sfp)
|
|
{
|
|
u8 rate_id;
|
|
|
|
sfp->rs_threshold_kbd = 0;
|
|
sfp->rs_state_mask = 0;
|
|
|
|
if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
|
|
/* No support for RateSelect */
|
|
return;
|
|
|
|
/* Default to INF-8074 RateSelect operation. The signalling threshold
|
|
* rate is not well specified, so always select "Full Bandwidth", but
|
|
* SFF-8079 reveals that it is understood that RS0 will be low for
|
|
* 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
|
|
* This method exists prior to SFF-8472.
|
|
*/
|
|
sfp->rs_state_mask = SFP_F_RS0;
|
|
sfp->rs_threshold_kbd = 1594;
|
|
|
|
/* Parse the rate identifier, which is complicated due to history:
|
|
* SFF-8472 rev 9.5 marks this field as reserved.
|
|
* SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
|
|
* compliance is not required.
|
|
* SFF-8472 rev 10.2 defines this field using values 0..4
|
|
* SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
|
|
* and even values.
|
|
*/
|
|
rate_id = sfp->id.base.rate_id;
|
|
if (rate_id == 0)
|
|
/* Unspecified */
|
|
return;
|
|
|
|
/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
|
|
* and allocated value 3 to SFF-8431 independent tx/rx rate select.
|
|
* Convert this to a SFF-8472 rev 11.0 rate identifier.
|
|
*/
|
|
if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
|
|
sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
|
|
rate_id == 3)
|
|
rate_id = SFF_RID_8431;
|
|
|
|
if (rate_id & SFF_RID_8079) {
|
|
/* SFF-8079 RateSelect / Application Select in conjunction with
|
|
* SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
|
|
* with only bit 0 used, which takes precedence over SFF-8472.
|
|
*/
|
|
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
|
|
/* SFF-8079 Part 1 - rate selection between Fibre
|
|
* Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
|
|
* is high for 2125, so we have to subtract 1 to
|
|
* include it.
|
|
*/
|
|
sfp->rs_threshold_kbd = 2125 - 1;
|
|
sfp->rs_state_mask = SFP_F_RS0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* SFF-8472 rev 9.5 does not define the rate identifier */
|
|
if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
|
|
return;
|
|
|
|
/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
|
|
* always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
|
|
*/
|
|
switch (rate_id) {
|
|
case SFF_RID_8431_RX_ONLY:
|
|
sfp->rs_threshold_kbd = 4250;
|
|
sfp->rs_state_mask = SFP_F_RS0;
|
|
break;
|
|
|
|
case SFF_RID_8431_TX_ONLY:
|
|
sfp->rs_threshold_kbd = 4250;
|
|
sfp->rs_state_mask = SFP_F_RS1;
|
|
break;
|
|
|
|
case SFF_RID_8431:
|
|
sfp->rs_threshold_kbd = 4250;
|
|
sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
|
|
break;
|
|
|
|
case SFF_RID_10G8G:
|
|
sfp->rs_threshold_kbd = 9000;
|
|
sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
|
|
* V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
|
|
* not support multibyte reads from the EEPROM. Each multi-byte read
|
|
* operation returns just one byte of EEPROM followed by zeros. There is
|
|
* no way to identify which modules are using Realtek RTL8672 and RTL9601C
|
|
* chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
|
|
* name and vendor id into EEPROM, so there is even no way to detect if
|
|
* module is V-SOL V2801F. Therefore check for those zeros in the read
|
|
* data and then based on check switch to reading EEPROM to one byte
|
|
* at a time.
|
|
*/
|
|
static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
|
|
{
|
|
size_t i, block_size = sfp->i2c_block_size;
|
|
|
|
/* Already using byte IO */
|
|
if (block_size == 1)
|
|
return false;
|
|
|
|
for (i = 1; i < len; i += block_size) {
|
|
if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
|
|
{
|
|
u8 check;
|
|
int err;
|
|
|
|
if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
|
|
id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
|
|
id->base.connector != SFF8024_CONNECTOR_LC) {
|
|
dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
|
|
id->base.phys_id = SFF8024_ID_SFF_8472;
|
|
id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
|
|
id->base.connector = SFF8024_CONNECTOR_LC;
|
|
err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
|
|
if (err != 3) {
|
|
dev_err(sfp->dev,
|
|
"Failed to rewrite module EEPROM: %pe\n",
|
|
ERR_PTR(err));
|
|
return err;
|
|
}
|
|
|
|
/* Cotsworks modules have been found to require a delay between write operations. */
|
|
mdelay(50);
|
|
|
|
/* Update base structure checksum */
|
|
check = sfp_check(&id->base, sizeof(id->base) - 1);
|
|
err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
|
|
if (err != 1) {
|
|
dev_err(sfp->dev,
|
|
"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
|
|
ERR_PTR(err));
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_module_parse_sff8472(struct sfp *sfp)
|
|
{
|
|
/* If the module requires address swap mode, warn about it */
|
|
if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
|
|
dev_warn(sfp->dev,
|
|
"module address swap to access page 0xA2 is not supported.\n");
|
|
else
|
|
sfp->have_a2 = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
|
|
{
|
|
/* SFP module inserted - read I2C data */
|
|
struct sfp_eeprom_id id;
|
|
bool cotsworks_sfbg;
|
|
unsigned int mask;
|
|
bool cotsworks;
|
|
u8 check;
|
|
int ret;
|
|
|
|
sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
|
|
|
|
ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
|
|
if (ret < 0) {
|
|
if (report)
|
|
dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
|
|
ERR_PTR(ret));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (ret != sizeof(id.base)) {
|
|
dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
|
|
* address 0x51 is just one byte at a time. Also SFF-8472 requires
|
|
* that EEPROM supports atomic 16bit read operation for diagnostic
|
|
* fields, so do not switch to one byte reading at a time unless it
|
|
* is really required and we have no other option.
|
|
*/
|
|
if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
|
|
dev_info(sfp->dev,
|
|
"Detected broken RTL8672/RTL9601C emulated EEPROM\n");
|
|
dev_info(sfp->dev,
|
|
"Switching to reading EEPROM to one byte at a time\n");
|
|
sfp->i2c_block_size = 1;
|
|
|
|
ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
|
|
if (ret < 0) {
|
|
if (report)
|
|
dev_err(sfp->dev,
|
|
"failed to read EEPROM: %pe\n",
|
|
ERR_PTR(ret));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (ret != sizeof(id.base)) {
|
|
dev_err(sfp->dev, "EEPROM short read: %pe\n",
|
|
ERR_PTR(ret));
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
/* Cotsworks do not seem to update the checksums when they
|
|
* do the final programming with the final module part number,
|
|
* serial number and date code.
|
|
*/
|
|
cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
|
|
cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
|
|
|
|
/* Cotsworks SFF module EEPROM do not always have valid phys_id,
|
|
* phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
|
|
* Cotsworks PN matches and bytes are not correct.
|
|
*/
|
|
if (cotsworks && cotsworks_sfbg) {
|
|
ret = sfp_cotsworks_fixup_check(sfp, &id);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Validate the checksum over the base structure */
|
|
check = sfp_check(&id.base, sizeof(id.base) - 1);
|
|
if (check != id.base.cc_base) {
|
|
if (cotsworks) {
|
|
dev_warn(sfp->dev,
|
|
"EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
|
|
check, id.base.cc_base);
|
|
} else {
|
|
dev_err(sfp->dev,
|
|
"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
|
|
check, id.base.cc_base);
|
|
print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
|
|
16, 1, &id, sizeof(id), true);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
|
|
if (ret < 0) {
|
|
if (report)
|
|
dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
|
|
ERR_PTR(ret));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (ret != sizeof(id.ext)) {
|
|
dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
check = sfp_check(&id.ext, sizeof(id.ext) - 1);
|
|
if (check != id.ext.cc_ext) {
|
|
if (cotsworks) {
|
|
dev_warn(sfp->dev,
|
|
"EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
|
|
check, id.ext.cc_ext);
|
|
} else {
|
|
dev_err(sfp->dev,
|
|
"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
|
|
check, id.ext.cc_ext);
|
|
print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
|
|
16, 1, &id, sizeof(id), true);
|
|
memset(&id.ext, 0, sizeof(id.ext));
|
|
}
|
|
}
|
|
|
|
sfp->id = id;
|
|
|
|
dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
|
|
(int)sizeof(id.base.vendor_name), id.base.vendor_name,
|
|
(int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
|
|
(int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
|
|
(int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
|
|
(int)sizeof(id.ext.datecode), id.ext.datecode);
|
|
|
|
/* Check whether we support this module */
|
|
if (!sfp->type->module_supported(&id)) {
|
|
dev_err(sfp->dev,
|
|
"module is not supported - phys id 0x%02x 0x%02x\n",
|
|
sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
|
|
ret = sfp_module_parse_sff8472(sfp);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Parse the module power requirement */
|
|
ret = sfp_module_parse_power(sfp);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
sfp_module_parse_rate_select(sfp);
|
|
|
|
mask = SFP_F_PRESENT;
|
|
if (sfp->gpio[GPIO_TX_DISABLE])
|
|
mask |= SFP_F_TX_DISABLE;
|
|
if (sfp->gpio[GPIO_TX_FAULT])
|
|
mask |= SFP_F_TX_FAULT;
|
|
if (sfp->gpio[GPIO_LOS])
|
|
mask |= SFP_F_LOS;
|
|
if (sfp->gpio[GPIO_RS0])
|
|
mask |= SFP_F_RS0;
|
|
if (sfp->gpio[GPIO_RS1])
|
|
mask |= SFP_F_RS1;
|
|
|
|
sfp->module_t_start_up = T_START_UP;
|
|
sfp->module_t_wait = T_WAIT;
|
|
sfp->phy_t_retry = T_PHY_RETRY;
|
|
|
|
sfp->state_ignore_mask = 0;
|
|
|
|
if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
|
|
sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
|
|
sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
|
|
sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
|
|
sfp->mdio_protocol = MDIO_I2C_C45;
|
|
else if (sfp->id.base.e1000_base_t)
|
|
sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
|
|
else
|
|
sfp->mdio_protocol = MDIO_I2C_NONE;
|
|
|
|
sfp->quirk = sfp_lookup_quirk(&id);
|
|
|
|
mutex_lock(&sfp->st_mutex);
|
|
/* Initialise state bits to use from hardware */
|
|
sfp->state_hw_mask = mask;
|
|
|
|
/* We want to drive the rate select pins that the module is using */
|
|
sfp->state_hw_drive |= sfp->rs_state_mask;
|
|
|
|
if (sfp->quirk && sfp->quirk->fixup)
|
|
sfp->quirk->fixup(sfp);
|
|
|
|
sfp->state_hw_mask &= ~sfp->state_ignore_mask;
|
|
mutex_unlock(&sfp->st_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_sm_mod_remove(struct sfp *sfp)
|
|
{
|
|
if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
|
|
sfp_module_remove(sfp->sfp_bus);
|
|
|
|
sfp_hwmon_remove(sfp);
|
|
|
|
memset(&sfp->id, 0, sizeof(sfp->id));
|
|
sfp->module_power_mW = 0;
|
|
sfp->state_hw_drive = SFP_F_TX_DISABLE;
|
|
sfp->have_a2 = false;
|
|
|
|
dev_info(sfp->dev, "module removed\n");
|
|
}
|
|
|
|
/* This state machine tracks the upstream's state */
|
|
static void sfp_sm_device(struct sfp *sfp, unsigned int event)
|
|
{
|
|
switch (sfp->sm_dev_state) {
|
|
default:
|
|
if (event == SFP_E_DEV_ATTACH)
|
|
sfp->sm_dev_state = SFP_DEV_DOWN;
|
|
break;
|
|
|
|
case SFP_DEV_DOWN:
|
|
if (event == SFP_E_DEV_DETACH)
|
|
sfp->sm_dev_state = SFP_DEV_DETACHED;
|
|
else if (event == SFP_E_DEV_UP)
|
|
sfp->sm_dev_state = SFP_DEV_UP;
|
|
break;
|
|
|
|
case SFP_DEV_UP:
|
|
if (event == SFP_E_DEV_DETACH)
|
|
sfp->sm_dev_state = SFP_DEV_DETACHED;
|
|
else if (event == SFP_E_DEV_DOWN)
|
|
sfp->sm_dev_state = SFP_DEV_DOWN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* This state machine tracks the insert/remove state of the module, probes
|
|
* the on-board EEPROM, and sets up the power level.
|
|
*/
|
|
static void sfp_sm_module(struct sfp *sfp, unsigned int event)
|
|
{
|
|
int err;
|
|
|
|
/* Handle remove event globally, it resets this state machine */
|
|
if (event == SFP_E_REMOVE) {
|
|
sfp_sm_mod_remove(sfp);
|
|
sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
|
|
return;
|
|
}
|
|
|
|
/* Handle device detach globally */
|
|
if (sfp->sm_dev_state < SFP_DEV_DOWN &&
|
|
sfp->sm_mod_state > SFP_MOD_WAITDEV) {
|
|
if (sfp->module_power_mW > 1000 &&
|
|
sfp->sm_mod_state > SFP_MOD_HPOWER)
|
|
sfp_sm_mod_hpower(sfp, false);
|
|
sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
|
|
return;
|
|
}
|
|
|
|
switch (sfp->sm_mod_state) {
|
|
default:
|
|
if (event == SFP_E_INSERT) {
|
|
sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
|
|
sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
|
|
sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
|
|
}
|
|
break;
|
|
|
|
case SFP_MOD_PROBE:
|
|
/* Wait for T_PROBE_INIT to time out */
|
|
if (event != SFP_E_TIMEOUT)
|
|
break;
|
|
|
|
err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
|
|
if (err == -EAGAIN) {
|
|
if (sfp->sm_mod_tries_init &&
|
|
--sfp->sm_mod_tries_init) {
|
|
sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
|
|
break;
|
|
} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
|
|
if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
|
|
dev_warn(sfp->dev,
|
|
"please wait, module slow to respond\n");
|
|
sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
|
|
break;
|
|
}
|
|
}
|
|
if (err < 0) {
|
|
sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
|
|
break;
|
|
}
|
|
|
|
/* Force a poll to re-read the hardware signal state after
|
|
* sfp_sm_mod_probe() changed state_hw_mask.
|
|
*/
|
|
mod_delayed_work(system_wq, &sfp->poll, 1);
|
|
|
|
err = sfp_hwmon_insert(sfp);
|
|
if (err)
|
|
dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
|
|
ERR_PTR(err));
|
|
|
|
sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
|
|
fallthrough;
|
|
case SFP_MOD_WAITDEV:
|
|
/* Ensure that the device is attached before proceeding */
|
|
if (sfp->sm_dev_state < SFP_DEV_DOWN)
|
|
break;
|
|
|
|
/* Report the module insertion to the upstream device */
|
|
err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
|
|
sfp->quirk);
|
|
if (err < 0) {
|
|
sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
|
|
break;
|
|
}
|
|
|
|
/* If this is a power level 1 module, we are done */
|
|
if (sfp->module_power_mW <= 1000)
|
|
goto insert;
|
|
|
|
sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
|
|
fallthrough;
|
|
case SFP_MOD_HPOWER:
|
|
/* Enable high power mode */
|
|
err = sfp_sm_mod_hpower(sfp, true);
|
|
if (err < 0) {
|
|
if (err != -EAGAIN) {
|
|
sfp_module_remove(sfp->sfp_bus);
|
|
sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
|
|
} else {
|
|
sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
|
|
}
|
|
break;
|
|
}
|
|
|
|
sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
|
|
break;
|
|
|
|
case SFP_MOD_WAITPWR:
|
|
/* Wait for T_HPOWER_LEVEL to time out */
|
|
if (event != SFP_E_TIMEOUT)
|
|
break;
|
|
|
|
insert:
|
|
sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
|
|
break;
|
|
|
|
case SFP_MOD_PRESENT:
|
|
case SFP_MOD_ERROR:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sfp_sm_main(struct sfp *sfp, unsigned int event)
|
|
{
|
|
unsigned long timeout;
|
|
int ret;
|
|
|
|
/* Some events are global */
|
|
if (sfp->sm_state != SFP_S_DOWN &&
|
|
(sfp->sm_mod_state != SFP_MOD_PRESENT ||
|
|
sfp->sm_dev_state != SFP_DEV_UP)) {
|
|
if (sfp->sm_state == SFP_S_LINK_UP &&
|
|
sfp->sm_dev_state == SFP_DEV_UP)
|
|
sfp_sm_link_down(sfp);
|
|
if (sfp->sm_state > SFP_S_INIT)
|
|
sfp_module_stop(sfp->sfp_bus);
|
|
if (sfp->mod_phy)
|
|
sfp_sm_phy_detach(sfp);
|
|
if (sfp->i2c_mii)
|
|
sfp_i2c_mdiobus_destroy(sfp);
|
|
sfp_module_tx_disable(sfp);
|
|
sfp_soft_stop_poll(sfp);
|
|
sfp_sm_next(sfp, SFP_S_DOWN, 0);
|
|
return;
|
|
}
|
|
|
|
/* The main state machine */
|
|
switch (sfp->sm_state) {
|
|
case SFP_S_DOWN:
|
|
if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
|
|
sfp->sm_dev_state != SFP_DEV_UP)
|
|
break;
|
|
|
|
/* Only use the soft state bits if we have access to the A2h
|
|
* memory, which implies that we have some level of SFF-8472
|
|
* compliance.
|
|
*/
|
|
if (sfp->have_a2)
|
|
sfp_soft_start_poll(sfp);
|
|
|
|
sfp_module_tx_enable(sfp);
|
|
|
|
/* Initialise the fault clearance retries */
|
|
sfp->sm_fault_retries = N_FAULT_INIT;
|
|
|
|
/* We need to check the TX_FAULT state, which is not defined
|
|
* while TX_DISABLE is asserted. The earliest we want to do
|
|
* anything (such as probe for a PHY) is 50ms (or more on
|
|
* specific modules).
|
|
*/
|
|
sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
|
|
break;
|
|
|
|
case SFP_S_WAIT:
|
|
if (event != SFP_E_TIMEOUT)
|
|
break;
|
|
|
|
if (sfp->state & SFP_F_TX_FAULT) {
|
|
/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
|
|
* from the TX_DISABLE deassertion for the module to
|
|
* initialise, which is indicated by TX_FAULT
|
|
* deasserting.
|
|
*/
|
|
timeout = sfp->module_t_start_up;
|
|
if (timeout > sfp->module_t_wait)
|
|
timeout -= sfp->module_t_wait;
|
|
else
|
|
timeout = 1;
|
|
|
|
sfp_sm_next(sfp, SFP_S_INIT, timeout);
|
|
} else {
|
|
/* TX_FAULT is not asserted, assume the module has
|
|
* finished initialising.
|
|
*/
|
|
goto init_done;
|
|
}
|
|
break;
|
|
|
|
case SFP_S_INIT:
|
|
if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
|
|
/* TX_FAULT is still asserted after t_init
|
|
* or t_start_up, so assume there is a fault.
|
|
*/
|
|
sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
|
|
sfp->sm_fault_retries == N_FAULT_INIT);
|
|
} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
|
|
init_done:
|
|
/* Create mdiobus and start trying for PHY */
|
|
ret = sfp_sm_add_mdio_bus(sfp);
|
|
if (ret < 0) {
|
|
sfp_sm_next(sfp, SFP_S_FAIL, 0);
|
|
break;
|
|
}
|
|
sfp->sm_phy_retries = R_PHY_RETRY;
|
|
goto phy_probe;
|
|
}
|
|
break;
|
|
|
|
case SFP_S_INIT_PHY:
|
|
if (event != SFP_E_TIMEOUT)
|
|
break;
|
|
phy_probe:
|
|
/* TX_FAULT deasserted or we timed out with TX_FAULT
|
|
* clear. Probe for the PHY and check the LOS state.
|
|
*/
|
|
ret = sfp_sm_probe_for_phy(sfp);
|
|
if (ret == -ENODEV) {
|
|
if (--sfp->sm_phy_retries) {
|
|
sfp_sm_next(sfp, SFP_S_INIT_PHY,
|
|
sfp->phy_t_retry);
|
|
dev_dbg(sfp->dev,
|
|
"no PHY detected, %u tries left\n",
|
|
sfp->sm_phy_retries);
|
|
break;
|
|
} else {
|
|
dev_info(sfp->dev, "no PHY detected\n");
|
|
}
|
|
} else if (ret) {
|
|
sfp_sm_next(sfp, SFP_S_FAIL, 0);
|
|
break;
|
|
}
|
|
if (sfp_module_start(sfp->sfp_bus)) {
|
|
sfp_sm_next(sfp, SFP_S_FAIL, 0);
|
|
break;
|
|
}
|
|
sfp_sm_link_check_los(sfp);
|
|
|
|
/* Reset the fault retry count */
|
|
sfp->sm_fault_retries = N_FAULT;
|
|
break;
|
|
|
|
case SFP_S_INIT_TX_FAULT:
|
|
if (event == SFP_E_TIMEOUT) {
|
|
sfp_module_tx_fault_reset(sfp);
|
|
sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
|
|
}
|
|
break;
|
|
|
|
case SFP_S_WAIT_LOS:
|
|
if (event == SFP_E_TX_FAULT)
|
|
sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
|
|
else if (sfp_los_event_inactive(sfp, event))
|
|
sfp_sm_link_up(sfp);
|
|
break;
|
|
|
|
case SFP_S_LINK_UP:
|
|
if (event == SFP_E_TX_FAULT) {
|
|
sfp_sm_link_down(sfp);
|
|
sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
|
|
} else if (sfp_los_event_active(sfp, event)) {
|
|
sfp_sm_link_down(sfp);
|
|
sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
|
|
}
|
|
break;
|
|
|
|
case SFP_S_TX_FAULT:
|
|
if (event == SFP_E_TIMEOUT) {
|
|
sfp_module_tx_fault_reset(sfp);
|
|
sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
|
|
}
|
|
break;
|
|
|
|
case SFP_S_REINIT:
|
|
if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
|
|
sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
|
|
} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
|
|
dev_info(sfp->dev, "module transmit fault recovered\n");
|
|
sfp_sm_link_check_los(sfp);
|
|
}
|
|
break;
|
|
|
|
case SFP_S_TX_DISABLE:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
|
|
{
|
|
dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
|
|
mod_state_to_str(sfp->sm_mod_state),
|
|
dev_state_to_str(sfp->sm_dev_state),
|
|
sm_state_to_str(sfp->sm_state),
|
|
event_to_str(event));
|
|
|
|
sfp_sm_device(sfp, event);
|
|
sfp_sm_module(sfp, event);
|
|
sfp_sm_main(sfp, event);
|
|
|
|
dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
|
|
mod_state_to_str(sfp->sm_mod_state),
|
|
dev_state_to_str(sfp->sm_dev_state),
|
|
sm_state_to_str(sfp->sm_state));
|
|
}
|
|
|
|
static void sfp_sm_event(struct sfp *sfp, unsigned int event)
|
|
{
|
|
mutex_lock(&sfp->sm_mutex);
|
|
__sfp_sm_event(sfp, event);
|
|
mutex_unlock(&sfp->sm_mutex);
|
|
}
|
|
|
|
static void sfp_attach(struct sfp *sfp)
|
|
{
|
|
sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
|
|
}
|
|
|
|
static void sfp_detach(struct sfp *sfp)
|
|
{
|
|
sfp_sm_event(sfp, SFP_E_DEV_DETACH);
|
|
}
|
|
|
|
static void sfp_start(struct sfp *sfp)
|
|
{
|
|
sfp_sm_event(sfp, SFP_E_DEV_UP);
|
|
}
|
|
|
|
static void sfp_stop(struct sfp *sfp)
|
|
{
|
|
sfp_sm_event(sfp, SFP_E_DEV_DOWN);
|
|
}
|
|
|
|
static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
|
|
{
|
|
unsigned int set;
|
|
|
|
sfp->rate_kbd = rate_kbd;
|
|
|
|
if (rate_kbd > sfp->rs_threshold_kbd)
|
|
set = sfp->rs_state_mask;
|
|
else
|
|
set = 0;
|
|
|
|
sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
|
|
}
|
|
|
|
static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
|
|
{
|
|
/* locking... and check module is present */
|
|
|
|
if (sfp->id.ext.sff8472_compliance &&
|
|
!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
|
|
modinfo->type = ETH_MODULE_SFF_8472;
|
|
modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
|
|
} else {
|
|
modinfo->type = ETH_MODULE_SFF_8079;
|
|
modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
|
|
u8 *data)
|
|
{
|
|
unsigned int first, last, len;
|
|
int ret;
|
|
|
|
if (!(sfp->state & SFP_F_PRESENT))
|
|
return -ENODEV;
|
|
|
|
if (ee->len == 0)
|
|
return -EINVAL;
|
|
|
|
first = ee->offset;
|
|
last = ee->offset + ee->len;
|
|
if (first < ETH_MODULE_SFF_8079_LEN) {
|
|
len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
|
|
len -= first;
|
|
|
|
ret = sfp_read(sfp, false, first, data, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
first += len;
|
|
data += len;
|
|
}
|
|
if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
|
|
len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
|
|
len -= first;
|
|
first -= ETH_MODULE_SFF_8079_LEN;
|
|
|
|
ret = sfp_read(sfp, true, first, data, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sfp_module_eeprom_by_page(struct sfp *sfp,
|
|
const struct ethtool_module_eeprom *page,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
if (!(sfp->state & SFP_F_PRESENT))
|
|
return -ENODEV;
|
|
|
|
if (page->bank) {
|
|
NL_SET_ERR_MSG(extack, "Banks not supported");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (page->page) {
|
|
NL_SET_ERR_MSG(extack, "Only page 0 supported");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (page->i2c_address != 0x50 &&
|
|
page->i2c_address != 0x51) {
|
|
NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
|
|
page->data, page->length);
|
|
};
|
|
|
|
static const struct sfp_socket_ops sfp_module_ops = {
|
|
.attach = sfp_attach,
|
|
.detach = sfp_detach,
|
|
.start = sfp_start,
|
|
.stop = sfp_stop,
|
|
.set_signal_rate = sfp_set_signal_rate,
|
|
.module_info = sfp_module_info,
|
|
.module_eeprom = sfp_module_eeprom,
|
|
.module_eeprom_by_page = sfp_module_eeprom_by_page,
|
|
};
|
|
|
|
static void sfp_timeout(struct work_struct *work)
|
|
{
|
|
struct sfp *sfp = container_of(work, struct sfp, timeout.work);
|
|
|
|
rtnl_lock();
|
|
sfp_sm_event(sfp, SFP_E_TIMEOUT);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static void sfp_check_state(struct sfp *sfp)
|
|
{
|
|
unsigned int state, i, changed;
|
|
|
|
rtnl_lock();
|
|
mutex_lock(&sfp->st_mutex);
|
|
state = sfp_get_state(sfp);
|
|
changed = state ^ sfp->state;
|
|
changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
|
|
|
|
for (i = 0; i < GPIO_MAX; i++)
|
|
if (changed & BIT(i))
|
|
dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
|
|
!!(sfp->state & BIT(i)), !!(state & BIT(i)));
|
|
|
|
state |= sfp->state & SFP_F_OUTPUTS;
|
|
sfp->state = state;
|
|
mutex_unlock(&sfp->st_mutex);
|
|
|
|
mutex_lock(&sfp->sm_mutex);
|
|
if (changed & SFP_F_PRESENT)
|
|
__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
|
|
SFP_E_INSERT : SFP_E_REMOVE);
|
|
|
|
if (changed & SFP_F_TX_FAULT)
|
|
__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
|
|
SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
|
|
|
|
if (changed & SFP_F_LOS)
|
|
__sfp_sm_event(sfp, state & SFP_F_LOS ?
|
|
SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
|
|
mutex_unlock(&sfp->sm_mutex);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static irqreturn_t sfp_irq(int irq, void *data)
|
|
{
|
|
struct sfp *sfp = data;
|
|
|
|
sfp_check_state(sfp);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void sfp_poll(struct work_struct *work)
|
|
{
|
|
struct sfp *sfp = container_of(work, struct sfp, poll.work);
|
|
|
|
sfp_check_state(sfp);
|
|
|
|
// st_mutex doesn't need to be held here for state_soft_mask,
|
|
// it's unimportant if we race while reading this.
|
|
if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
|
|
sfp->need_poll)
|
|
mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
|
|
}
|
|
|
|
static struct sfp *sfp_alloc(struct device *dev)
|
|
{
|
|
struct sfp *sfp;
|
|
|
|
sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
|
|
if (!sfp)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sfp->dev = dev;
|
|
sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
|
|
|
|
mutex_init(&sfp->sm_mutex);
|
|
mutex_init(&sfp->st_mutex);
|
|
INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
|
|
INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
|
|
|
|
sfp_hwmon_init(sfp);
|
|
|
|
return sfp;
|
|
}
|
|
|
|
static void sfp_cleanup(void *data)
|
|
{
|
|
struct sfp *sfp = data;
|
|
|
|
sfp_hwmon_exit(sfp);
|
|
|
|
cancel_delayed_work_sync(&sfp->poll);
|
|
cancel_delayed_work_sync(&sfp->timeout);
|
|
if (sfp->i2c_mii) {
|
|
mdiobus_unregister(sfp->i2c_mii);
|
|
mdiobus_free(sfp->i2c_mii);
|
|
}
|
|
if (sfp->i2c)
|
|
i2c_put_adapter(sfp->i2c);
|
|
kfree(sfp);
|
|
}
|
|
|
|
static int sfp_i2c_get(struct sfp *sfp)
|
|
{
|
|
struct fwnode_handle *h;
|
|
struct i2c_adapter *i2c;
|
|
int err;
|
|
|
|
h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
|
|
if (IS_ERR(h)) {
|
|
dev_err(sfp->dev, "missing 'i2c-bus' property\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
i2c = i2c_get_adapter_by_fwnode(h);
|
|
if (!i2c) {
|
|
err = -EPROBE_DEFER;
|
|
goto put;
|
|
}
|
|
|
|
err = sfp_i2c_configure(sfp, i2c);
|
|
if (err)
|
|
i2c_put_adapter(i2c);
|
|
put:
|
|
fwnode_handle_put(h);
|
|
return err;
|
|
}
|
|
|
|
static int sfp_probe(struct platform_device *pdev)
|
|
{
|
|
const struct sff_data *sff;
|
|
char *sfp_irq_name;
|
|
struct sfp *sfp;
|
|
int err, i;
|
|
|
|
sfp = sfp_alloc(&pdev->dev);
|
|
if (IS_ERR(sfp))
|
|
return PTR_ERR(sfp);
|
|
|
|
platform_set_drvdata(pdev, sfp);
|
|
|
|
err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sff = device_get_match_data(sfp->dev);
|
|
if (!sff)
|
|
sff = &sfp_data;
|
|
|
|
sfp->type = sff;
|
|
|
|
err = sfp_i2c_get(sfp);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < GPIO_MAX; i++)
|
|
if (sff->gpios & BIT(i)) {
|
|
sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
|
|
gpio_names[i], gpio_flags[i]);
|
|
if (IS_ERR(sfp->gpio[i]))
|
|
return PTR_ERR(sfp->gpio[i]);
|
|
}
|
|
|
|
sfp->state_hw_mask = SFP_F_PRESENT;
|
|
sfp->state_hw_drive = SFP_F_TX_DISABLE;
|
|
|
|
sfp->get_state = sfp_gpio_get_state;
|
|
sfp->set_state = sfp_gpio_set_state;
|
|
|
|
/* Modules that have no detect signal are always present */
|
|
if (!(sfp->gpio[GPIO_MODDEF0]))
|
|
sfp->get_state = sff_gpio_get_state;
|
|
|
|
device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
|
|
&sfp->max_power_mW);
|
|
if (sfp->max_power_mW < 1000) {
|
|
if (sfp->max_power_mW)
|
|
dev_warn(sfp->dev,
|
|
"Firmware bug: host maximum power should be at least 1W\n");
|
|
sfp->max_power_mW = 1000;
|
|
}
|
|
|
|
dev_info(sfp->dev, "Host maximum power %u.%uW\n",
|
|
sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
|
|
|
|
/* Get the initial state, and always signal TX disable,
|
|
* since the network interface will not be up.
|
|
*/
|
|
sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
|
|
|
|
if (sfp->gpio[GPIO_RS0] &&
|
|
gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
|
|
sfp->state |= SFP_F_RS0;
|
|
sfp_set_state(sfp, sfp->state);
|
|
sfp_module_tx_disable(sfp);
|
|
if (sfp->state & SFP_F_PRESENT) {
|
|
rtnl_lock();
|
|
sfp_sm_event(sfp, SFP_E_INSERT);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
for (i = 0; i < GPIO_MAX; i++) {
|
|
if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
|
|
continue;
|
|
|
|
sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
|
|
if (sfp->gpio_irq[i] < 0) {
|
|
sfp->gpio_irq[i] = 0;
|
|
sfp->need_poll = true;
|
|
continue;
|
|
}
|
|
|
|
sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
|
|
"%s-%s", dev_name(sfp->dev),
|
|
gpio_names[i]);
|
|
|
|
if (!sfp_irq_name)
|
|
return -ENOMEM;
|
|
|
|
err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
|
|
NULL, sfp_irq,
|
|
IRQF_ONESHOT |
|
|
IRQF_TRIGGER_RISING |
|
|
IRQF_TRIGGER_FALLING,
|
|
sfp_irq_name, sfp);
|
|
if (err) {
|
|
sfp->gpio_irq[i] = 0;
|
|
sfp->need_poll = true;
|
|
}
|
|
}
|
|
|
|
if (sfp->need_poll)
|
|
mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
|
|
|
|
/* We could have an issue in cases no Tx disable pin is available or
|
|
* wired as modules using a laser as their light source will continue to
|
|
* be active when the fiber is removed. This could be a safety issue and
|
|
* we should at least warn the user about that.
|
|
*/
|
|
if (!sfp->gpio[GPIO_TX_DISABLE])
|
|
dev_warn(sfp->dev,
|
|
"No tx_disable pin: SFP modules will always be emitting.\n");
|
|
|
|
sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
|
|
if (!sfp->sfp_bus)
|
|
return -ENOMEM;
|
|
|
|
sfp_debugfs_init(sfp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sfp_remove(struct platform_device *pdev)
|
|
{
|
|
struct sfp *sfp = platform_get_drvdata(pdev);
|
|
|
|
sfp_debugfs_exit(sfp);
|
|
sfp_unregister_socket(sfp->sfp_bus);
|
|
|
|
rtnl_lock();
|
|
sfp_sm_event(sfp, SFP_E_REMOVE);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static void sfp_shutdown(struct platform_device *pdev)
|
|
{
|
|
struct sfp *sfp = platform_get_drvdata(pdev);
|
|
int i;
|
|
|
|
for (i = 0; i < GPIO_MAX; i++) {
|
|
if (!sfp->gpio_irq[i])
|
|
continue;
|
|
|
|
devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
|
|
}
|
|
|
|
cancel_delayed_work_sync(&sfp->poll);
|
|
cancel_delayed_work_sync(&sfp->timeout);
|
|
}
|
|
|
|
static struct platform_driver sfp_driver = {
|
|
.probe = sfp_probe,
|
|
.remove_new = sfp_remove,
|
|
.shutdown = sfp_shutdown,
|
|
.driver = {
|
|
.name = "sfp",
|
|
.of_match_table = sfp_of_match,
|
|
},
|
|
};
|
|
|
|
static int sfp_init(void)
|
|
{
|
|
poll_jiffies = msecs_to_jiffies(100);
|
|
|
|
return platform_driver_register(&sfp_driver);
|
|
}
|
|
module_init(sfp_init);
|
|
|
|
static void sfp_exit(void)
|
|
{
|
|
platform_driver_unregister(&sfp_driver);
|
|
}
|
|
module_exit(sfp_exit);
|
|
|
|
MODULE_ALIAS("platform:sfp");
|
|
MODULE_AUTHOR("Russell King");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("SFP cage support");
|