mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 00:52:01 +00:00
9af993a926
Yes! A mere 120 c_p_a() fixing and rewriting patches later, we are now confident that we can enable UC by default for ioremap(), on x86 too. Every other architectures was doing this already. Doing so makes Linux more robust against MTRR mixups (which might go unnoticed if BIOS writers test other OSs only - where PAT might override bad MTRRs defaults). Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
298 lines
7.8 KiB
C
298 lines
7.8 KiB
C
#ifndef _ASM_IO_H
|
|
#define _ASM_IO_H
|
|
|
|
|
|
/*
|
|
* This file contains the definitions for the x86 IO instructions
|
|
* inb/inw/inl/outb/outw/outl and the "string versions" of the same
|
|
* (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
|
|
* versions of the single-IO instructions (inb_p/inw_p/..).
|
|
*
|
|
* This file is not meant to be obfuscating: it's just complicated
|
|
* to (a) handle it all in a way that makes gcc able to optimize it
|
|
* as well as possible and (b) trying to avoid writing the same thing
|
|
* over and over again with slight variations and possibly making a
|
|
* mistake somewhere.
|
|
*/
|
|
|
|
/*
|
|
* Thanks to James van Artsdalen for a better timing-fix than
|
|
* the two short jumps: using outb's to a nonexistent port seems
|
|
* to guarantee better timings even on fast machines.
|
|
*
|
|
* On the other hand, I'd like to be sure of a non-existent port:
|
|
* I feel a bit unsafe about using 0x80 (should be safe, though)
|
|
*
|
|
* Linus
|
|
*/
|
|
|
|
/*
|
|
* Bit simplified and optimized by Jan Hubicka
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
|
|
*
|
|
* isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
|
|
* isa_read[wl] and isa_write[wl] fixed
|
|
* - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
|
*/
|
|
|
|
extern void native_io_delay(void);
|
|
|
|
extern int io_delay_type;
|
|
extern void io_delay_init(void);
|
|
|
|
#if defined(CONFIG_PARAVIRT)
|
|
#include <asm/paravirt.h>
|
|
#else
|
|
|
|
static inline void slow_down_io(void)
|
|
{
|
|
native_io_delay();
|
|
#ifdef REALLY_SLOW_IO
|
|
native_io_delay();
|
|
native_io_delay();
|
|
native_io_delay();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Talk about misusing macros..
|
|
*/
|
|
#define __OUT1(s,x) \
|
|
static inline void out##s(unsigned x value, unsigned short port) {
|
|
|
|
#define __OUT2(s,s1,s2) \
|
|
__asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1"
|
|
|
|
#ifndef REALLY_SLOW_IO
|
|
#define REALLY_SLOW_IO
|
|
#define UNSET_REALLY_SLOW_IO
|
|
#endif
|
|
|
|
#define __OUT(s,s1,x) \
|
|
__OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \
|
|
__OUT1(s##_p, x) __OUT2(s, s1, "w") : : "a" (value), "Nd" (port)); \
|
|
slow_down_io(); }
|
|
|
|
#define __IN1(s) \
|
|
static inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v;
|
|
|
|
#define __IN2(s,s1,s2) \
|
|
__asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0"
|
|
|
|
#define __IN(s,s1,i...) \
|
|
__IN1(s) __IN2(s, s1, "w") : "=a" (_v) : "Nd" (port), ##i); return _v; } \
|
|
__IN1(s##_p) __IN2(s, s1, "w") : "=a" (_v) : "Nd" (port), ##i); \
|
|
slow_down_io(); return _v; }
|
|
|
|
#ifdef UNSET_REALLY_SLOW_IO
|
|
#undef REALLY_SLOW_IO
|
|
#endif
|
|
|
|
#define __INS(s) \
|
|
static inline void ins##s(unsigned short port, void * addr, unsigned long count) \
|
|
{ __asm__ __volatile__ ("rep ; ins" #s \
|
|
: "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
|
|
|
|
#define __OUTS(s) \
|
|
static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \
|
|
{ __asm__ __volatile__ ("rep ; outs" #s \
|
|
: "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
|
|
|
|
#define RETURN_TYPE unsigned char
|
|
__IN(b,"")
|
|
#undef RETURN_TYPE
|
|
#define RETURN_TYPE unsigned short
|
|
__IN(w,"")
|
|
#undef RETURN_TYPE
|
|
#define RETURN_TYPE unsigned int
|
|
__IN(l,"")
|
|
#undef RETURN_TYPE
|
|
|
|
__OUT(b,"b",char)
|
|
__OUT(w,"w",short)
|
|
__OUT(l,,int)
|
|
|
|
__INS(b)
|
|
__INS(w)
|
|
__INS(l)
|
|
|
|
__OUTS(b)
|
|
__OUTS(w)
|
|
__OUTS(l)
|
|
|
|
#define IO_SPACE_LIMIT 0xffff
|
|
|
|
#if defined(__KERNEL__) && defined(__x86_64__)
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#ifndef __i386__
|
|
/*
|
|
* Change virtual addresses to physical addresses and vv.
|
|
* These are pretty trivial
|
|
*/
|
|
static inline unsigned long virt_to_phys(volatile void * address)
|
|
{
|
|
return __pa(address);
|
|
}
|
|
|
|
static inline void * phys_to_virt(unsigned long address)
|
|
{
|
|
return __va(address);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Change "struct page" to physical address.
|
|
*/
|
|
#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
|
|
|
|
#include <asm-generic/iomap.h>
|
|
|
|
extern void *early_ioremap(unsigned long addr, unsigned long size);
|
|
extern void early_iounmap(void *addr, unsigned long size);
|
|
|
|
/*
|
|
* This one maps high address device memory and turns off caching for that area.
|
|
* it's useful if some control registers are in such an area and write combining
|
|
* or read caching is not desirable:
|
|
*/
|
|
extern void __iomem *ioremap_nocache(unsigned long offset, unsigned long size);
|
|
extern void __iomem *ioremap_cache(unsigned long offset, unsigned long size);
|
|
|
|
/*
|
|
* The default ioremap() behavior is non-cached:
|
|
*/
|
|
static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
|
|
{
|
|
return ioremap_nocache(offset, size);
|
|
}
|
|
|
|
extern void iounmap(volatile void __iomem *addr);
|
|
|
|
extern void __iomem *fix_ioremap(unsigned idx, unsigned long phys);
|
|
|
|
/*
|
|
* ISA I/O bus memory addresses are 1:1 with the physical address.
|
|
*/
|
|
#define isa_virt_to_bus virt_to_phys
|
|
#define isa_page_to_bus page_to_phys
|
|
#define isa_bus_to_virt phys_to_virt
|
|
|
|
/*
|
|
* However PCI ones are not necessarily 1:1 and therefore these interfaces
|
|
* are forbidden in portable PCI drivers.
|
|
*
|
|
* Allow them on x86 for legacy drivers, though.
|
|
*/
|
|
#define virt_to_bus virt_to_phys
|
|
#define bus_to_virt phys_to_virt
|
|
|
|
/*
|
|
* readX/writeX() are used to access memory mapped devices. On some
|
|
* architectures the memory mapped IO stuff needs to be accessed
|
|
* differently. On the x86 architecture, we just read/write the
|
|
* memory location directly.
|
|
*/
|
|
|
|
static inline __u8 __readb(const volatile void __iomem *addr)
|
|
{
|
|
return *(__force volatile __u8 *)addr;
|
|
}
|
|
static inline __u16 __readw(const volatile void __iomem *addr)
|
|
{
|
|
return *(__force volatile __u16 *)addr;
|
|
}
|
|
static __always_inline __u32 __readl(const volatile void __iomem *addr)
|
|
{
|
|
return *(__force volatile __u32 *)addr;
|
|
}
|
|
static inline __u64 __readq(const volatile void __iomem *addr)
|
|
{
|
|
return *(__force volatile __u64 *)addr;
|
|
}
|
|
#define readb(x) __readb(x)
|
|
#define readw(x) __readw(x)
|
|
#define readl(x) __readl(x)
|
|
#define readq(x) __readq(x)
|
|
#define readb_relaxed(a) readb(a)
|
|
#define readw_relaxed(a) readw(a)
|
|
#define readl_relaxed(a) readl(a)
|
|
#define readq_relaxed(a) readq(a)
|
|
#define __raw_readb readb
|
|
#define __raw_readw readw
|
|
#define __raw_readl readl
|
|
#define __raw_readq readq
|
|
|
|
#define mmiowb()
|
|
|
|
static inline void __writel(__u32 b, volatile void __iomem *addr)
|
|
{
|
|
*(__force volatile __u32 *)addr = b;
|
|
}
|
|
static inline void __writeq(__u64 b, volatile void __iomem *addr)
|
|
{
|
|
*(__force volatile __u64 *)addr = b;
|
|
}
|
|
static inline void __writeb(__u8 b, volatile void __iomem *addr)
|
|
{
|
|
*(__force volatile __u8 *)addr = b;
|
|
}
|
|
static inline void __writew(__u16 b, volatile void __iomem *addr)
|
|
{
|
|
*(__force volatile __u16 *)addr = b;
|
|
}
|
|
#define writeq(val,addr) __writeq((val),(addr))
|
|
#define writel(val,addr) __writel((val),(addr))
|
|
#define writew(val,addr) __writew((val),(addr))
|
|
#define writeb(val,addr) __writeb((val),(addr))
|
|
#define __raw_writeb writeb
|
|
#define __raw_writew writew
|
|
#define __raw_writel writel
|
|
#define __raw_writeq writeq
|
|
|
|
void __memcpy_fromio(void*,unsigned long,unsigned);
|
|
void __memcpy_toio(unsigned long,const void*,unsigned);
|
|
|
|
static inline void memcpy_fromio(void *to, const volatile void __iomem *from, unsigned len)
|
|
{
|
|
__memcpy_fromio(to,(unsigned long)from,len);
|
|
}
|
|
static inline void memcpy_toio(volatile void __iomem *to, const void *from, unsigned len)
|
|
{
|
|
__memcpy_toio((unsigned long)to,from,len);
|
|
}
|
|
|
|
void memset_io(volatile void __iomem *a, int b, size_t c);
|
|
|
|
/*
|
|
* ISA space is 'always mapped' on a typical x86 system, no need to
|
|
* explicitly ioremap() it. The fact that the ISA IO space is mapped
|
|
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
|
|
* are physical addresses. The following constant pointer can be
|
|
* used as the IO-area pointer (it can be iounmapped as well, so the
|
|
* analogy with PCI is quite large):
|
|
*/
|
|
#define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
|
|
|
|
#define flush_write_buffers()
|
|
|
|
extern int iommu_bio_merge;
|
|
#define BIO_VMERGE_BOUNDARY iommu_bio_merge
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
/*
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
*/
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif
|