linux/fs/ext4/super.c
Justin Stitt 744a56389f ext4: replace deprecated strncpy with alternatives
strncpy() is deprecated for use on NUL-terminated destination strings
[1] and as such we should prefer more robust and less ambiguous string
interfaces.

in file.c:
s_last_mounted is marked as __nonstring meaning it does not need to be
NUL-terminated. Let's instead use strtomem_pad() to copy bytes from the
string source to the byte array destination -- while also ensuring to
pad with zeroes.

in ioctl.c:
We can drop the memset and size argument in favor of using the new
2-argument version of strscpy_pad() -- which was introduced with Commit
e6584c3964 ("string: Allow 2-argument strscpy()"). This guarantees
NUL-termination and NUL-padding on the destination buffer -- which seems
to be a requirement judging from this comment:

|	static int ext4_ioctl_getlabel(struct ext4_sb_info *sbi, char __user *user_label)
|	{
|		char label[EXT4_LABEL_MAX + 1];
|
|		/*
|		 * EXT4_LABEL_MAX must always be smaller than FSLABEL_MAX because
|		 * FSLABEL_MAX must include terminating null byte, while s_volume_name
|		 * does not have to.
|		 */

in super.c:
s_first_error_func is marked as __nonstring meaning we can take the same
approach as in file.c; just use strtomem_pad()

Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1]
Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2]
Link: https://github.com/KSPP/linux/issues/90
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Justin Stitt <justinstitt@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20240321-strncpy-fs-ext4-file-c-v1-1-36a6a09fef0c@google.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2024-05-02 23:55:10 -04:00

7446 lines
206 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ext4/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/parser.h>
#include <linux/buffer_head.h>
#include <linux/exportfs.h>
#include <linux/vfs.h>
#include <linux/random.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/quotaops.h>
#include <linux/seq_file.h>
#include <linux/ctype.h>
#include <linux/log2.h>
#include <linux/crc16.h>
#include <linux/dax.h>
#include <linux/uaccess.h>
#include <linux/iversion.h>
#include <linux/unicode.h>
#include <linux/part_stat.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/fsnotify.h>
#include <linux/fs_context.h>
#include <linux/fs_parser.h>
#include "ext4.h"
#include "ext4_extents.h" /* Needed for trace points definition */
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "mballoc.h"
#include "fsmap.h"
#define CREATE_TRACE_POINTS
#include <trace/events/ext4.h>
static struct ext4_lazy_init *ext4_li_info;
static DEFINE_MUTEX(ext4_li_mtx);
static struct ratelimit_state ext4_mount_msg_ratelimit;
static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
unsigned long journal_devnum);
static int ext4_show_options(struct seq_file *seq, struct dentry *root);
static void ext4_update_super(struct super_block *sb);
static int ext4_commit_super(struct super_block *sb);
static int ext4_mark_recovery_complete(struct super_block *sb,
struct ext4_super_block *es);
static int ext4_clear_journal_err(struct super_block *sb,
struct ext4_super_block *es);
static int ext4_sync_fs(struct super_block *sb, int wait);
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
static int ext4_unfreeze(struct super_block *sb);
static int ext4_freeze(struct super_block *sb);
static inline int ext2_feature_set_ok(struct super_block *sb);
static inline int ext3_feature_set_ok(struct super_block *sb);
static void ext4_destroy_lazyinit_thread(void);
static void ext4_unregister_li_request(struct super_block *sb);
static void ext4_clear_request_list(void);
static struct inode *ext4_get_journal_inode(struct super_block *sb,
unsigned int journal_inum);
static int ext4_validate_options(struct fs_context *fc);
static int ext4_check_opt_consistency(struct fs_context *fc,
struct super_block *sb);
static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
static int ext4_get_tree(struct fs_context *fc);
static int ext4_reconfigure(struct fs_context *fc);
static void ext4_fc_free(struct fs_context *fc);
static int ext4_init_fs_context(struct fs_context *fc);
static void ext4_kill_sb(struct super_block *sb);
static const struct fs_parameter_spec ext4_param_specs[];
/*
* Lock ordering
*
* page fault path:
* mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
* -> page lock -> i_data_sem (rw)
*
* buffered write path:
* sb_start_write -> i_mutex -> mmap_lock
* sb_start_write -> i_mutex -> transaction start -> page lock ->
* i_data_sem (rw)
*
* truncate:
* sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
* page lock
* sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
* i_data_sem (rw)
*
* direct IO:
* sb_start_write -> i_mutex -> mmap_lock
* sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
*
* writepages:
* transaction start -> page lock(s) -> i_data_sem (rw)
*/
static const struct fs_context_operations ext4_context_ops = {
.parse_param = ext4_parse_param,
.get_tree = ext4_get_tree,
.reconfigure = ext4_reconfigure,
.free = ext4_fc_free,
};
#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
static struct file_system_type ext2_fs_type = {
.owner = THIS_MODULE,
.name = "ext2",
.init_fs_context = ext4_init_fs_context,
.parameters = ext4_param_specs,
.kill_sb = ext4_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ext2");
MODULE_ALIAS("ext2");
#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
#else
#define IS_EXT2_SB(sb) (0)
#endif
static struct file_system_type ext3_fs_type = {
.owner = THIS_MODULE,
.name = "ext3",
.init_fs_context = ext4_init_fs_context,
.parameters = ext4_param_specs,
.kill_sb = ext4_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ext3");
MODULE_ALIAS("ext3");
#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
bh_end_io_t *end_io)
{
/*
* buffer's verified bit is no longer valid after reading from
* disk again due to write out error, clear it to make sure we
* recheck the buffer contents.
*/
clear_buffer_verified(bh);
bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
get_bh(bh);
submit_bh(REQ_OP_READ | op_flags, bh);
}
void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
bh_end_io_t *end_io)
{
BUG_ON(!buffer_locked(bh));
if (ext4_buffer_uptodate(bh)) {
unlock_buffer(bh);
return;
}
__ext4_read_bh(bh, op_flags, end_io);
}
int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
{
BUG_ON(!buffer_locked(bh));
if (ext4_buffer_uptodate(bh)) {
unlock_buffer(bh);
return 0;
}
__ext4_read_bh(bh, op_flags, end_io);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return 0;
return -EIO;
}
int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
{
lock_buffer(bh);
if (!wait) {
ext4_read_bh_nowait(bh, op_flags, NULL);
return 0;
}
return ext4_read_bh(bh, op_flags, NULL);
}
/*
* This works like __bread_gfp() except it uses ERR_PTR for error
* returns. Currently with sb_bread it's impossible to distinguish
* between ENOMEM and EIO situations (since both result in a NULL
* return.
*/
static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
sector_t block,
blk_opf_t op_flags, gfp_t gfp)
{
struct buffer_head *bh;
int ret;
bh = sb_getblk_gfp(sb, block, gfp);
if (bh == NULL)
return ERR_PTR(-ENOMEM);
if (ext4_buffer_uptodate(bh))
return bh;
ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
if (ret) {
put_bh(bh);
return ERR_PTR(ret);
}
return bh;
}
struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
blk_opf_t op_flags)
{
gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
~__GFP_FS) | __GFP_MOVABLE;
return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
}
struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
sector_t block)
{
gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
~__GFP_FS);
return __ext4_sb_bread_gfp(sb, block, 0, gfp);
}
void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
{
struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
if (likely(bh)) {
if (trylock_buffer(bh))
ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
brelse(bh);
}
}
static int ext4_verify_csum_type(struct super_block *sb,
struct ext4_super_block *es)
{
if (!ext4_has_feature_metadata_csum(sb))
return 1;
return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
}
__le32 ext4_superblock_csum(struct super_block *sb,
struct ext4_super_block *es)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
int offset = offsetof(struct ext4_super_block, s_checksum);
__u32 csum;
csum = ext4_chksum(sbi, ~0, (char *)es, offset);
return cpu_to_le32(csum);
}
static int ext4_superblock_csum_verify(struct super_block *sb,
struct ext4_super_block *es)
{
if (!ext4_has_metadata_csum(sb))
return 1;
return es->s_checksum == ext4_superblock_csum(sb, es);
}
void ext4_superblock_csum_set(struct super_block *sb)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
if (!ext4_has_metadata_csum(sb))
return;
es->s_checksum = ext4_superblock_csum(sb, es);
}
ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_block_bitmap_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
}
ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_inode_bitmap_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
}
ext4_fsblk_t ext4_inode_table(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_inode_table_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
}
__u32 ext4_free_group_clusters(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_free_blocks_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
}
__u32 ext4_free_inodes_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_free_inodes_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
}
__u32 ext4_used_dirs_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_used_dirs_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
}
__u32 ext4_itable_unused_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_itable_unused_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
}
void ext4_block_bitmap_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
}
void ext4_inode_bitmap_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
}
void ext4_inode_table_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
}
void ext4_free_group_clusters_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
}
void ext4_free_inodes_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
}
void ext4_used_dirs_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
}
void ext4_itable_unused_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
}
static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
{
now = clamp_val(now, 0, (1ull << 40) - 1);
*lo = cpu_to_le32(lower_32_bits(now));
*hi = upper_32_bits(now);
}
static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
{
return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
}
#define ext4_update_tstamp(es, tstamp) \
__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
ktime_get_real_seconds())
#define ext4_get_tstamp(es, tstamp) \
__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
/*
* The ext4_maybe_update_superblock() function checks and updates the
* superblock if needed.
*
* This function is designed to update the on-disk superblock only under
* certain conditions to prevent excessive disk writes and unnecessary
* waking of the disk from sleep. The superblock will be updated if:
* 1. More than an hour has passed since the last superblock update, and
* 2. More than 16MB have been written since the last superblock update.
*
* @sb: The superblock
*/
static void ext4_maybe_update_superblock(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
journal_t *journal = sbi->s_journal;
time64_t now;
__u64 last_update;
__u64 lifetime_write_kbytes;
__u64 diff_size;
if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
!journal || (journal->j_flags & JBD2_UNMOUNT))
return;
now = ktime_get_real_seconds();
last_update = ext4_get_tstamp(es, s_wtime);
if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
return;
lifetime_write_kbytes = sbi->s_kbytes_written +
((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
sbi->s_sectors_written_start) >> 1);
/* Get the number of kilobytes not written to disk to account
* for statistics and compare with a multiple of 16 MB. This
* is used to determine when the next superblock commit should
* occur (i.e. not more often than once per 16MB if there was
* less written in an hour).
*/
diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
}
/*
* The del_gendisk() function uninitializes the disk-specific data
* structures, including the bdi structure, without telling anyone
* else. Once this happens, any attempt to call mark_buffer_dirty()
* (for example, by ext4_commit_super), will cause a kernel OOPS.
* This is a kludge to prevent these oops until we can put in a proper
* hook in del_gendisk() to inform the VFS and file system layers.
*/
static int block_device_ejected(struct super_block *sb)
{
struct inode *bd_inode = sb->s_bdev->bd_inode;
struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
return bdi->dev == NULL;
}
static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
{
struct super_block *sb = journal->j_private;
struct ext4_sb_info *sbi = EXT4_SB(sb);
int error = is_journal_aborted(journal);
struct ext4_journal_cb_entry *jce;
BUG_ON(txn->t_state == T_FINISHED);
ext4_process_freed_data(sb, txn->t_tid);
ext4_maybe_update_superblock(sb);
spin_lock(&sbi->s_md_lock);
while (!list_empty(&txn->t_private_list)) {
jce = list_entry(txn->t_private_list.next,
struct ext4_journal_cb_entry, jce_list);
list_del_init(&jce->jce_list);
spin_unlock(&sbi->s_md_lock);
jce->jce_func(sb, jce, error);
spin_lock(&sbi->s_md_lock);
}
spin_unlock(&sbi->s_md_lock);
}
/*
* This writepage callback for write_cache_pages()
* takes care of a few cases after page cleaning.
*
* write_cache_pages() already checks for dirty pages
* and calls clear_page_dirty_for_io(), which we want,
* to write protect the pages.
*
* However, we may have to redirty a page (see below.)
*/
static int ext4_journalled_writepage_callback(struct folio *folio,
struct writeback_control *wbc,
void *data)
{
transaction_t *transaction = (transaction_t *) data;
struct buffer_head *bh, *head;
struct journal_head *jh;
bh = head = folio_buffers(folio);
do {
/*
* We have to redirty a page in these cases:
* 1) If buffer is dirty, it means the page was dirty because it
* contains a buffer that needs checkpointing. So the dirty bit
* needs to be preserved so that checkpointing writes the buffer
* properly.
* 2) If buffer is not part of the committing transaction
* (we may have just accidentally come across this buffer because
* inode range tracking is not exact) or if the currently running
* transaction already contains this buffer as well, dirty bit
* needs to be preserved so that the buffer gets writeprotected
* properly on running transaction's commit.
*/
jh = bh2jh(bh);
if (buffer_dirty(bh) ||
(jh && (jh->b_transaction != transaction ||
jh->b_next_transaction))) {
folio_redirty_for_writepage(wbc, folio);
goto out;
}
} while ((bh = bh->b_this_page) != head);
out:
return AOP_WRITEPAGE_ACTIVATE;
}
static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
{
struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.range_start = jinode->i_dirty_start,
.range_end = jinode->i_dirty_end,
};
return write_cache_pages(mapping, &wbc,
ext4_journalled_writepage_callback,
jinode->i_transaction);
}
static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
{
int ret;
if (ext4_should_journal_data(jinode->i_vfs_inode))
ret = ext4_journalled_submit_inode_data_buffers(jinode);
else
ret = ext4_normal_submit_inode_data_buffers(jinode);
return ret;
}
static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
{
int ret = 0;
if (!ext4_should_journal_data(jinode->i_vfs_inode))
ret = jbd2_journal_finish_inode_data_buffers(jinode);
return ret;
}
static bool system_going_down(void)
{
return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
|| system_state == SYSTEM_RESTART;
}
struct ext4_err_translation {
int code;
int errno;
};
#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
static struct ext4_err_translation err_translation[] = {
EXT4_ERR_TRANSLATE(EIO),
EXT4_ERR_TRANSLATE(ENOMEM),
EXT4_ERR_TRANSLATE(EFSBADCRC),
EXT4_ERR_TRANSLATE(EFSCORRUPTED),
EXT4_ERR_TRANSLATE(ENOSPC),
EXT4_ERR_TRANSLATE(ENOKEY),
EXT4_ERR_TRANSLATE(EROFS),
EXT4_ERR_TRANSLATE(EFBIG),
EXT4_ERR_TRANSLATE(EEXIST),
EXT4_ERR_TRANSLATE(ERANGE),
EXT4_ERR_TRANSLATE(EOVERFLOW),
EXT4_ERR_TRANSLATE(EBUSY),
EXT4_ERR_TRANSLATE(ENOTDIR),
EXT4_ERR_TRANSLATE(ENOTEMPTY),
EXT4_ERR_TRANSLATE(ESHUTDOWN),
EXT4_ERR_TRANSLATE(EFAULT),
};
static int ext4_errno_to_code(int errno)
{
int i;
for (i = 0; i < ARRAY_SIZE(err_translation); i++)
if (err_translation[i].errno == errno)
return err_translation[i].code;
return EXT4_ERR_UNKNOWN;
}
static void save_error_info(struct super_block *sb, int error,
__u32 ino, __u64 block,
const char *func, unsigned int line)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
/* We default to EFSCORRUPTED error... */
if (error == 0)
error = EFSCORRUPTED;
spin_lock(&sbi->s_error_lock);
sbi->s_add_error_count++;
sbi->s_last_error_code = error;
sbi->s_last_error_line = line;
sbi->s_last_error_ino = ino;
sbi->s_last_error_block = block;
sbi->s_last_error_func = func;
sbi->s_last_error_time = ktime_get_real_seconds();
if (!sbi->s_first_error_time) {
sbi->s_first_error_code = error;
sbi->s_first_error_line = line;
sbi->s_first_error_ino = ino;
sbi->s_first_error_block = block;
sbi->s_first_error_func = func;
sbi->s_first_error_time = sbi->s_last_error_time;
}
spin_unlock(&sbi->s_error_lock);
}
/* Deal with the reporting of failure conditions on a filesystem such as
* inconsistencies detected or read IO failures.
*
* On ext2, we can store the error state of the filesystem in the
* superblock. That is not possible on ext4, because we may have other
* write ordering constraints on the superblock which prevent us from
* writing it out straight away; and given that the journal is about to
* be aborted, we can't rely on the current, or future, transactions to
* write out the superblock safely.
*
* We'll just use the jbd2_journal_abort() error code to record an error in
* the journal instead. On recovery, the journal will complain about
* that error until we've noted it down and cleared it.
*
* If force_ro is set, we unconditionally force the filesystem into an
* ABORT|READONLY state, unless the error response on the fs has been set to
* panic in which case we take the easy way out and panic immediately. This is
* used to deal with unrecoverable failures such as journal IO errors or ENOMEM
* at a critical moment in log management.
*/
static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
__u32 ino, __u64 block,
const char *func, unsigned int line)
{
journal_t *journal = EXT4_SB(sb)->s_journal;
bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
if (test_opt(sb, WARN_ON_ERROR))
WARN_ON_ONCE(1);
if (!continue_fs && !sb_rdonly(sb)) {
set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
if (journal)
jbd2_journal_abort(journal, -EIO);
}
if (!bdev_read_only(sb->s_bdev)) {
save_error_info(sb, error, ino, block, func, line);
/*
* In case the fs should keep running, we need to writeout
* superblock through the journal. Due to lock ordering
* constraints, it may not be safe to do it right here so we
* defer superblock flushing to a workqueue.
*/
if (continue_fs && journal)
schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
else
ext4_commit_super(sb);
}
/*
* We force ERRORS_RO behavior when system is rebooting. Otherwise we
* could panic during 'reboot -f' as the underlying device got already
* disabled.
*/
if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
panic("EXT4-fs (device %s): panic forced after error\n",
sb->s_id);
}
if (sb_rdonly(sb) || continue_fs)
return;
ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
/*
* Make sure updated value of ->s_mount_flags will be visible before
* ->s_flags update
*/
smp_wmb();
sb->s_flags |= SB_RDONLY;
}
static void update_super_work(struct work_struct *work)
{
struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
s_sb_upd_work);
journal_t *journal = sbi->s_journal;
handle_t *handle;
/*
* If the journal is still running, we have to write out superblock
* through the journal to avoid collisions of other journalled sb
* updates.
*
* We use directly jbd2 functions here to avoid recursing back into
* ext4 error handling code during handling of previous errors.
*/
if (!sb_rdonly(sbi->s_sb) && journal) {
struct buffer_head *sbh = sbi->s_sbh;
bool call_notify_err = false;
handle = jbd2_journal_start(journal, 1);
if (IS_ERR(handle))
goto write_directly;
if (jbd2_journal_get_write_access(handle, sbh)) {
jbd2_journal_stop(handle);
goto write_directly;
}
if (sbi->s_add_error_count > 0)
call_notify_err = true;
ext4_update_super(sbi->s_sb);
if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
"superblock detected");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
if (jbd2_journal_dirty_metadata(handle, sbh)) {
jbd2_journal_stop(handle);
goto write_directly;
}
jbd2_journal_stop(handle);
if (call_notify_err)
ext4_notify_error_sysfs(sbi);
return;
}
write_directly:
/*
* Write through journal failed. Write sb directly to get error info
* out and hope for the best.
*/
ext4_commit_super(sbi->s_sb);
ext4_notify_error_sysfs(sbi);
}
#define ext4_error_ratelimit(sb) \
___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
"EXT4-fs error")
void __ext4_error(struct super_block *sb, const char *function,
unsigned int line, bool force_ro, int error, __u64 block,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (unlikely(ext4_forced_shutdown(sb)))
return;
trace_ext4_error(sb, function, line);
if (ext4_error_ratelimit(sb)) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
sb->s_id, function, line, current->comm, &vaf);
va_end(args);
}
fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
ext4_handle_error(sb, force_ro, error, 0, block, function, line);
}
void __ext4_error_inode(struct inode *inode, const char *function,
unsigned int line, ext4_fsblk_t block, int error,
const char *fmt, ...)
{
va_list args;
struct va_format vaf;
if (unlikely(ext4_forced_shutdown(inode->i_sb)))
return;
trace_ext4_error(inode->i_sb, function, line);
if (ext4_error_ratelimit(inode->i_sb)) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (block)
printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
"inode #%lu: block %llu: comm %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
block, current->comm, &vaf);
else
printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
"inode #%lu: comm %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
current->comm, &vaf);
va_end(args);
}
fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
function, line);
}
void __ext4_error_file(struct file *file, const char *function,
unsigned int line, ext4_fsblk_t block,
const char *fmt, ...)
{
va_list args;
struct va_format vaf;
struct inode *inode = file_inode(file);
char pathname[80], *path;
if (unlikely(ext4_forced_shutdown(inode->i_sb)))
return;
trace_ext4_error(inode->i_sb, function, line);
if (ext4_error_ratelimit(inode->i_sb)) {
path = file_path(file, pathname, sizeof(pathname));
if (IS_ERR(path))
path = "(unknown)";
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (block)
printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: inode #%lu: "
"block %llu: comm %s: path %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
block, current->comm, path, &vaf);
else
printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: inode #%lu: "
"comm %s: path %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
current->comm, path, &vaf);
va_end(args);
}
fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
function, line);
}
const char *ext4_decode_error(struct super_block *sb, int errno,
char nbuf[16])
{
char *errstr = NULL;
switch (errno) {
case -EFSCORRUPTED:
errstr = "Corrupt filesystem";
break;
case -EFSBADCRC:
errstr = "Filesystem failed CRC";
break;
case -EIO:
errstr = "IO failure";
break;
case -ENOMEM:
errstr = "Out of memory";
break;
case -EROFS:
if (!sb || (EXT4_SB(sb)->s_journal &&
EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
errstr = "Journal has aborted";
else
errstr = "Readonly filesystem";
break;
default:
/* If the caller passed in an extra buffer for unknown
* errors, textualise them now. Else we just return
* NULL. */
if (nbuf) {
/* Check for truncated error codes... */
if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
errstr = nbuf;
}
break;
}
return errstr;
}
/* __ext4_std_error decodes expected errors from journaling functions
* automatically and invokes the appropriate error response. */
void __ext4_std_error(struct super_block *sb, const char *function,
unsigned int line, int errno)
{
char nbuf[16];
const char *errstr;
if (unlikely(ext4_forced_shutdown(sb)))
return;
/* Special case: if the error is EROFS, and we're not already
* inside a transaction, then there's really no point in logging
* an error. */
if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
return;
if (ext4_error_ratelimit(sb)) {
errstr = ext4_decode_error(sb, errno, nbuf);
printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
sb->s_id, function, line, errstr);
}
fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
ext4_handle_error(sb, false, -errno, 0, 0, function, line);
}
void __ext4_msg(struct super_block *sb,
const char *prefix, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (sb) {
atomic_inc(&EXT4_SB(sb)->s_msg_count);
if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
"EXT4-fs"))
return;
}
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (sb)
printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
else
printk("%sEXT4-fs: %pV\n", prefix, &vaf);
va_end(args);
}
static int ext4_warning_ratelimit(struct super_block *sb)
{
atomic_inc(&EXT4_SB(sb)->s_warning_count);
return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
"EXT4-fs warning");
}
void __ext4_warning(struct super_block *sb, const char *function,
unsigned int line, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (!ext4_warning_ratelimit(sb))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
sb->s_id, function, line, &vaf);
va_end(args);
}
void __ext4_warning_inode(const struct inode *inode, const char *function,
unsigned int line, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (!ext4_warning_ratelimit(inode->i_sb))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
"inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
function, line, inode->i_ino, current->comm, &vaf);
va_end(args);
}
void __ext4_grp_locked_error(const char *function, unsigned int line,
struct super_block *sb, ext4_group_t grp,
unsigned long ino, ext4_fsblk_t block,
const char *fmt, ...)
__releases(bitlock)
__acquires(bitlock)
{
struct va_format vaf;
va_list args;
if (unlikely(ext4_forced_shutdown(sb)))
return;
trace_ext4_error(sb, function, line);
if (ext4_error_ratelimit(sb)) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
sb->s_id, function, line, grp);
if (ino)
printk(KERN_CONT "inode %lu: ", ino);
if (block)
printk(KERN_CONT "block %llu:",
(unsigned long long) block);
printk(KERN_CONT "%pV\n", &vaf);
va_end(args);
}
if (test_opt(sb, ERRORS_CONT)) {
if (test_opt(sb, WARN_ON_ERROR))
WARN_ON_ONCE(1);
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
if (!bdev_read_only(sb->s_bdev)) {
save_error_info(sb, EFSCORRUPTED, ino, block, function,
line);
schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
}
return;
}
ext4_unlock_group(sb, grp);
ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
/*
* We only get here in the ERRORS_RO case; relocking the group
* may be dangerous, but nothing bad will happen since the
* filesystem will have already been marked read/only and the
* journal has been aborted. We return 1 as a hint to callers
* who might what to use the return value from
* ext4_grp_locked_error() to distinguish between the
* ERRORS_CONT and ERRORS_RO case, and perhaps return more
* aggressively from the ext4 function in question, with a
* more appropriate error code.
*/
ext4_lock_group(sb, grp);
return;
}
void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
ext4_group_t group,
unsigned int flags)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
int ret;
if (!grp || !gdp)
return;
if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
&grp->bb_state);
if (!ret)
percpu_counter_sub(&sbi->s_freeclusters_counter,
grp->bb_free);
}
if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
&grp->bb_state);
if (!ret && gdp) {
int count;
count = ext4_free_inodes_count(sb, gdp);
percpu_counter_sub(&sbi->s_freeinodes_counter,
count);
}
}
}
void ext4_update_dynamic_rev(struct super_block *sb)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
return;
ext4_warning(sb,
"updating to rev %d because of new feature flag, "
"running e2fsck is recommended",
EXT4_DYNAMIC_REV);
es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
/* leave es->s_feature_*compat flags alone */
/* es->s_uuid will be set by e2fsck if empty */
/*
* The rest of the superblock fields should be zero, and if not it
* means they are likely already in use, so leave them alone. We
* can leave it up to e2fsck to clean up any inconsistencies there.
*/
}
static inline struct inode *orphan_list_entry(struct list_head *l)
{
return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
}
static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
{
struct list_head *l;
ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
le32_to_cpu(sbi->s_es->s_last_orphan));
printk(KERN_ERR "sb_info orphan list:\n");
list_for_each(l, &sbi->s_orphan) {
struct inode *inode = orphan_list_entry(l);
printk(KERN_ERR " "
"inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
inode->i_sb->s_id, inode->i_ino, inode,
inode->i_mode, inode->i_nlink,
NEXT_ORPHAN(inode));
}
}
#ifdef CONFIG_QUOTA
static int ext4_quota_off(struct super_block *sb, int type);
static inline void ext4_quotas_off(struct super_block *sb, int type)
{
BUG_ON(type > EXT4_MAXQUOTAS);
/* Use our quota_off function to clear inode flags etc. */
for (type--; type >= 0; type--)
ext4_quota_off(sb, type);
}
/*
* This is a helper function which is used in the mount/remount
* codepaths (which holds s_umount) to fetch the quota file name.
*/
static inline char *get_qf_name(struct super_block *sb,
struct ext4_sb_info *sbi,
int type)
{
return rcu_dereference_protected(sbi->s_qf_names[type],
lockdep_is_held(&sb->s_umount));
}
#else
static inline void ext4_quotas_off(struct super_block *sb, int type)
{
}
#endif
static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
{
ext4_fsblk_t block;
int err;
block = ext4_count_free_clusters(sbi->s_sb);
ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
GFP_KERNEL);
if (!err) {
unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
GFP_KERNEL);
}
if (!err)
err = percpu_counter_init(&sbi->s_dirs_counter,
ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
if (!err)
err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
GFP_KERNEL);
if (!err)
err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
GFP_KERNEL);
if (!err)
err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
if (err)
ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
return err;
}
static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
{
percpu_counter_destroy(&sbi->s_freeclusters_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
percpu_free_rwsem(&sbi->s_writepages_rwsem);
}
static void ext4_group_desc_free(struct ext4_sb_info *sbi)
{
struct buffer_head **group_desc;
int i;
rcu_read_lock();
group_desc = rcu_dereference(sbi->s_group_desc);
for (i = 0; i < sbi->s_gdb_count; i++)
brelse(group_desc[i]);
kvfree(group_desc);
rcu_read_unlock();
}
static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
{
struct flex_groups **flex_groups;
int i;
rcu_read_lock();
flex_groups = rcu_dereference(sbi->s_flex_groups);
if (flex_groups) {
for (i = 0; i < sbi->s_flex_groups_allocated; i++)
kvfree(flex_groups[i]);
kvfree(flex_groups);
}
rcu_read_unlock();
}
static void ext4_put_super(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
int aborted = 0;
int err;
/*
* Unregister sysfs before destroying jbd2 journal.
* Since we could still access attr_journal_task attribute via sysfs
* path which could have sbi->s_journal->j_task as NULL
* Unregister sysfs before flush sbi->s_sb_upd_work.
* Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
* read metadata verify failed then will queue error work.
* update_super_work will call start_this_handle may trigger
* BUG_ON.
*/
ext4_unregister_sysfs(sb);
if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
&sb->s_uuid);
ext4_unregister_li_request(sb);
ext4_quotas_off(sb, EXT4_MAXQUOTAS);
flush_work(&sbi->s_sb_upd_work);
destroy_workqueue(sbi->rsv_conversion_wq);
ext4_release_orphan_info(sb);
if (sbi->s_journal) {
aborted = is_journal_aborted(sbi->s_journal);
err = jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
if ((err < 0) && !aborted) {
ext4_abort(sb, -err, "Couldn't clean up the journal");
}
}
ext4_es_unregister_shrinker(sbi);
timer_shutdown_sync(&sbi->s_err_report);
ext4_release_system_zone(sb);
ext4_mb_release(sb);
ext4_ext_release(sb);
if (!sb_rdonly(sb) && !aborted) {
ext4_clear_feature_journal_needs_recovery(sb);
ext4_clear_feature_orphan_present(sb);
es->s_state = cpu_to_le16(sbi->s_mount_state);
}
if (!sb_rdonly(sb))
ext4_commit_super(sb);
ext4_group_desc_free(sbi);
ext4_flex_groups_free(sbi);
ext4_percpu_param_destroy(sbi);
#ifdef CONFIG_QUOTA
for (int i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(get_qf_name(sb, sbi, i));
#endif
/* Debugging code just in case the in-memory inode orphan list
* isn't empty. The on-disk one can be non-empty if we've
* detected an error and taken the fs readonly, but the
* in-memory list had better be clean by this point. */
if (!list_empty(&sbi->s_orphan))
dump_orphan_list(sb, sbi);
ASSERT(list_empty(&sbi->s_orphan));
sync_blockdev(sb->s_bdev);
invalidate_bdev(sb->s_bdev);
if (sbi->s_journal_bdev_file) {
/*
* Invalidate the journal device's buffers. We don't want them
* floating about in memory - the physical journal device may
* hotswapped, and it breaks the `ro-after' testing code.
*/
sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
}
ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
sbi->s_ea_inode_cache = NULL;
ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
sbi->s_ea_block_cache = NULL;
ext4_stop_mmpd(sbi);
brelse(sbi->s_sbh);
sb->s_fs_info = NULL;
/*
* Now that we are completely done shutting down the
* superblock, we need to actually destroy the kobject.
*/
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
kfree(sbi->s_blockgroup_lock);
fs_put_dax(sbi->s_daxdev, NULL);
fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
#if IS_ENABLED(CONFIG_UNICODE)
utf8_unload(sb->s_encoding);
#endif
kfree(sbi);
}
static struct kmem_cache *ext4_inode_cachep;
/*
* Called inside transaction, so use GFP_NOFS
*/
static struct inode *ext4_alloc_inode(struct super_block *sb)
{
struct ext4_inode_info *ei;
ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
inode_set_iversion(&ei->vfs_inode, 1);
ei->i_flags = 0;
spin_lock_init(&ei->i_raw_lock);
ei->i_prealloc_node = RB_ROOT;
atomic_set(&ei->i_prealloc_active, 0);
rwlock_init(&ei->i_prealloc_lock);
ext4_es_init_tree(&ei->i_es_tree);
rwlock_init(&ei->i_es_lock);
INIT_LIST_HEAD(&ei->i_es_list);
ei->i_es_all_nr = 0;
ei->i_es_shk_nr = 0;
ei->i_es_shrink_lblk = 0;
ei->i_reserved_data_blocks = 0;
spin_lock_init(&(ei->i_block_reservation_lock));
ext4_init_pending_tree(&ei->i_pending_tree);
#ifdef CONFIG_QUOTA
ei->i_reserved_quota = 0;
memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
#endif
ei->jinode = NULL;
INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
spin_lock_init(&ei->i_completed_io_lock);
ei->i_sync_tid = 0;
ei->i_datasync_tid = 0;
atomic_set(&ei->i_unwritten, 0);
INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
ext4_fc_init_inode(&ei->vfs_inode);
mutex_init(&ei->i_fc_lock);
return &ei->vfs_inode;
}
static int ext4_drop_inode(struct inode *inode)
{
int drop = generic_drop_inode(inode);
if (!drop)
drop = fscrypt_drop_inode(inode);
trace_ext4_drop_inode(inode, drop);
return drop;
}
static void ext4_free_in_core_inode(struct inode *inode)
{
fscrypt_free_inode(inode);
if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
pr_warn("%s: inode %ld still in fc list",
__func__, inode->i_ino);
}
kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
}
static void ext4_destroy_inode(struct inode *inode)
{
if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
ext4_msg(inode->i_sb, KERN_ERR,
"Inode %lu (%p): orphan list check failed!",
inode->i_ino, EXT4_I(inode));
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
EXT4_I(inode), sizeof(struct ext4_inode_info),
true);
dump_stack();
}
if (EXT4_I(inode)->i_reserved_data_blocks)
ext4_msg(inode->i_sb, KERN_ERR,
"Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
inode->i_ino, EXT4_I(inode),
EXT4_I(inode)->i_reserved_data_blocks);
}
static void ext4_shutdown(struct super_block *sb)
{
ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
}
static void init_once(void *foo)
{
struct ext4_inode_info *ei = foo;
INIT_LIST_HEAD(&ei->i_orphan);
init_rwsem(&ei->xattr_sem);
init_rwsem(&ei->i_data_sem);
inode_init_once(&ei->vfs_inode);
ext4_fc_init_inode(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
sizeof(struct ext4_inode_info), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
offsetof(struct ext4_inode_info, i_data),
sizeof_field(struct ext4_inode_info, i_data),
init_once);
if (ext4_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(ext4_inode_cachep);
}
void ext4_clear_inode(struct inode *inode)
{
ext4_fc_del(inode);
invalidate_inode_buffers(inode);
clear_inode(inode);
ext4_discard_preallocations(inode);
ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
dquot_drop(inode);
if (EXT4_I(inode)->jinode) {
jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
EXT4_I(inode)->jinode);
jbd2_free_inode(EXT4_I(inode)->jinode);
EXT4_I(inode)->jinode = NULL;
}
fscrypt_put_encryption_info(inode);
fsverity_cleanup_inode(inode);
}
static struct inode *ext4_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct inode *inode;
/*
* Currently we don't know the generation for parent directory, so
* a generation of 0 means "accept any"
*/
inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (generation && inode->i_generation != generation) {
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
ext4_nfs_get_inode);
}
static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
ext4_nfs_get_inode);
}
static int ext4_nfs_commit_metadata(struct inode *inode)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL
};
trace_ext4_nfs_commit_metadata(inode);
return ext4_write_inode(inode, &wbc);
}
#ifdef CONFIG_QUOTA
static const char * const quotatypes[] = INITQFNAMES;
#define QTYPE2NAME(t) (quotatypes[t])
static int ext4_write_dquot(struct dquot *dquot);
static int ext4_acquire_dquot(struct dquot *dquot);
static int ext4_release_dquot(struct dquot *dquot);
static int ext4_mark_dquot_dirty(struct dquot *dquot);
static int ext4_write_info(struct super_block *sb, int type);
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
const struct path *path);
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off);
static ssize_t ext4_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off);
static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
unsigned int flags);
static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
{
return EXT4_I(inode)->i_dquot;
}
static const struct dquot_operations ext4_quota_operations = {
.get_reserved_space = ext4_get_reserved_space,
.write_dquot = ext4_write_dquot,
.acquire_dquot = ext4_acquire_dquot,
.release_dquot = ext4_release_dquot,
.mark_dirty = ext4_mark_dquot_dirty,
.write_info = ext4_write_info,
.alloc_dquot = dquot_alloc,
.destroy_dquot = dquot_destroy,
.get_projid = ext4_get_projid,
.get_inode_usage = ext4_get_inode_usage,
.get_next_id = dquot_get_next_id,
};
static const struct quotactl_ops ext4_qctl_operations = {
.quota_on = ext4_quota_on,
.quota_off = ext4_quota_off,
.quota_sync = dquot_quota_sync,
.get_state = dquot_get_state,
.set_info = dquot_set_dqinfo,
.get_dqblk = dquot_get_dqblk,
.set_dqblk = dquot_set_dqblk,
.get_nextdqblk = dquot_get_next_dqblk,
};
#endif
static const struct super_operations ext4_sops = {
.alloc_inode = ext4_alloc_inode,
.free_inode = ext4_free_in_core_inode,
.destroy_inode = ext4_destroy_inode,
.write_inode = ext4_write_inode,
.dirty_inode = ext4_dirty_inode,
.drop_inode = ext4_drop_inode,
.evict_inode = ext4_evict_inode,
.put_super = ext4_put_super,
.sync_fs = ext4_sync_fs,
.freeze_fs = ext4_freeze,
.unfreeze_fs = ext4_unfreeze,
.statfs = ext4_statfs,
.show_options = ext4_show_options,
.shutdown = ext4_shutdown,
#ifdef CONFIG_QUOTA
.quota_read = ext4_quota_read,
.quota_write = ext4_quota_write,
.get_dquots = ext4_get_dquots,
#endif
};
static const struct export_operations ext4_export_ops = {
.encode_fh = generic_encode_ino32_fh,
.fh_to_dentry = ext4_fh_to_dentry,
.fh_to_parent = ext4_fh_to_parent,
.get_parent = ext4_get_parent,
.commit_metadata = ext4_nfs_commit_metadata,
};
enum {
Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
Opt_resgid, Opt_resuid, Opt_sb,
Opt_nouid32, Opt_debug, Opt_removed,
Opt_user_xattr, Opt_acl,
Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
Opt_inlinecrypt,
Opt_usrjquota, Opt_grpjquota, Opt_quota,
Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
Opt_usrquota, Opt_grpquota, Opt_prjquota,
Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
Opt_inode_readahead_blks, Opt_journal_ioprio,
Opt_dioread_nolock, Opt_dioread_lock,
Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
#ifdef CONFIG_EXT4_DEBUG
Opt_fc_debug_max_replay, Opt_fc_debug_force
#endif
};
static const struct constant_table ext4_param_errors[] = {
{"continue", EXT4_MOUNT_ERRORS_CONT},
{"panic", EXT4_MOUNT_ERRORS_PANIC},
{"remount-ro", EXT4_MOUNT_ERRORS_RO},
{}
};
static const struct constant_table ext4_param_data[] = {
{"journal", EXT4_MOUNT_JOURNAL_DATA},
{"ordered", EXT4_MOUNT_ORDERED_DATA},
{"writeback", EXT4_MOUNT_WRITEBACK_DATA},
{}
};
static const struct constant_table ext4_param_data_err[] = {
{"abort", Opt_data_err_abort},
{"ignore", Opt_data_err_ignore},
{}
};
static const struct constant_table ext4_param_jqfmt[] = {
{"vfsold", QFMT_VFS_OLD},
{"vfsv0", QFMT_VFS_V0},
{"vfsv1", QFMT_VFS_V1},
{}
};
static const struct constant_table ext4_param_dax[] = {
{"always", Opt_dax_always},
{"inode", Opt_dax_inode},
{"never", Opt_dax_never},
{}
};
/* String parameter that allows empty argument */
#define fsparam_string_empty(NAME, OPT) \
__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
/*
* Mount option specification
* We don't use fsparam_flag_no because of the way we set the
* options and the way we show them in _ext4_show_options(). To
* keep the changes to a minimum, let's keep the negative options
* separate for now.
*/
static const struct fs_parameter_spec ext4_param_specs[] = {
fsparam_flag ("bsddf", Opt_bsd_df),
fsparam_flag ("minixdf", Opt_minix_df),
fsparam_flag ("grpid", Opt_grpid),
fsparam_flag ("bsdgroups", Opt_grpid),
fsparam_flag ("nogrpid", Opt_nogrpid),
fsparam_flag ("sysvgroups", Opt_nogrpid),
fsparam_u32 ("resgid", Opt_resgid),
fsparam_u32 ("resuid", Opt_resuid),
fsparam_u32 ("sb", Opt_sb),
fsparam_enum ("errors", Opt_errors, ext4_param_errors),
fsparam_flag ("nouid32", Opt_nouid32),
fsparam_flag ("debug", Opt_debug),
fsparam_flag ("oldalloc", Opt_removed),
fsparam_flag ("orlov", Opt_removed),
fsparam_flag ("user_xattr", Opt_user_xattr),
fsparam_flag ("acl", Opt_acl),
fsparam_flag ("norecovery", Opt_noload),
fsparam_flag ("noload", Opt_noload),
fsparam_flag ("bh", Opt_removed),
fsparam_flag ("nobh", Opt_removed),
fsparam_u32 ("commit", Opt_commit),
fsparam_u32 ("min_batch_time", Opt_min_batch_time),
fsparam_u32 ("max_batch_time", Opt_max_batch_time),
fsparam_u32 ("journal_dev", Opt_journal_dev),
fsparam_bdev ("journal_path", Opt_journal_path),
fsparam_flag ("journal_checksum", Opt_journal_checksum),
fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
fsparam_flag ("abort", Opt_abort),
fsparam_enum ("data", Opt_data, ext4_param_data),
fsparam_enum ("data_err", Opt_data_err,
ext4_param_data_err),
fsparam_string_empty
("usrjquota", Opt_usrjquota),
fsparam_string_empty
("grpjquota", Opt_grpjquota),
fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
fsparam_flag ("grpquota", Opt_grpquota),
fsparam_flag ("quota", Opt_quota),
fsparam_flag ("noquota", Opt_noquota),
fsparam_flag ("usrquota", Opt_usrquota),
fsparam_flag ("prjquota", Opt_prjquota),
fsparam_flag ("barrier", Opt_barrier),
fsparam_u32 ("barrier", Opt_barrier),
fsparam_flag ("nobarrier", Opt_nobarrier),
fsparam_flag ("i_version", Opt_removed),
fsparam_flag ("dax", Opt_dax),
fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
fsparam_u32 ("stripe", Opt_stripe),
fsparam_flag ("delalloc", Opt_delalloc),
fsparam_flag ("nodelalloc", Opt_nodelalloc),
fsparam_flag ("warn_on_error", Opt_warn_on_error),
fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
fsparam_u32 ("debug_want_extra_isize",
Opt_debug_want_extra_isize),
fsparam_flag ("mblk_io_submit", Opt_removed),
fsparam_flag ("nomblk_io_submit", Opt_removed),
fsparam_flag ("block_validity", Opt_block_validity),
fsparam_flag ("noblock_validity", Opt_noblock_validity),
fsparam_u32 ("inode_readahead_blks",
Opt_inode_readahead_blks),
fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
fsparam_flag ("dioread_lock", Opt_dioread_lock),
fsparam_flag ("discard", Opt_discard),
fsparam_flag ("nodiscard", Opt_nodiscard),
fsparam_u32 ("init_itable", Opt_init_itable),
fsparam_flag ("init_itable", Opt_init_itable),
fsparam_flag ("noinit_itable", Opt_noinit_itable),
#ifdef CONFIG_EXT4_DEBUG
fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
#endif
fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
fsparam_flag ("test_dummy_encryption",
Opt_test_dummy_encryption),
fsparam_string ("test_dummy_encryption",
Opt_test_dummy_encryption),
fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
fsparam_flag ("nombcache", Opt_nombcache),
fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
fsparam_flag ("prefetch_block_bitmaps",
Opt_removed),
fsparam_flag ("no_prefetch_block_bitmaps",
Opt_no_prefetch_block_bitmaps),
fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
{}
};
#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
#define MOPT_SET 0x0001
#define MOPT_CLEAR 0x0002
#define MOPT_NOSUPPORT 0x0004
#define MOPT_EXPLICIT 0x0008
#ifdef CONFIG_QUOTA
#define MOPT_Q 0
#define MOPT_QFMT 0x0010
#else
#define MOPT_Q MOPT_NOSUPPORT
#define MOPT_QFMT MOPT_NOSUPPORT
#endif
#define MOPT_NO_EXT2 0x0020
#define MOPT_NO_EXT3 0x0040
#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
#define MOPT_SKIP 0x0080
#define MOPT_2 0x0100
static const struct mount_opts {
int token;
int mount_opt;
int flags;
} ext4_mount_opts[] = {
{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
MOPT_EXT4_ONLY | MOPT_SET},
{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
MOPT_EXT4_ONLY | MOPT_CLEAR},
{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
{Opt_delalloc, EXT4_MOUNT_DELALLOC,
MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
MOPT_EXT4_ONLY | MOPT_CLEAR},
{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
{Opt_commit, 0, MOPT_NO_EXT2},
{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
MOPT_EXT4_ONLY | MOPT_CLEAR},
{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
EXT4_MOUNT_JOURNAL_CHECKSUM),
MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
{Opt_dax_type, 0, MOPT_EXT4_ONLY},
{Opt_journal_dev, 0, MOPT_NO_EXT2},
{Opt_journal_path, 0, MOPT_NO_EXT2},
{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
{Opt_data, 0, MOPT_NO_EXT2},
{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
#ifdef CONFIG_EXT4_FS_POSIX_ACL
{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
#else
{Opt_acl, 0, MOPT_NOSUPPORT},
#endif
{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
MOPT_SET | MOPT_Q},
{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
MOPT_SET | MOPT_Q},
{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
MOPT_SET | MOPT_Q},
{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
MOPT_CLEAR | MOPT_Q},
{Opt_usrjquota, 0, MOPT_Q},
{Opt_grpjquota, 0, MOPT_Q},
{Opt_jqfmt, 0, MOPT_QFMT},
{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
MOPT_SET},
#ifdef CONFIG_EXT4_DEBUG
{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
#endif
{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
{Opt_err, 0, 0}
};
#if IS_ENABLED(CONFIG_UNICODE)
static const struct ext4_sb_encodings {
__u16 magic;
char *name;
unsigned int version;
} ext4_sb_encoding_map[] = {
{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
};
static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block *es)
{
__u16 magic = le16_to_cpu(es->s_encoding);
int i;
for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
if (magic == ext4_sb_encoding_map[i].magic)
return &ext4_sb_encoding_map[i];
return NULL;
}
#endif
#define EXT4_SPEC_JQUOTA (1 << 0)
#define EXT4_SPEC_JQFMT (1 << 1)
#define EXT4_SPEC_DATAJ (1 << 2)
#define EXT4_SPEC_SB_BLOCK (1 << 3)
#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
#define EXT4_SPEC_s_want_extra_isize (1 << 7)
#define EXT4_SPEC_s_max_batch_time (1 << 8)
#define EXT4_SPEC_s_min_batch_time (1 << 9)
#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
#define EXT4_SPEC_s_li_wait_mult (1 << 11)
#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
#define EXT4_SPEC_s_stripe (1 << 13)
#define EXT4_SPEC_s_resuid (1 << 14)
#define EXT4_SPEC_s_resgid (1 << 15)
#define EXT4_SPEC_s_commit_interval (1 << 16)
#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
#define EXT4_SPEC_s_sb_block (1 << 18)
#define EXT4_SPEC_mb_optimize_scan (1 << 19)
struct ext4_fs_context {
char *s_qf_names[EXT4_MAXQUOTAS];
struct fscrypt_dummy_policy dummy_enc_policy;
int s_jquota_fmt; /* Format of quota to use */
#ifdef CONFIG_EXT4_DEBUG
int s_fc_debug_max_replay;
#endif
unsigned short qname_spec;
unsigned long vals_s_flags; /* Bits to set in s_flags */
unsigned long mask_s_flags; /* Bits changed in s_flags */
unsigned long journal_devnum;
unsigned long s_commit_interval;
unsigned long s_stripe;
unsigned int s_inode_readahead_blks;
unsigned int s_want_extra_isize;
unsigned int s_li_wait_mult;
unsigned int s_max_dir_size_kb;
unsigned int journal_ioprio;
unsigned int vals_s_mount_opt;
unsigned int mask_s_mount_opt;
unsigned int vals_s_mount_opt2;
unsigned int mask_s_mount_opt2;
unsigned int opt_flags; /* MOPT flags */
unsigned int spec;
u32 s_max_batch_time;
u32 s_min_batch_time;
kuid_t s_resuid;
kgid_t s_resgid;
ext4_fsblk_t s_sb_block;
};
static void ext4_fc_free(struct fs_context *fc)
{
struct ext4_fs_context *ctx = fc->fs_private;
int i;
if (!ctx)
return;
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(ctx->s_qf_names[i]);
fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
kfree(ctx);
}
int ext4_init_fs_context(struct fs_context *fc)
{
struct ext4_fs_context *ctx;
ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
fc->fs_private = ctx;
fc->ops = &ext4_context_ops;
return 0;
}
#ifdef CONFIG_QUOTA
/*
* Note the name of the specified quota file.
*/
static int note_qf_name(struct fs_context *fc, int qtype,
struct fs_parameter *param)
{
struct ext4_fs_context *ctx = fc->fs_private;
char *qname;
if (param->size < 1) {
ext4_msg(NULL, KERN_ERR, "Missing quota name");
return -EINVAL;
}
if (strchr(param->string, '/')) {
ext4_msg(NULL, KERN_ERR,
"quotafile must be on filesystem root");
return -EINVAL;
}
if (ctx->s_qf_names[qtype]) {
if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
ext4_msg(NULL, KERN_ERR,
"%s quota file already specified",
QTYPE2NAME(qtype));
return -EINVAL;
}
return 0;
}
qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
if (!qname) {
ext4_msg(NULL, KERN_ERR,
"Not enough memory for storing quotafile name");
return -ENOMEM;
}
ctx->s_qf_names[qtype] = qname;
ctx->qname_spec |= 1 << qtype;
ctx->spec |= EXT4_SPEC_JQUOTA;
return 0;
}
/*
* Clear the name of the specified quota file.
*/
static int unnote_qf_name(struct fs_context *fc, int qtype)
{
struct ext4_fs_context *ctx = fc->fs_private;
kfree(ctx->s_qf_names[qtype]);
ctx->s_qf_names[qtype] = NULL;
ctx->qname_spec |= 1 << qtype;
ctx->spec |= EXT4_SPEC_JQUOTA;
return 0;
}
#endif
static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
struct ext4_fs_context *ctx)
{
int err;
if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
ext4_msg(NULL, KERN_WARNING,
"test_dummy_encryption option not supported");
return -EINVAL;
}
err = fscrypt_parse_test_dummy_encryption(param,
&ctx->dummy_enc_policy);
if (err == -EINVAL) {
ext4_msg(NULL, KERN_WARNING,
"Value of option \"%s\" is unrecognized", param->key);
} else if (err == -EEXIST) {
ext4_msg(NULL, KERN_WARNING,
"Conflicting test_dummy_encryption options");
return -EINVAL;
}
return err;
}
#define EXT4_SET_CTX(name) \
static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
unsigned long flag) \
{ \
ctx->mask_s_##name |= flag; \
ctx->vals_s_##name |= flag; \
}
#define EXT4_CLEAR_CTX(name) \
static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
unsigned long flag) \
{ \
ctx->mask_s_##name |= flag; \
ctx->vals_s_##name &= ~flag; \
}
#define EXT4_TEST_CTX(name) \
static inline unsigned long \
ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
{ \
return (ctx->vals_s_##name & flag); \
}
EXT4_SET_CTX(flags); /* set only */
EXT4_SET_CTX(mount_opt);
EXT4_CLEAR_CTX(mount_opt);
EXT4_TEST_CTX(mount_opt);
EXT4_SET_CTX(mount_opt2);
EXT4_CLEAR_CTX(mount_opt2);
EXT4_TEST_CTX(mount_opt2);
static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct fs_parse_result result;
const struct mount_opts *m;
int is_remount;
kuid_t uid;
kgid_t gid;
int token;
token = fs_parse(fc, ext4_param_specs, param, &result);
if (token < 0)
return token;
is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
for (m = ext4_mount_opts; m->token != Opt_err; m++)
if (token == m->token)
break;
ctx->opt_flags |= m->flags;
if (m->flags & MOPT_EXPLICIT) {
if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
ctx_set_mount_opt2(ctx,
EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
} else
return -EINVAL;
}
if (m->flags & MOPT_NOSUPPORT) {
ext4_msg(NULL, KERN_ERR, "%s option not supported",
param->key);
return 0;
}
switch (token) {
#ifdef CONFIG_QUOTA
case Opt_usrjquota:
if (!*param->string)
return unnote_qf_name(fc, USRQUOTA);
else
return note_qf_name(fc, USRQUOTA, param);
case Opt_grpjquota:
if (!*param->string)
return unnote_qf_name(fc, GRPQUOTA);
else
return note_qf_name(fc, GRPQUOTA, param);
#endif
case Opt_sb:
if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
ext4_msg(NULL, KERN_WARNING,
"Ignoring %s option on remount", param->key);
} else {
ctx->s_sb_block = result.uint_32;
ctx->spec |= EXT4_SPEC_s_sb_block;
}
return 0;
case Opt_removed:
ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
param->key);
return 0;
case Opt_inlinecrypt:
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
ctx_set_flags(ctx, SB_INLINECRYPT);
#else
ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
#endif
return 0;
case Opt_errors:
ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
ctx_set_mount_opt(ctx, result.uint_32);
return 0;
#ifdef CONFIG_QUOTA
case Opt_jqfmt:
ctx->s_jquota_fmt = result.uint_32;
ctx->spec |= EXT4_SPEC_JQFMT;
return 0;
#endif
case Opt_data:
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
ctx_set_mount_opt(ctx, result.uint_32);
ctx->spec |= EXT4_SPEC_DATAJ;
return 0;
case Opt_commit:
if (result.uint_32 == 0)
result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
else if (result.uint_32 > INT_MAX / HZ) {
ext4_msg(NULL, KERN_ERR,
"Invalid commit interval %d, "
"must be smaller than %d",
result.uint_32, INT_MAX / HZ);
return -EINVAL;
}
ctx->s_commit_interval = HZ * result.uint_32;
ctx->spec |= EXT4_SPEC_s_commit_interval;
return 0;
case Opt_debug_want_extra_isize:
if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
ext4_msg(NULL, KERN_ERR,
"Invalid want_extra_isize %d", result.uint_32);
return -EINVAL;
}
ctx->s_want_extra_isize = result.uint_32;
ctx->spec |= EXT4_SPEC_s_want_extra_isize;
return 0;
case Opt_max_batch_time:
ctx->s_max_batch_time = result.uint_32;
ctx->spec |= EXT4_SPEC_s_max_batch_time;
return 0;
case Opt_min_batch_time:
ctx->s_min_batch_time = result.uint_32;
ctx->spec |= EXT4_SPEC_s_min_batch_time;
return 0;
case Opt_inode_readahead_blks:
if (result.uint_32 &&
(result.uint_32 > (1 << 30) ||
!is_power_of_2(result.uint_32))) {
ext4_msg(NULL, KERN_ERR,
"EXT4-fs: inode_readahead_blks must be "
"0 or a power of 2 smaller than 2^31");
return -EINVAL;
}
ctx->s_inode_readahead_blks = result.uint_32;
ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
return 0;
case Opt_init_itable:
ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
if (param->type == fs_value_is_string)
ctx->s_li_wait_mult = result.uint_32;
ctx->spec |= EXT4_SPEC_s_li_wait_mult;
return 0;
case Opt_max_dir_size_kb:
ctx->s_max_dir_size_kb = result.uint_32;
ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
return 0;
#ifdef CONFIG_EXT4_DEBUG
case Opt_fc_debug_max_replay:
ctx->s_fc_debug_max_replay = result.uint_32;
ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
return 0;
#endif
case Opt_stripe:
ctx->s_stripe = result.uint_32;
ctx->spec |= EXT4_SPEC_s_stripe;
return 0;
case Opt_resuid:
uid = make_kuid(current_user_ns(), result.uint_32);
if (!uid_valid(uid)) {
ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
result.uint_32);
return -EINVAL;
}
ctx->s_resuid = uid;
ctx->spec |= EXT4_SPEC_s_resuid;
return 0;
case Opt_resgid:
gid = make_kgid(current_user_ns(), result.uint_32);
if (!gid_valid(gid)) {
ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
result.uint_32);
return -EINVAL;
}
ctx->s_resgid = gid;
ctx->spec |= EXT4_SPEC_s_resgid;
return 0;
case Opt_journal_dev:
if (is_remount) {
ext4_msg(NULL, KERN_ERR,
"Cannot specify journal on remount");
return -EINVAL;
}
ctx->journal_devnum = result.uint_32;
ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
return 0;
case Opt_journal_path:
{
struct inode *journal_inode;
struct path path;
int error;
if (is_remount) {
ext4_msg(NULL, KERN_ERR,
"Cannot specify journal on remount");
return -EINVAL;
}
error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
if (error) {
ext4_msg(NULL, KERN_ERR, "error: could not find "
"journal device path");
return -EINVAL;
}
journal_inode = d_inode(path.dentry);
ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
path_put(&path);
return 0;
}
case Opt_journal_ioprio:
if (result.uint_32 > 7) {
ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
" (must be 0-7)");
return -EINVAL;
}
ctx->journal_ioprio =
IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
return 0;
case Opt_test_dummy_encryption:
return ext4_parse_test_dummy_encryption(param, ctx);
case Opt_dax:
case Opt_dax_type:
#ifdef CONFIG_FS_DAX
{
int type = (token == Opt_dax) ?
Opt_dax : result.uint_32;
switch (type) {
case Opt_dax:
case Opt_dax_always:
ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
break;
case Opt_dax_never:
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
break;
case Opt_dax_inode:
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
/* Strictly for printing options */
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
break;
}
return 0;
}
#else
ext4_msg(NULL, KERN_INFO, "dax option not supported");
return -EINVAL;
#endif
case Opt_data_err:
if (result.uint_32 == Opt_data_err_abort)
ctx_set_mount_opt(ctx, m->mount_opt);
else if (result.uint_32 == Opt_data_err_ignore)
ctx_clear_mount_opt(ctx, m->mount_opt);
return 0;
case Opt_mb_optimize_scan:
if (result.int_32 == 1) {
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
ctx->spec |= EXT4_SPEC_mb_optimize_scan;
} else if (result.int_32 == 0) {
ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
ctx->spec |= EXT4_SPEC_mb_optimize_scan;
} else {
ext4_msg(NULL, KERN_WARNING,
"mb_optimize_scan should be set to 0 or 1.");
return -EINVAL;
}
return 0;
}
/*
* At this point we should only be getting options requiring MOPT_SET,
* or MOPT_CLEAR. Anything else is a bug
*/
if (m->token == Opt_err) {
ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
param->key);
WARN_ON(1);
return -EINVAL;
}
else {
unsigned int set = 0;
if ((param->type == fs_value_is_flag) ||
result.uint_32 > 0)
set = 1;
if (m->flags & MOPT_CLEAR)
set = !set;
else if (unlikely(!(m->flags & MOPT_SET))) {
ext4_msg(NULL, KERN_WARNING,
"buggy handling of option %s",
param->key);
WARN_ON(1);
return -EINVAL;
}
if (m->flags & MOPT_2) {
if (set != 0)
ctx_set_mount_opt2(ctx, m->mount_opt);
else
ctx_clear_mount_opt2(ctx, m->mount_opt);
} else {
if (set != 0)
ctx_set_mount_opt(ctx, m->mount_opt);
else
ctx_clear_mount_opt(ctx, m->mount_opt);
}
}
return 0;
}
static int parse_options(struct fs_context *fc, char *options)
{
struct fs_parameter param;
int ret;
char *key;
if (!options)
return 0;
while ((key = strsep(&options, ",")) != NULL) {
if (*key) {
size_t v_len = 0;
char *value = strchr(key, '=');
param.type = fs_value_is_flag;
param.string = NULL;
if (value) {
if (value == key)
continue;
*value++ = 0;
v_len = strlen(value);
param.string = kmemdup_nul(value, v_len,
GFP_KERNEL);
if (!param.string)
return -ENOMEM;
param.type = fs_value_is_string;
}
param.key = key;
param.size = v_len;
ret = ext4_parse_param(fc, &param);
kfree(param.string);
if (ret < 0)
return ret;
}
}
ret = ext4_validate_options(fc);
if (ret < 0)
return ret;
return 0;
}
static int parse_apply_sb_mount_options(struct super_block *sb,
struct ext4_fs_context *m_ctx)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *s_mount_opts = NULL;
struct ext4_fs_context *s_ctx = NULL;
struct fs_context *fc = NULL;
int ret = -ENOMEM;
if (!sbi->s_es->s_mount_opts[0])
return 0;
s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
sizeof(sbi->s_es->s_mount_opts),
GFP_KERNEL);
if (!s_mount_opts)
return ret;
fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
if (!fc)
goto out_free;
s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
if (!s_ctx)
goto out_free;
fc->fs_private = s_ctx;
fc->s_fs_info = sbi;
ret = parse_options(fc, s_mount_opts);
if (ret < 0)
goto parse_failed;
ret = ext4_check_opt_consistency(fc, sb);
if (ret < 0) {
parse_failed:
ext4_msg(sb, KERN_WARNING,
"failed to parse options in superblock: %s",
s_mount_opts);
ret = 0;
goto out_free;
}
if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
m_ctx->journal_devnum = s_ctx->journal_devnum;
if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
m_ctx->journal_ioprio = s_ctx->journal_ioprio;
ext4_apply_options(fc, sb);
ret = 0;
out_free:
if (fc) {
ext4_fc_free(fc);
kfree(fc);
}
kfree(s_mount_opts);
return ret;
}
static void ext4_apply_quota_options(struct fs_context *fc,
struct super_block *sb)
{
#ifdef CONFIG_QUOTA
bool quota_feature = ext4_has_feature_quota(sb);
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *qname;
int i;
if (quota_feature)
return;
if (ctx->spec & EXT4_SPEC_JQUOTA) {
for (i = 0; i < EXT4_MAXQUOTAS; i++) {
if (!(ctx->qname_spec & (1 << i)))
continue;
qname = ctx->s_qf_names[i]; /* May be NULL */
if (qname)
set_opt(sb, QUOTA);
ctx->s_qf_names[i] = NULL;
qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
lockdep_is_held(&sb->s_umount));
if (qname)
kfree_rcu_mightsleep(qname);
}
}
if (ctx->spec & EXT4_SPEC_JQFMT)
sbi->s_jquota_fmt = ctx->s_jquota_fmt;
#endif
}
/*
* Check quota settings consistency.
*/
static int ext4_check_quota_consistency(struct fs_context *fc,
struct super_block *sb)
{
#ifdef CONFIG_QUOTA
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = EXT4_SB(sb);
bool quota_feature = ext4_has_feature_quota(sb);
bool quota_loaded = sb_any_quota_loaded(sb);
bool usr_qf_name, grp_qf_name, usrquota, grpquota;
int quota_flags, i;
/*
* We do the test below only for project quotas. 'usrquota' and
* 'grpquota' mount options are allowed even without quota feature
* to support legacy quotas in quota files.
*/
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
!ext4_has_feature_project(sb)) {
ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
"Cannot enable project quota enforcement.");
return -EINVAL;
}
quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
if (quota_loaded &&
ctx->mask_s_mount_opt & quota_flags &&
!ctx_test_mount_opt(ctx, quota_flags))
goto err_quota_change;
if (ctx->spec & EXT4_SPEC_JQUOTA) {
for (i = 0; i < EXT4_MAXQUOTAS; i++) {
if (!(ctx->qname_spec & (1 << i)))
continue;
if (quota_loaded &&
!!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
goto err_jquota_change;
if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
strcmp(get_qf_name(sb, sbi, i),
ctx->s_qf_names[i]) != 0)
goto err_jquota_specified;
}
if (quota_feature) {
ext4_msg(NULL, KERN_INFO,
"Journaled quota options ignored when "
"QUOTA feature is enabled");
return 0;
}
}
if (ctx->spec & EXT4_SPEC_JQFMT) {
if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
goto err_jquota_change;
if (quota_feature) {
ext4_msg(NULL, KERN_INFO, "Quota format mount options "
"ignored when QUOTA feature is enabled");
return 0;
}
}
/* Make sure we don't mix old and new quota format */
usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
ctx->s_qf_names[USRQUOTA]);
grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
ctx->s_qf_names[GRPQUOTA]);
usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
test_opt(sb, USRQUOTA));
grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
test_opt(sb, GRPQUOTA));
if (usr_qf_name) {
ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
usrquota = false;
}
if (grp_qf_name) {
ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
grpquota = false;
}
if (usr_qf_name || grp_qf_name) {
if (usrquota || grpquota) {
ext4_msg(NULL, KERN_ERR, "old and new quota "
"format mixing");
return -EINVAL;
}
if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
ext4_msg(NULL, KERN_ERR, "journaled quota format "
"not specified");
return -EINVAL;
}
}
return 0;
err_quota_change:
ext4_msg(NULL, KERN_ERR,
"Cannot change quota options when quota turned on");
return -EINVAL;
err_jquota_change:
ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
"options when quota turned on");
return -EINVAL;
err_jquota_specified:
ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
QTYPE2NAME(i));
return -EINVAL;
#else
return 0;
#endif
}
static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
struct super_block *sb)
{
const struct ext4_fs_context *ctx = fc->fs_private;
const struct ext4_sb_info *sbi = EXT4_SB(sb);
if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
return 0;
if (!ext4_has_feature_encrypt(sb)) {
ext4_msg(NULL, KERN_WARNING,
"test_dummy_encryption requires encrypt feature");
return -EINVAL;
}
/*
* This mount option is just for testing, and it's not worthwhile to
* implement the extra complexity (e.g. RCU protection) that would be
* needed to allow it to be set or changed during remount. We do allow
* it to be specified during remount, but only if there is no change.
*/
if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
&ctx->dummy_enc_policy))
return 0;
ext4_msg(NULL, KERN_WARNING,
"Can't set or change test_dummy_encryption on remount");
return -EINVAL;
}
/* Also make sure s_mount_opts didn't contain a conflicting value. */
if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
&ctx->dummy_enc_policy))
return 0;
ext4_msg(NULL, KERN_WARNING,
"Conflicting test_dummy_encryption options");
return -EINVAL;
}
return 0;
}
static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
struct super_block *sb)
{
if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
/* if already set, it was already verified to be the same */
fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
return;
EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
}
static int ext4_check_opt_consistency(struct fs_context *fc,
struct super_block *sb)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = fc->s_fs_info;
int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
int err;
if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
ext4_msg(NULL, KERN_ERR,
"Mount option(s) incompatible with ext2");
return -EINVAL;
}
if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
ext4_msg(NULL, KERN_ERR,
"Mount option(s) incompatible with ext3");
return -EINVAL;
}
if (ctx->s_want_extra_isize >
(sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
ext4_msg(NULL, KERN_ERR,
"Invalid want_extra_isize %d",
ctx->s_want_extra_isize);
return -EINVAL;
}
err = ext4_check_test_dummy_encryption(fc, sb);
if (err)
return err;
if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
if (!sbi->s_journal) {
ext4_msg(NULL, KERN_WARNING,
"Remounting file system with no journal "
"so ignoring journalled data option");
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
test_opt(sb, DATA_FLAGS)) {
ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
"on remount");
return -EINVAL;
}
}
if (is_remount) {
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
ext4_msg(NULL, KERN_ERR, "can't mount with "
"both data=journal and dax");
return -EINVAL;
}
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
(!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
fail_dax_change_remount:
ext4_msg(NULL, KERN_ERR, "can't change "
"dax mount option while remounting");
return -EINVAL;
} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
(!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
goto fail_dax_change_remount;
} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
goto fail_dax_change_remount;
}
}
return ext4_check_quota_consistency(fc, sb);
}
static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = fc->s_fs_info;
sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
sbi->s_mount_opt |= ctx->vals_s_mount_opt;
sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
sb->s_flags &= ~ctx->mask_s_flags;
sb->s_flags |= ctx->vals_s_flags;
#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
APPLY(s_commit_interval);
APPLY(s_stripe);
APPLY(s_max_batch_time);
APPLY(s_min_batch_time);
APPLY(s_want_extra_isize);
APPLY(s_inode_readahead_blks);
APPLY(s_max_dir_size_kb);
APPLY(s_li_wait_mult);
APPLY(s_resgid);
APPLY(s_resuid);
#ifdef CONFIG_EXT4_DEBUG
APPLY(s_fc_debug_max_replay);
#endif
ext4_apply_quota_options(fc, sb);
ext4_apply_test_dummy_encryption(ctx, sb);
}
static int ext4_validate_options(struct fs_context *fc)
{
#ifdef CONFIG_QUOTA
struct ext4_fs_context *ctx = fc->fs_private;
char *usr_qf_name, *grp_qf_name;
usr_qf_name = ctx->s_qf_names[USRQUOTA];
grp_qf_name = ctx->s_qf_names[GRPQUOTA];
if (usr_qf_name || grp_qf_name) {
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
ext4_msg(NULL, KERN_ERR, "old and new quota "
"format mixing");
return -EINVAL;
}
}
#endif
return 1;
}
static inline void ext4_show_quota_options(struct seq_file *seq,
struct super_block *sb)
{
#if defined(CONFIG_QUOTA)
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *usr_qf_name, *grp_qf_name;
if (sbi->s_jquota_fmt) {
char *fmtname = "";
switch (sbi->s_jquota_fmt) {
case QFMT_VFS_OLD:
fmtname = "vfsold";
break;
case QFMT_VFS_V0:
fmtname = "vfsv0";
break;
case QFMT_VFS_V1:
fmtname = "vfsv1";
break;
}
seq_printf(seq, ",jqfmt=%s", fmtname);
}
rcu_read_lock();
usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
if (usr_qf_name)
seq_show_option(seq, "usrjquota", usr_qf_name);
if (grp_qf_name)
seq_show_option(seq, "grpjquota", grp_qf_name);
rcu_read_unlock();
#endif
}
static const char *token2str(int token)
{
const struct fs_parameter_spec *spec;
for (spec = ext4_param_specs; spec->name != NULL; spec++)
if (spec->opt == token && !spec->type)
break;
return spec->name;
}
/*
* Show an option if
* - it's set to a non-default value OR
* - if the per-sb default is different from the global default
*/
static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
int nodefs)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
int def_errors;
const struct mount_opts *m;
char sep = nodefs ? '\n' : ',';
#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
if (sbi->s_sb_block != 1)
SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
for (m = ext4_mount_opts; m->token != Opt_err; m++) {
int want_set = m->flags & MOPT_SET;
int opt_2 = m->flags & MOPT_2;
unsigned int mount_opt, def_mount_opt;
if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
m->flags & MOPT_SKIP)
continue;
if (opt_2) {
mount_opt = sbi->s_mount_opt2;
def_mount_opt = sbi->s_def_mount_opt2;
} else {
mount_opt = sbi->s_mount_opt;
def_mount_opt = sbi->s_def_mount_opt;
}
/* skip if same as the default */
if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
continue;
/* select Opt_noFoo vs Opt_Foo */
if ((want_set &&
(mount_opt & m->mount_opt) != m->mount_opt) ||
(!want_set && (mount_opt & m->mount_opt)))
continue;
SEQ_OPTS_PRINT("%s", token2str(m->token));
}
if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
SEQ_OPTS_PRINT("resuid=%u",
from_kuid_munged(&init_user_ns, sbi->s_resuid));
if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
SEQ_OPTS_PRINT("resgid=%u",
from_kgid_munged(&init_user_ns, sbi->s_resgid));
def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
SEQ_OPTS_PUTS("errors=remount-ro");
if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
SEQ_OPTS_PUTS("errors=continue");
if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
SEQ_OPTS_PUTS("errors=panic");
if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
if (nodefs || sbi->s_stripe)
SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
if (nodefs || EXT4_MOUNT_DATA_FLAGS &
(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
SEQ_OPTS_PUTS("data=journal");
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
SEQ_OPTS_PUTS("data=ordered");
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
SEQ_OPTS_PUTS("data=writeback");
}
if (nodefs ||
sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
SEQ_OPTS_PRINT("inode_readahead_blks=%u",
sbi->s_inode_readahead_blks);
if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
(sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
if (nodefs || sbi->s_max_dir_size_kb)
SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
if (test_opt(sb, DATA_ERR_ABORT))
SEQ_OPTS_PUTS("data_err=abort");
fscrypt_show_test_dummy_encryption(seq, sep, sb);
if (sb->s_flags & SB_INLINECRYPT)
SEQ_OPTS_PUTS("inlinecrypt");
if (test_opt(sb, DAX_ALWAYS)) {
if (IS_EXT2_SB(sb))
SEQ_OPTS_PUTS("dax");
else
SEQ_OPTS_PUTS("dax=always");
} else if (test_opt2(sb, DAX_NEVER)) {
SEQ_OPTS_PUTS("dax=never");
} else if (test_opt2(sb, DAX_INODE)) {
SEQ_OPTS_PUTS("dax=inode");
}
if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
SEQ_OPTS_PUTS("mb_optimize_scan=0");
} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
test_opt2(sb, MB_OPTIMIZE_SCAN)) {
SEQ_OPTS_PUTS("mb_optimize_scan=1");
}
ext4_show_quota_options(seq, sb);
return 0;
}
static int ext4_show_options(struct seq_file *seq, struct dentry *root)
{
return _ext4_show_options(seq, root->d_sb, 0);
}
int ext4_seq_options_show(struct seq_file *seq, void *offset)
{
struct super_block *sb = seq->private;
int rc;
seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
rc = _ext4_show_options(seq, sb, 1);
seq_puts(seq, "\n");
return rc;
}
static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
int read_only)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
int err = 0;
if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
ext4_msg(sb, KERN_ERR, "revision level too high, "
"forcing read-only mode");
err = -EROFS;
goto done;
}
if (read_only)
goto done;
if (!(sbi->s_mount_state & EXT4_VALID_FS))
ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
"running e2fsck is recommended");
else if (sbi->s_mount_state & EXT4_ERROR_FS)
ext4_msg(sb, KERN_WARNING,
"warning: mounting fs with errors, "
"running e2fsck is recommended");
else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
le16_to_cpu(es->s_mnt_count) >=
(unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
ext4_msg(sb, KERN_WARNING,
"warning: maximal mount count reached, "
"running e2fsck is recommended");
else if (le32_to_cpu(es->s_checkinterval) &&
(ext4_get_tstamp(es, s_lastcheck) +
le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
ext4_msg(sb, KERN_WARNING,
"warning: checktime reached, "
"running e2fsck is recommended");
if (!sbi->s_journal)
es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
le16_add_cpu(&es->s_mnt_count, 1);
ext4_update_tstamp(es, s_mtime);
if (sbi->s_journal) {
ext4_set_feature_journal_needs_recovery(sb);
if (ext4_has_feature_orphan_file(sb))
ext4_set_feature_orphan_present(sb);
}
err = ext4_commit_super(sb);
done:
if (test_opt(sb, DEBUG))
printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
sb->s_blocksize,
sbi->s_groups_count,
EXT4_BLOCKS_PER_GROUP(sb),
EXT4_INODES_PER_GROUP(sb),
sbi->s_mount_opt, sbi->s_mount_opt2);
return err;
}
int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct flex_groups **old_groups, **new_groups;
int size, i, j;
if (!sbi->s_log_groups_per_flex)
return 0;
size = ext4_flex_group(sbi, ngroup - 1) + 1;
if (size <= sbi->s_flex_groups_allocated)
return 0;
new_groups = kvzalloc(roundup_pow_of_two(size *
sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
if (!new_groups) {
ext4_msg(sb, KERN_ERR,
"not enough memory for %d flex group pointers", size);
return -ENOMEM;
}
for (i = sbi->s_flex_groups_allocated; i < size; i++) {
new_groups[i] = kvzalloc(roundup_pow_of_two(
sizeof(struct flex_groups)),
GFP_KERNEL);
if (!new_groups[i]) {
for (j = sbi->s_flex_groups_allocated; j < i; j++)
kvfree(new_groups[j]);
kvfree(new_groups);
ext4_msg(sb, KERN_ERR,
"not enough memory for %d flex groups", size);
return -ENOMEM;
}
}
rcu_read_lock();
old_groups = rcu_dereference(sbi->s_flex_groups);
if (old_groups)
memcpy(new_groups, old_groups,
(sbi->s_flex_groups_allocated *
sizeof(struct flex_groups *)));
rcu_read_unlock();
rcu_assign_pointer(sbi->s_flex_groups, new_groups);
sbi->s_flex_groups_allocated = size;
if (old_groups)
ext4_kvfree_array_rcu(old_groups);
return 0;
}
static int ext4_fill_flex_info(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp = NULL;
struct flex_groups *fg;
ext4_group_t flex_group;
int i, err;
sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
sbi->s_log_groups_per_flex = 0;
return 1;
}
err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
if (err)
goto failed;
for (i = 0; i < sbi->s_groups_count; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
flex_group = ext4_flex_group(sbi, i);
fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
atomic64_add(ext4_free_group_clusters(sb, gdp),
&fg->free_clusters);
atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
}
return 1;
failed:
return 0;
}
static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
struct ext4_group_desc *gdp)
{
int offset = offsetof(struct ext4_group_desc, bg_checksum);
__u16 crc = 0;
__le32 le_group = cpu_to_le32(block_group);
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (ext4_has_metadata_csum(sbi->s_sb)) {
/* Use new metadata_csum algorithm */
__u32 csum32;
__u16 dummy_csum = 0;
csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
sizeof(le_group));
csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
sizeof(dummy_csum));
offset += sizeof(dummy_csum);
if (offset < sbi->s_desc_size)
csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
sbi->s_desc_size - offset);
crc = csum32 & 0xFFFF;
goto out;
}
/* old crc16 code */
if (!ext4_has_feature_gdt_csum(sb))
return 0;
crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
crc = crc16(crc, (__u8 *)gdp, offset);
offset += sizeof(gdp->bg_checksum); /* skip checksum */
/* for checksum of struct ext4_group_desc do the rest...*/
if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
crc = crc16(crc, (__u8 *)gdp + offset,
sbi->s_desc_size - offset);
out:
return cpu_to_le16(crc);
}
int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
struct ext4_group_desc *gdp)
{
if (ext4_has_group_desc_csum(sb) &&
(gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
return 0;
return 1;
}
void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
struct ext4_group_desc *gdp)
{
if (!ext4_has_group_desc_csum(sb))
return;
gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
}
/* Called at mount-time, super-block is locked */
static int ext4_check_descriptors(struct super_block *sb,
ext4_fsblk_t sb_block,
ext4_group_t *first_not_zeroed)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
ext4_fsblk_t last_block;
ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
ext4_fsblk_t block_bitmap;
ext4_fsblk_t inode_bitmap;
ext4_fsblk_t inode_table;
int flexbg_flag = 0;
ext4_group_t i, grp = sbi->s_groups_count;
if (ext4_has_feature_flex_bg(sb))
flexbg_flag = 1;
ext4_debug("Checking group descriptors");
for (i = 0; i < sbi->s_groups_count; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
if (i == sbi->s_groups_count - 1 || flexbg_flag)
last_block = ext4_blocks_count(sbi->s_es) - 1;
else
last_block = first_block +
(EXT4_BLOCKS_PER_GROUP(sb) - 1);
if ((grp == sbi->s_groups_count) &&
!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
grp = i;
block_bitmap = ext4_block_bitmap(sb, gdp);
if (block_bitmap == sb_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u overlaps "
"superblock", i);
if (!sb_rdonly(sb))
return 0;
}
if (block_bitmap >= sb_block + 1 &&
block_bitmap <= last_bg_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u overlaps "
"block group descriptors", i);
if (!sb_rdonly(sb))
return 0;
}
if (block_bitmap < first_block || block_bitmap > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u not in group "
"(block %llu)!", i, block_bitmap);
return 0;
}
inode_bitmap = ext4_inode_bitmap(sb, gdp);
if (inode_bitmap == sb_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u overlaps "
"superblock", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_bitmap >= sb_block + 1 &&
inode_bitmap <= last_bg_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u overlaps "
"block group descriptors", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_bitmap < first_block || inode_bitmap > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u not in group "
"(block %llu)!", i, inode_bitmap);
return 0;
}
inode_table = ext4_inode_table(sb, gdp);
if (inode_table == sb_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u overlaps "
"superblock", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_table >= sb_block + 1 &&
inode_table <= last_bg_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u overlaps "
"block group descriptors", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_table < first_block ||
inode_table + sbi->s_itb_per_group - 1 > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u not in group "
"(block %llu)!", i, inode_table);
return 0;
}
ext4_lock_group(sb, i);
if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Checksum for group %u failed (%u!=%u)",
i, le16_to_cpu(ext4_group_desc_csum(sb, i,
gdp)), le16_to_cpu(gdp->bg_checksum));
if (!sb_rdonly(sb)) {
ext4_unlock_group(sb, i);
return 0;
}
}
ext4_unlock_group(sb, i);
if (!flexbg_flag)
first_block += EXT4_BLOCKS_PER_GROUP(sb);
}
if (NULL != first_not_zeroed)
*first_not_zeroed = grp;
return 1;
}
/*
* Maximal extent format file size.
* Resulting logical blkno at s_maxbytes must fit in our on-disk
* extent format containers, within a sector_t, and within i_blocks
* in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
* so that won't be a limiting factor.
*
* However there is other limiting factor. We do store extents in the form
* of starting block and length, hence the resulting length of the extent
* covering maximum file size must fit into on-disk format containers as
* well. Given that length is always by 1 unit bigger than max unit (because
* we count 0 as well) we have to lower the s_maxbytes by one fs block.
*
* Note, this does *not* consider any metadata overhead for vfs i_blocks.
*/
static loff_t ext4_max_size(int blkbits, int has_huge_files)
{
loff_t res;
loff_t upper_limit = MAX_LFS_FILESIZE;
BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
if (!has_huge_files) {
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (blkbits - 9);
upper_limit <<= blkbits;
}
/*
* 32-bit extent-start container, ee_block. We lower the maxbytes
* by one fs block, so ee_len can cover the extent of maximum file
* size
*/
res = (1LL << 32) - 1;
res <<= blkbits;
/* Sanity check against vm- & vfs- imposed limits */
if (res > upper_limit)
res = upper_limit;
return res;
}
/*
* Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
* block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
* We need to be 1 filesystem block less than the 2^48 sector limit.
*/
static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
{
loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
int meta_blocks;
unsigned int ppb = 1 << (bits - 2);
/*
* This is calculated to be the largest file size for a dense, block
* mapped file such that the file's total number of 512-byte sectors,
* including data and all indirect blocks, does not exceed (2^48 - 1).
*
* __u32 i_blocks_lo and _u16 i_blocks_high represent the total
* number of 512-byte sectors of the file.
*/
if (!has_huge_files) {
/*
* !has_huge_files or implies that the inode i_block field
* represents total file blocks in 2^32 512-byte sectors ==
* size of vfs inode i_blocks * 8
*/
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (bits - 9);
} else {
/*
* We use 48 bit ext4_inode i_blocks
* With EXT4_HUGE_FILE_FL set the i_blocks
* represent total number of blocks in
* file system block size
*/
upper_limit = (1LL << 48) - 1;
}
/* Compute how many blocks we can address by block tree */
res += ppb;
res += ppb * ppb;
res += ((loff_t)ppb) * ppb * ppb;
/* Compute how many metadata blocks are needed */
meta_blocks = 1;
meta_blocks += 1 + ppb;
meta_blocks += 1 + ppb + ppb * ppb;
/* Does block tree limit file size? */
if (res + meta_blocks <= upper_limit)
goto check_lfs;
res = upper_limit;
/* How many metadata blocks are needed for addressing upper_limit? */
upper_limit -= EXT4_NDIR_BLOCKS;
/* indirect blocks */
meta_blocks = 1;
upper_limit -= ppb;
/* double indirect blocks */
if (upper_limit < ppb * ppb) {
meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
res -= meta_blocks;
goto check_lfs;
}
meta_blocks += 1 + ppb;
upper_limit -= ppb * ppb;
/* tripple indirect blocks for the rest */
meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
res -= meta_blocks;
check_lfs:
res <<= bits;
if (res > MAX_LFS_FILESIZE)
res = MAX_LFS_FILESIZE;
return res;
}
static ext4_fsblk_t descriptor_loc(struct super_block *sb,
ext4_fsblk_t logical_sb_block, int nr)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_group_t bg, first_meta_bg;
int has_super = 0;
first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
return logical_sb_block + nr + 1;
bg = sbi->s_desc_per_block * nr;
if (ext4_bg_has_super(sb, bg))
has_super = 1;
/*
* If we have a meta_bg fs with 1k blocks, group 0's GDT is at
* block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
* on modern mke2fs or blksize > 1k on older mke2fs) then we must
* compensate.
*/
if (sb->s_blocksize == 1024 && nr == 0 &&
le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
has_super++;
return (has_super + ext4_group_first_block_no(sb, bg));
}
/**
* ext4_get_stripe_size: Get the stripe size.
* @sbi: In memory super block info
*
* If we have specified it via mount option, then
* use the mount option value. If the value specified at mount time is
* greater than the blocks per group use the super block value.
* If the super block value is greater than blocks per group return 0.
* Allocator needs it be less than blocks per group.
*
*/
static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
{
unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
unsigned long stripe_width =
le32_to_cpu(sbi->s_es->s_raid_stripe_width);
int ret;
if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
ret = sbi->s_stripe;
else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
ret = stripe_width;
else if (stride && stride <= sbi->s_blocks_per_group)
ret = stride;
else
ret = 0;
/*
* If the stripe width is 1, this makes no sense and
* we set it to 0 to turn off stripe handling code.
*/
if (ret <= 1)
ret = 0;
return ret;
}
/*
* Check whether this filesystem can be mounted based on
* the features present and the RDONLY/RDWR mount requested.
* Returns 1 if this filesystem can be mounted as requested,
* 0 if it cannot be.
*/
int ext4_feature_set_ok(struct super_block *sb, int readonly)
{
if (ext4_has_unknown_ext4_incompat_features(sb)) {
ext4_msg(sb, KERN_ERR,
"Couldn't mount because of "
"unsupported optional features (%x)",
(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
~EXT4_FEATURE_INCOMPAT_SUPP));
return 0;
}
#if !IS_ENABLED(CONFIG_UNICODE)
if (ext4_has_feature_casefold(sb)) {
ext4_msg(sb, KERN_ERR,
"Filesystem with casefold feature cannot be "
"mounted without CONFIG_UNICODE");
return 0;
}
#endif
if (readonly)
return 1;
if (ext4_has_feature_readonly(sb)) {
ext4_msg(sb, KERN_INFO, "filesystem is read-only");
sb->s_flags |= SB_RDONLY;
return 1;
}
/* Check that feature set is OK for a read-write mount */
if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
"unsupported optional features (%x)",
(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
~EXT4_FEATURE_RO_COMPAT_SUPP));
return 0;
}
if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
ext4_msg(sb, KERN_ERR,
"Can't support bigalloc feature without "
"extents feature\n");
return 0;
}
#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
if (!readonly && (ext4_has_feature_quota(sb) ||
ext4_has_feature_project(sb))) {
ext4_msg(sb, KERN_ERR,
"The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
return 0;
}
#endif /* CONFIG_QUOTA */
return 1;
}
/*
* This function is called once a day if we have errors logged
* on the file system
*/
static void print_daily_error_info(struct timer_list *t)
{
struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
struct super_block *sb = sbi->s_sb;
struct ext4_super_block *es = sbi->s_es;
if (es->s_error_count)
/* fsck newer than v1.41.13 is needed to clean this condition. */
ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
le32_to_cpu(es->s_error_count));
if (es->s_first_error_time) {
printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
sb->s_id,
ext4_get_tstamp(es, s_first_error_time),
(int) sizeof(es->s_first_error_func),
es->s_first_error_func,
le32_to_cpu(es->s_first_error_line));
if (es->s_first_error_ino)
printk(KERN_CONT ": inode %u",
le32_to_cpu(es->s_first_error_ino));
if (es->s_first_error_block)
printk(KERN_CONT ": block %llu", (unsigned long long)
le64_to_cpu(es->s_first_error_block));
printk(KERN_CONT "\n");
}
if (es->s_last_error_time) {
printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
sb->s_id,
ext4_get_tstamp(es, s_last_error_time),
(int) sizeof(es->s_last_error_func),
es->s_last_error_func,
le32_to_cpu(es->s_last_error_line));
if (es->s_last_error_ino)
printk(KERN_CONT ": inode %u",
le32_to_cpu(es->s_last_error_ino));
if (es->s_last_error_block)
printk(KERN_CONT ": block %llu", (unsigned long long)
le64_to_cpu(es->s_last_error_block));
printk(KERN_CONT "\n");
}
mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
}
/* Find next suitable group and run ext4_init_inode_table */
static int ext4_run_li_request(struct ext4_li_request *elr)
{
struct ext4_group_desc *gdp = NULL;
struct super_block *sb = elr->lr_super;
ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
ext4_group_t group = elr->lr_next_group;
unsigned int prefetch_ios = 0;
int ret = 0;
int nr = EXT4_SB(sb)->s_mb_prefetch;
u64 start_time;
if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
if (group >= elr->lr_next_group) {
ret = 1;
if (elr->lr_first_not_zeroed != ngroups &&
!sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
elr->lr_next_group = elr->lr_first_not_zeroed;
elr->lr_mode = EXT4_LI_MODE_ITABLE;
ret = 0;
}
}
return ret;
}
for (; group < ngroups; group++) {
gdp = ext4_get_group_desc(sb, group, NULL);
if (!gdp) {
ret = 1;
break;
}
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
break;
}
if (group >= ngroups)
ret = 1;
if (!ret) {
start_time = ktime_get_real_ns();
ret = ext4_init_inode_table(sb, group,
elr->lr_timeout ? 0 : 1);
trace_ext4_lazy_itable_init(sb, group);
if (elr->lr_timeout == 0) {
elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
EXT4_SB(elr->lr_super)->s_li_wait_mult);
}
elr->lr_next_sched = jiffies + elr->lr_timeout;
elr->lr_next_group = group + 1;
}
return ret;
}
/*
* Remove lr_request from the list_request and free the
* request structure. Should be called with li_list_mtx held
*/
static void ext4_remove_li_request(struct ext4_li_request *elr)
{
if (!elr)
return;
list_del(&elr->lr_request);
EXT4_SB(elr->lr_super)->s_li_request = NULL;
kfree(elr);
}
static void ext4_unregister_li_request(struct super_block *sb)
{
mutex_lock(&ext4_li_mtx);
if (!ext4_li_info) {
mutex_unlock(&ext4_li_mtx);
return;
}
mutex_lock(&ext4_li_info->li_list_mtx);
ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
mutex_unlock(&ext4_li_info->li_list_mtx);
mutex_unlock(&ext4_li_mtx);
}
static struct task_struct *ext4_lazyinit_task;
/*
* This is the function where ext4lazyinit thread lives. It walks
* through the request list searching for next scheduled filesystem.
* When such a fs is found, run the lazy initialization request
* (ext4_rn_li_request) and keep track of the time spend in this
* function. Based on that time we compute next schedule time of
* the request. When walking through the list is complete, compute
* next waking time and put itself into sleep.
*/
static int ext4_lazyinit_thread(void *arg)
{
struct ext4_lazy_init *eli = arg;
struct list_head *pos, *n;
struct ext4_li_request *elr;
unsigned long next_wakeup, cur;
BUG_ON(NULL == eli);
set_freezable();
cont_thread:
while (true) {
next_wakeup = MAX_JIFFY_OFFSET;
mutex_lock(&eli->li_list_mtx);
if (list_empty(&eli->li_request_list)) {
mutex_unlock(&eli->li_list_mtx);
goto exit_thread;
}
list_for_each_safe(pos, n, &eli->li_request_list) {
int err = 0;
int progress = 0;
elr = list_entry(pos, struct ext4_li_request,
lr_request);
if (time_before(jiffies, elr->lr_next_sched)) {
if (time_before(elr->lr_next_sched, next_wakeup))
next_wakeup = elr->lr_next_sched;
continue;
}
if (down_read_trylock(&elr->lr_super->s_umount)) {
if (sb_start_write_trylock(elr->lr_super)) {
progress = 1;
/*
* We hold sb->s_umount, sb can not
* be removed from the list, it is
* now safe to drop li_list_mtx
*/
mutex_unlock(&eli->li_list_mtx);
err = ext4_run_li_request(elr);
sb_end_write(elr->lr_super);
mutex_lock(&eli->li_list_mtx);
n = pos->next;
}
up_read((&elr->lr_super->s_umount));
}
/* error, remove the lazy_init job */
if (err) {
ext4_remove_li_request(elr);
continue;
}
if (!progress) {
elr->lr_next_sched = jiffies +
get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
}
if (time_before(elr->lr_next_sched, next_wakeup))
next_wakeup = elr->lr_next_sched;
}
mutex_unlock(&eli->li_list_mtx);
try_to_freeze();
cur = jiffies;
if ((time_after_eq(cur, next_wakeup)) ||
(MAX_JIFFY_OFFSET == next_wakeup)) {
cond_resched();
continue;
}
schedule_timeout_interruptible(next_wakeup - cur);
if (kthread_should_stop()) {
ext4_clear_request_list();
goto exit_thread;
}
}
exit_thread:
/*
* It looks like the request list is empty, but we need
* to check it under the li_list_mtx lock, to prevent any
* additions into it, and of course we should lock ext4_li_mtx
* to atomically free the list and ext4_li_info, because at
* this point another ext4 filesystem could be registering
* new one.
*/
mutex_lock(&ext4_li_mtx);
mutex_lock(&eli->li_list_mtx);
if (!list_empty(&eli->li_request_list)) {
mutex_unlock(&eli->li_list_mtx);
mutex_unlock(&ext4_li_mtx);
goto cont_thread;
}
mutex_unlock(&eli->li_list_mtx);
kfree(ext4_li_info);
ext4_li_info = NULL;
mutex_unlock(&ext4_li_mtx);
return 0;
}
static void ext4_clear_request_list(void)
{
struct list_head *pos, *n;
struct ext4_li_request *elr;
mutex_lock(&ext4_li_info->li_list_mtx);
list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
elr = list_entry(pos, struct ext4_li_request,
lr_request);
ext4_remove_li_request(elr);
}
mutex_unlock(&ext4_li_info->li_list_mtx);
}
static int ext4_run_lazyinit_thread(void)
{
ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
ext4_li_info, "ext4lazyinit");
if (IS_ERR(ext4_lazyinit_task)) {
int err = PTR_ERR(ext4_lazyinit_task);
ext4_clear_request_list();
kfree(ext4_li_info);
ext4_li_info = NULL;
printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
"initialization thread\n",
err);
return err;
}
ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
return 0;
}
/*
* Check whether it make sense to run itable init. thread or not.
* If there is at least one uninitialized inode table, return
* corresponding group number, else the loop goes through all
* groups and return total number of groups.
*/
static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
{
ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
struct ext4_group_desc *gdp = NULL;
if (!ext4_has_group_desc_csum(sb))
return ngroups;
for (group = 0; group < ngroups; group++) {
gdp = ext4_get_group_desc(sb, group, NULL);
if (!gdp)
continue;
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
break;
}
return group;
}
static int ext4_li_info_new(void)
{
struct ext4_lazy_init *eli = NULL;
eli = kzalloc(sizeof(*eli), GFP_KERNEL);
if (!eli)
return -ENOMEM;
INIT_LIST_HEAD(&eli->li_request_list);
mutex_init(&eli->li_list_mtx);
eli->li_state |= EXT4_LAZYINIT_QUIT;
ext4_li_info = eli;
return 0;
}
static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
ext4_group_t start)
{
struct ext4_li_request *elr;
elr = kzalloc(sizeof(*elr), GFP_KERNEL);
if (!elr)
return NULL;
elr->lr_super = sb;
elr->lr_first_not_zeroed = start;
if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
elr->lr_mode = EXT4_LI_MODE_ITABLE;
elr->lr_next_group = start;
} else {
elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
}
/*
* Randomize first schedule time of the request to
* spread the inode table initialization requests
* better.
*/
elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
return elr;
}
int ext4_register_li_request(struct super_block *sb,
ext4_group_t first_not_zeroed)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_li_request *elr = NULL;
ext4_group_t ngroups = sbi->s_groups_count;
int ret = 0;
mutex_lock(&ext4_li_mtx);
if (sbi->s_li_request != NULL) {
/*
* Reset timeout so it can be computed again, because
* s_li_wait_mult might have changed.
*/
sbi->s_li_request->lr_timeout = 0;
goto out;
}
if (sb_rdonly(sb) ||
(test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
(first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
goto out;
elr = ext4_li_request_new(sb, first_not_zeroed);
if (!elr) {
ret = -ENOMEM;
goto out;
}
if (NULL == ext4_li_info) {
ret = ext4_li_info_new();
if (ret)
goto out;
}
mutex_lock(&ext4_li_info->li_list_mtx);
list_add(&elr->lr_request, &ext4_li_info->li_request_list);
mutex_unlock(&ext4_li_info->li_list_mtx);
sbi->s_li_request = elr;
/*
* set elr to NULL here since it has been inserted to
* the request_list and the removal and free of it is
* handled by ext4_clear_request_list from now on.
*/
elr = NULL;
if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
ret = ext4_run_lazyinit_thread();
if (ret)
goto out;
}
out:
mutex_unlock(&ext4_li_mtx);
if (ret)
kfree(elr);
return ret;
}
/*
* We do not need to lock anything since this is called on
* module unload.
*/
static void ext4_destroy_lazyinit_thread(void)
{
/*
* If thread exited earlier
* there's nothing to be done.
*/
if (!ext4_li_info || !ext4_lazyinit_task)
return;
kthread_stop(ext4_lazyinit_task);
}
static int set_journal_csum_feature_set(struct super_block *sb)
{
int ret = 1;
int compat, incompat;
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (ext4_has_metadata_csum(sb)) {
/* journal checksum v3 */
compat = 0;
incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
} else {
/* journal checksum v1 */
compat = JBD2_FEATURE_COMPAT_CHECKSUM;
incompat = 0;
}
jbd2_journal_clear_features(sbi->s_journal,
JBD2_FEATURE_COMPAT_CHECKSUM, 0,
JBD2_FEATURE_INCOMPAT_CSUM_V3 |
JBD2_FEATURE_INCOMPAT_CSUM_V2);
if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ret = jbd2_journal_set_features(sbi->s_journal,
compat, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
incompat);
} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
ret = jbd2_journal_set_features(sbi->s_journal,
compat, 0,
incompat);
jbd2_journal_clear_features(sbi->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
} else {
jbd2_journal_clear_features(sbi->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
}
return ret;
}
/*
* Note: calculating the overhead so we can be compatible with
* historical BSD practice is quite difficult in the face of
* clusters/bigalloc. This is because multiple metadata blocks from
* different block group can end up in the same allocation cluster.
* Calculating the exact overhead in the face of clustered allocation
* requires either O(all block bitmaps) in memory or O(number of block
* groups**2) in time. We will still calculate the superblock for
* older file systems --- and if we come across with a bigalloc file
* system with zero in s_overhead_clusters the estimate will be close to
* correct especially for very large cluster sizes --- but for newer
* file systems, it's better to calculate this figure once at mkfs
* time, and store it in the superblock. If the superblock value is
* present (even for non-bigalloc file systems), we will use it.
*/
static int count_overhead(struct super_block *sb, ext4_group_t grp,
char *buf)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp;
ext4_fsblk_t first_block, last_block, b;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
int s, j, count = 0;
int has_super = ext4_bg_has_super(sb, grp);
if (!ext4_has_feature_bigalloc(sb))
return (has_super + ext4_bg_num_gdb(sb, grp) +
(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
sbi->s_itb_per_group + 2);
first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
(grp * EXT4_BLOCKS_PER_GROUP(sb));
last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
b = ext4_block_bitmap(sb, gdp);
if (b >= first_block && b <= last_block) {
ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
count++;
}
b = ext4_inode_bitmap(sb, gdp);
if (b >= first_block && b <= last_block) {
ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
count++;
}
b = ext4_inode_table(sb, gdp);
if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
int c = EXT4_B2C(sbi, b - first_block);
ext4_set_bit(c, buf);
count++;
}
if (i != grp)
continue;
s = 0;
if (ext4_bg_has_super(sb, grp)) {
ext4_set_bit(s++, buf);
count++;
}
j = ext4_bg_num_gdb(sb, grp);
if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
ext4_error(sb, "Invalid number of block group "
"descriptor blocks: %d", j);
j = EXT4_BLOCKS_PER_GROUP(sb) - s;
}
count += j;
for (; j > 0; j--)
ext4_set_bit(EXT4_B2C(sbi, s++), buf);
}
if (!count)
return 0;
return EXT4_CLUSTERS_PER_GROUP(sb) -
ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
}
/*
* Compute the overhead and stash it in sbi->s_overhead
*/
int ext4_calculate_overhead(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
struct inode *j_inode;
unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
ext4_fsblk_t overhead = 0;
char *buf = (char *) get_zeroed_page(GFP_NOFS);
if (!buf)
return -ENOMEM;
/*
* Compute the overhead (FS structures). This is constant
* for a given filesystem unless the number of block groups
* changes so we cache the previous value until it does.
*/
/*
* All of the blocks before first_data_block are overhead
*/
overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
/*
* Add the overhead found in each block group
*/
for (i = 0; i < ngroups; i++) {
int blks;
blks = count_overhead(sb, i, buf);
overhead += blks;
if (blks)
memset(buf, 0, PAGE_SIZE);
cond_resched();
}
/*
* Add the internal journal blocks whether the journal has been
* loaded or not
*/
if (sbi->s_journal && !sbi->s_journal_bdev_file)
overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
/* j_inum for internal journal is non-zero */
j_inode = ext4_get_journal_inode(sb, j_inum);
if (!IS_ERR(j_inode)) {
j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
overhead += EXT4_NUM_B2C(sbi, j_blocks);
iput(j_inode);
} else {
ext4_msg(sb, KERN_ERR, "can't get journal size");
}
}
sbi->s_overhead = overhead;
smp_wmb();
free_page((unsigned long) buf);
return 0;
}
static void ext4_set_resv_clusters(struct super_block *sb)
{
ext4_fsblk_t resv_clusters;
struct ext4_sb_info *sbi = EXT4_SB(sb);
/*
* There's no need to reserve anything when we aren't using extents.
* The space estimates are exact, there are no unwritten extents,
* hole punching doesn't need new metadata... This is needed especially
* to keep ext2/3 backward compatibility.
*/
if (!ext4_has_feature_extents(sb))
return;
/*
* By default we reserve 2% or 4096 clusters, whichever is smaller.
* This should cover the situations where we can not afford to run
* out of space like for example punch hole, or converting
* unwritten extents in delalloc path. In most cases such
* allocation would require 1, or 2 blocks, higher numbers are
* very rare.
*/
resv_clusters = (ext4_blocks_count(sbi->s_es) >>
sbi->s_cluster_bits);
do_div(resv_clusters, 50);
resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
atomic64_set(&sbi->s_resv_clusters, resv_clusters);
}
static const char *ext4_quota_mode(struct super_block *sb)
{
#ifdef CONFIG_QUOTA
if (!ext4_quota_capable(sb))
return "none";
if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
return "journalled";
else
return "writeback";
#else
return "disabled";
#endif
}
static void ext4_setup_csum_trigger(struct super_block *sb,
enum ext4_journal_trigger_type type,
void (*trigger)(
struct jbd2_buffer_trigger_type *type,
struct buffer_head *bh,
void *mapped_data,
size_t size))
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
sbi->s_journal_triggers[type].sb = sb;
sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
}
static void ext4_free_sbi(struct ext4_sb_info *sbi)
{
if (!sbi)
return;
kfree(sbi->s_blockgroup_lock);
fs_put_dax(sbi->s_daxdev, NULL);
kfree(sbi);
}
static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
{
struct ext4_sb_info *sbi;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
return NULL;
sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
NULL, NULL);
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock)
goto err_out;
sb->s_fs_info = sbi;
sbi->s_sb = sb;
return sbi;
err_out:
fs_put_dax(sbi->s_daxdev, NULL);
kfree(sbi);
return NULL;
}
static void ext4_set_def_opts(struct super_block *sb,
struct ext4_super_block *es)
{
unsigned long def_mount_opts;
/* Set defaults before we parse the mount options */
def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
set_opt(sb, INIT_INODE_TABLE);
if (def_mount_opts & EXT4_DEFM_DEBUG)
set_opt(sb, DEBUG);
if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
set_opt(sb, GRPID);
if (def_mount_opts & EXT4_DEFM_UID16)
set_opt(sb, NO_UID32);
/* xattr user namespace & acls are now defaulted on */
set_opt(sb, XATTR_USER);
#ifdef CONFIG_EXT4_FS_POSIX_ACL
set_opt(sb, POSIX_ACL);
#endif
if (ext4_has_feature_fast_commit(sb))
set_opt2(sb, JOURNAL_FAST_COMMIT);
/* don't forget to enable journal_csum when metadata_csum is enabled. */
if (ext4_has_metadata_csum(sb))
set_opt(sb, JOURNAL_CHECKSUM);
if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
set_opt(sb, JOURNAL_DATA);
else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
set_opt(sb, ORDERED_DATA);
else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
set_opt(sb, WRITEBACK_DATA);
if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
set_opt(sb, ERRORS_PANIC);
else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
set_opt(sb, ERRORS_CONT);
else
set_opt(sb, ERRORS_RO);
/* block_validity enabled by default; disable with noblock_validity */
set_opt(sb, BLOCK_VALIDITY);
if (def_mount_opts & EXT4_DEFM_DISCARD)
set_opt(sb, DISCARD);
if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
set_opt(sb, BARRIER);
/*
* enable delayed allocation by default
* Use -o nodelalloc to turn it off
*/
if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
set_opt(sb, DELALLOC);
if (sb->s_blocksize <= PAGE_SIZE)
set_opt(sb, DIOREAD_NOLOCK);
}
static int ext4_handle_clustersize(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
int clustersize;
/* Handle clustersize */
clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
if (ext4_has_feature_bigalloc(sb)) {
if (clustersize < sb->s_blocksize) {
ext4_msg(sb, KERN_ERR,
"cluster size (%d) smaller than "
"block size (%lu)", clustersize, sb->s_blocksize);
return -EINVAL;
}
sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
le32_to_cpu(es->s_log_block_size);
} else {
if (clustersize != sb->s_blocksize) {
ext4_msg(sb, KERN_ERR,
"fragment/cluster size (%d) != "
"block size (%lu)", clustersize, sb->s_blocksize);
return -EINVAL;
}
if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
ext4_msg(sb, KERN_ERR,
"#blocks per group too big: %lu",
sbi->s_blocks_per_group);
return -EINVAL;
}
sbi->s_cluster_bits = 0;
}
sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
sbi->s_clusters_per_group);
return -EINVAL;
}
if (sbi->s_blocks_per_group !=
(sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
ext4_msg(sb, KERN_ERR,
"blocks per group (%lu) and clusters per group (%lu) inconsistent",
sbi->s_blocks_per_group, sbi->s_clusters_per_group);
return -EINVAL;
}
sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
/* Do we have standard group size of clustersize * 8 blocks ? */
if (sbi->s_blocks_per_group == clustersize << 3)
set_opt2(sb, STD_GROUP_SIZE);
return 0;
}
static void ext4_fast_commit_init(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
/* Initialize fast commit stuff */
atomic_set(&sbi->s_fc_subtid, 0);
INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
sbi->s_fc_bytes = 0;
ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
sbi->s_fc_ineligible_tid = 0;
spin_lock_init(&sbi->s_fc_lock);
memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
sbi->s_fc_replay_state.fc_regions = NULL;
sbi->s_fc_replay_state.fc_regions_size = 0;
sbi->s_fc_replay_state.fc_regions_used = 0;
sbi->s_fc_replay_state.fc_regions_valid = 0;
sbi->s_fc_replay_state.fc_modified_inodes = NULL;
sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
}
static int ext4_inode_info_init(struct super_block *sb,
struct ext4_super_block *es)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
} else {
sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
sbi->s_first_ino);
return -EINVAL;
}
if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
(!is_power_of_2(sbi->s_inode_size)) ||
(sbi->s_inode_size > sb->s_blocksize)) {
ext4_msg(sb, KERN_ERR,
"unsupported inode size: %d",
sbi->s_inode_size);
ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
return -EINVAL;
}
/*
* i_atime_extra is the last extra field available for
* [acm]times in struct ext4_inode. Checking for that
* field should suffice to ensure we have extra space
* for all three.
*/
if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
sb->s_time_gran = 1;
sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
} else {
sb->s_time_gran = NSEC_PER_SEC;
sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
}
sb->s_time_min = EXT4_TIMESTAMP_MIN;
}
if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
EXT4_GOOD_OLD_INODE_SIZE;
if (ext4_has_feature_extra_isize(sb)) {
unsigned v, max = (sbi->s_inode_size -
EXT4_GOOD_OLD_INODE_SIZE);
v = le16_to_cpu(es->s_want_extra_isize);
if (v > max) {
ext4_msg(sb, KERN_ERR,
"bad s_want_extra_isize: %d", v);
return -EINVAL;
}
if (sbi->s_want_extra_isize < v)
sbi->s_want_extra_isize = v;
v = le16_to_cpu(es->s_min_extra_isize);
if (v > max) {
ext4_msg(sb, KERN_ERR,
"bad s_min_extra_isize: %d", v);
return -EINVAL;
}
if (sbi->s_want_extra_isize < v)
sbi->s_want_extra_isize = v;
}
}
return 0;
}
#if IS_ENABLED(CONFIG_UNICODE)
static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
{
const struct ext4_sb_encodings *encoding_info;
struct unicode_map *encoding;
__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
return 0;
encoding_info = ext4_sb_read_encoding(es);
if (!encoding_info) {
ext4_msg(sb, KERN_ERR,
"Encoding requested by superblock is unknown");
return -EINVAL;
}
encoding = utf8_load(encoding_info->version);
if (IS_ERR(encoding)) {
ext4_msg(sb, KERN_ERR,
"can't mount with superblock charset: %s-%u.%u.%u "
"not supported by the kernel. flags: 0x%x.",
encoding_info->name,
unicode_major(encoding_info->version),
unicode_minor(encoding_info->version),
unicode_rev(encoding_info->version),
encoding_flags);
return -EINVAL;
}
ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
unicode_major(encoding_info->version),
unicode_minor(encoding_info->version),
unicode_rev(encoding_info->version),
encoding_flags);
sb->s_encoding = encoding;
sb->s_encoding_flags = encoding_flags;
return 0;
}
#else
static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
{
return 0;
}
#endif
static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
/* Warn if metadata_csum and gdt_csum are both set. */
if (ext4_has_feature_metadata_csum(sb) &&
ext4_has_feature_gdt_csum(sb))
ext4_warning(sb, "metadata_csum and uninit_bg are "
"redundant flags; please run fsck.");
/* Check for a known checksum algorithm */
if (!ext4_verify_csum_type(sb, es)) {
ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
"unknown checksum algorithm.");
return -EINVAL;
}
ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
ext4_orphan_file_block_trigger);
/* Load the checksum driver */
sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
if (IS_ERR(sbi->s_chksum_driver)) {
int ret = PTR_ERR(sbi->s_chksum_driver);
ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
sbi->s_chksum_driver = NULL;
return ret;
}
/* Check superblock checksum */
if (!ext4_superblock_csum_verify(sb, es)) {
ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
"invalid superblock checksum. Run e2fsck?");
return -EFSBADCRC;
}
/* Precompute checksum seed for all metadata */
if (ext4_has_feature_csum_seed(sb))
sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
sizeof(es->s_uuid));
return 0;
}
static int ext4_check_feature_compatibility(struct super_block *sb,
struct ext4_super_block *es,
int silent)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
(ext4_has_compat_features(sb) ||
ext4_has_ro_compat_features(sb) ||
ext4_has_incompat_features(sb)))
ext4_msg(sb, KERN_WARNING,
"feature flags set on rev 0 fs, "
"running e2fsck is recommended");
if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
set_opt2(sb, HURD_COMPAT);
if (ext4_has_feature_64bit(sb)) {
ext4_msg(sb, KERN_ERR,
"The Hurd can't support 64-bit file systems");
return -EINVAL;
}
/*
* ea_inode feature uses l_i_version field which is not
* available in HURD_COMPAT mode.
*/
if (ext4_has_feature_ea_inode(sb)) {
ext4_msg(sb, KERN_ERR,
"ea_inode feature is not supported for Hurd");
return -EINVAL;
}
}
if (IS_EXT2_SB(sb)) {
if (ext2_feature_set_ok(sb))
ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
"using the ext4 subsystem");
else {
/*
* If we're probing be silent, if this looks like
* it's actually an ext[34] filesystem.
*/
if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
return -EINVAL;
ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
"to feature incompatibilities");
return -EINVAL;
}
}
if (IS_EXT3_SB(sb)) {
if (ext3_feature_set_ok(sb))
ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
"using the ext4 subsystem");
else {
/*
* If we're probing be silent, if this looks like
* it's actually an ext4 filesystem.
*/
if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
return -EINVAL;
ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
"to feature incompatibilities");
return -EINVAL;
}
}
/*
* Check feature flags regardless of the revision level, since we
* previously didn't change the revision level when setting the flags,
* so there is a chance incompat flags are set on a rev 0 filesystem.
*/
if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
return -EINVAL;
if (sbi->s_daxdev) {
if (sb->s_blocksize == PAGE_SIZE)
set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
else
ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
}
if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
if (ext4_has_feature_inline_data(sb)) {
ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
" that may contain inline data");
return -EINVAL;
}
if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
ext4_msg(sb, KERN_ERR,
"DAX unsupported by block device.");
return -EINVAL;
}
}
if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
es->s_encryption_level);
return -EINVAL;
}
return 0;
}
static int ext4_check_geometry(struct super_block *sb,
struct ext4_super_block *es)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
__u64 blocks_count;
int err;
if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
ext4_msg(sb, KERN_ERR,
"Number of reserved GDT blocks insanely large: %d",
le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
return -EINVAL;
}
/*
* Test whether we have more sectors than will fit in sector_t,
* and whether the max offset is addressable by the page cache.
*/
err = generic_check_addressable(sb->s_blocksize_bits,
ext4_blocks_count(es));
if (err) {
ext4_msg(sb, KERN_ERR, "filesystem"
" too large to mount safely on this system");
return err;
}
/* check blocks count against device size */
blocks_count = sb_bdev_nr_blocks(sb);
if (blocks_count && ext4_blocks_count(es) > blocks_count) {
ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
"exceeds size of device (%llu blocks)",
ext4_blocks_count(es), blocks_count);
return -EINVAL;
}
/*
* It makes no sense for the first data block to be beyond the end
* of the filesystem.
*/
if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
"block %u is beyond end of filesystem (%llu)",
le32_to_cpu(es->s_first_data_block),
ext4_blocks_count(es));
return -EINVAL;
}
if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
(sbi->s_cluster_ratio == 1)) {
ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
"block is 0 with a 1k block and cluster size");
return -EINVAL;
}
blocks_count = (ext4_blocks_count(es) -
le32_to_cpu(es->s_first_data_block) +
EXT4_BLOCKS_PER_GROUP(sb) - 1);
do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
"(block count %llu, first data block %u, "
"blocks per group %lu)", blocks_count,
ext4_blocks_count(es),
le32_to_cpu(es->s_first_data_block),
EXT4_BLOCKS_PER_GROUP(sb));
return -EINVAL;
}
sbi->s_groups_count = blocks_count;
sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
le32_to_cpu(es->s_inodes_count)) {
ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
le32_to_cpu(es->s_inodes_count),
((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
return -EINVAL;
}
return 0;
}
static int ext4_group_desc_init(struct super_block *sb,
struct ext4_super_block *es,
ext4_fsblk_t logical_sb_block,
ext4_group_t *first_not_zeroed)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
unsigned int db_count;
ext4_fsblk_t block;
int i;
db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
EXT4_DESC_PER_BLOCK(sb);
if (ext4_has_feature_meta_bg(sb)) {
if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
ext4_msg(sb, KERN_WARNING,
"first meta block group too large: %u "
"(group descriptor block count %u)",
le32_to_cpu(es->s_first_meta_bg), db_count);
return -EINVAL;
}
}
rcu_assign_pointer(sbi->s_group_desc,
kvmalloc_array(db_count,
sizeof(struct buffer_head *),
GFP_KERNEL));
if (sbi->s_group_desc == NULL) {
ext4_msg(sb, KERN_ERR, "not enough memory");
return -ENOMEM;
}
bgl_lock_init(sbi->s_blockgroup_lock);
/* Pre-read the descriptors into the buffer cache */
for (i = 0; i < db_count; i++) {
block = descriptor_loc(sb, logical_sb_block, i);
ext4_sb_breadahead_unmovable(sb, block);
}
for (i = 0; i < db_count; i++) {
struct buffer_head *bh;
block = descriptor_loc(sb, logical_sb_block, i);
bh = ext4_sb_bread_unmovable(sb, block);
if (IS_ERR(bh)) {
ext4_msg(sb, KERN_ERR,
"can't read group descriptor %d", i);
sbi->s_gdb_count = i;
return PTR_ERR(bh);
}
rcu_read_lock();
rcu_dereference(sbi->s_group_desc)[i] = bh;
rcu_read_unlock();
}
sbi->s_gdb_count = db_count;
if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
return -EFSCORRUPTED;
}
return 0;
}
static int ext4_load_and_init_journal(struct super_block *sb,
struct ext4_super_block *es,
struct ext4_fs_context *ctx)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
int err;
err = ext4_load_journal(sb, es, ctx->journal_devnum);
if (err)
return err;
if (ext4_has_feature_64bit(sb) &&
!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_64BIT)) {
ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
goto out;
}
if (!set_journal_csum_feature_set(sb)) {
ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
"feature set");
goto out;
}
if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
ext4_msg(sb, KERN_ERR,
"Failed to set fast commit journal feature");
goto out;
}
/* We have now updated the journal if required, so we can
* validate the data journaling mode. */
switch (test_opt(sb, DATA_FLAGS)) {
case 0:
/* No mode set, assume a default based on the journal
* capabilities: ORDERED_DATA if the journal can
* cope, else JOURNAL_DATA
*/
if (jbd2_journal_check_available_features
(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
set_opt(sb, ORDERED_DATA);
sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
} else {
set_opt(sb, JOURNAL_DATA);
sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
}
break;
case EXT4_MOUNT_ORDERED_DATA:
case EXT4_MOUNT_WRITEBACK_DATA:
if (!jbd2_journal_check_available_features
(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
ext4_msg(sb, KERN_ERR, "Journal does not support "
"requested data journaling mode");
goto out;
}
break;
default:
break;
}
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_async_commit in data=ordered mode");
goto out;
}
set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
sbi->s_journal->j_submit_inode_data_buffers =
ext4_journal_submit_inode_data_buffers;
sbi->s_journal->j_finish_inode_data_buffers =
ext4_journal_finish_inode_data_buffers;
return 0;
out:
/* flush s_sb_upd_work before destroying the journal. */
flush_work(&sbi->s_sb_upd_work);
jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
return -EINVAL;
}
static int ext4_check_journal_data_mode(struct super_block *sb)
{
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
"data=journal disables delayed allocation, "
"dioread_nolock, O_DIRECT and fast_commit support!\n");
/* can't mount with both data=journal and dioread_nolock. */
clear_opt(sb, DIOREAD_NOLOCK);
clear_opt2(sb, JOURNAL_FAST_COMMIT);
if (test_opt2(sb, EXPLICIT_DELALLOC)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and delalloc");
return -EINVAL;
}
if (test_opt(sb, DAX_ALWAYS)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and dax");
return -EINVAL;
}
if (ext4_has_feature_encrypt(sb)) {
ext4_msg(sb, KERN_WARNING,
"encrypted files will use data=ordered "
"instead of data journaling mode");
}
if (test_opt(sb, DELALLOC))
clear_opt(sb, DELALLOC);
} else {
sb->s_iflags |= SB_I_CGROUPWB;
}
return 0;
}
static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
int silent)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es;
ext4_fsblk_t logical_sb_block;
unsigned long offset = 0;
struct buffer_head *bh;
int ret = -EINVAL;
int blocksize;
blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
if (!blocksize) {
ext4_msg(sb, KERN_ERR, "unable to set blocksize");
return -EINVAL;
}
/*
* The ext4 superblock will not be buffer aligned for other than 1kB
* block sizes. We need to calculate the offset from buffer start.
*/
if (blocksize != EXT4_MIN_BLOCK_SIZE) {
logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
offset = do_div(logical_sb_block, blocksize);
} else {
logical_sb_block = sbi->s_sb_block;
}
bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
if (IS_ERR(bh)) {
ext4_msg(sb, KERN_ERR, "unable to read superblock");
return PTR_ERR(bh);
}
/*
* Note: s_es must be initialized as soon as possible because
* some ext4 macro-instructions depend on its value
*/
es = (struct ext4_super_block *) (bh->b_data + offset);
sbi->s_es = es;
sb->s_magic = le16_to_cpu(es->s_magic);
if (sb->s_magic != EXT4_SUPER_MAGIC) {
if (!silent)
ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
goto out;
}
if (le32_to_cpu(es->s_log_block_size) >
(EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
ext4_msg(sb, KERN_ERR,
"Invalid log block size: %u",
le32_to_cpu(es->s_log_block_size));
goto out;
}
if (le32_to_cpu(es->s_log_cluster_size) >
(EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
ext4_msg(sb, KERN_ERR,
"Invalid log cluster size: %u",
le32_to_cpu(es->s_log_cluster_size));
goto out;
}
blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
/*
* If the default block size is not the same as the real block size,
* we need to reload it.
*/
if (sb->s_blocksize == blocksize) {
*lsb = logical_sb_block;
sbi->s_sbh = bh;
return 0;
}
/*
* bh must be released before kill_bdev(), otherwise
* it won't be freed and its page also. kill_bdev()
* is called by sb_set_blocksize().
*/
brelse(bh);
/* Validate the filesystem blocksize */
if (!sb_set_blocksize(sb, blocksize)) {
ext4_msg(sb, KERN_ERR, "bad block size %d",
blocksize);
bh = NULL;
goto out;
}
logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
offset = do_div(logical_sb_block, blocksize);
bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
if (IS_ERR(bh)) {
ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
ret = PTR_ERR(bh);
bh = NULL;
goto out;
}
es = (struct ext4_super_block *)(bh->b_data + offset);
sbi->s_es = es;
if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
goto out;
}
*lsb = logical_sb_block;
sbi->s_sbh = bh;
return 0;
out:
brelse(bh);
return ret;
}
static void ext4_hash_info_init(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
unsigned int i;
for (i = 0; i < 4; i++)
sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
sbi->s_def_hash_version = es->s_def_hash_version;
if (ext4_has_feature_dir_index(sb)) {
i = le32_to_cpu(es->s_flags);
if (i & EXT2_FLAGS_UNSIGNED_HASH)
sbi->s_hash_unsigned = 3;
else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
#ifdef __CHAR_UNSIGNED__
if (!sb_rdonly(sb))
es->s_flags |=
cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
sbi->s_hash_unsigned = 3;
#else
if (!sb_rdonly(sb))
es->s_flags |=
cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
#endif
}
}
}
static int ext4_block_group_meta_init(struct super_block *sb, int silent)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
int has_huge_files;
has_huge_files = ext4_has_feature_huge_file(sb);
sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
has_huge_files);
sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
if (ext4_has_feature_64bit(sb)) {
if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
!is_power_of_2(sbi->s_desc_size)) {
ext4_msg(sb, KERN_ERR,
"unsupported descriptor size %lu",
sbi->s_desc_size);
return -EINVAL;
}
} else
sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
if (!silent)
ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
return -EINVAL;
}
if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
sbi->s_inodes_per_group > sb->s_blocksize * 8) {
ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
sbi->s_inodes_per_group);
return -EINVAL;
}
sbi->s_itb_per_group = sbi->s_inodes_per_group /
sbi->s_inodes_per_block;
sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
return 0;
}
static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
{
struct ext4_super_block *es = NULL;
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_fsblk_t logical_sb_block;
struct inode *root;
int needs_recovery;
int err;
ext4_group_t first_not_zeroed;
struct ext4_fs_context *ctx = fc->fs_private;
int silent = fc->sb_flags & SB_SILENT;
/* Set defaults for the variables that will be set during parsing */
if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
sbi->s_sectors_written_start =
part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
err = ext4_load_super(sb, &logical_sb_block, silent);
if (err)
goto out_fail;
es = sbi->s_es;
sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
err = ext4_init_metadata_csum(sb, es);
if (err)
goto failed_mount;
ext4_set_def_opts(sb, es);
sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
/*
* set default s_li_wait_mult for lazyinit, for the case there is
* no mount option specified.
*/
sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
err = ext4_inode_info_init(sb, es);
if (err)
goto failed_mount;
err = parse_apply_sb_mount_options(sb, ctx);
if (err < 0)
goto failed_mount;
sbi->s_def_mount_opt = sbi->s_mount_opt;
sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
err = ext4_check_opt_consistency(fc, sb);
if (err < 0)
goto failed_mount;
ext4_apply_options(fc, sb);
err = ext4_encoding_init(sb, es);
if (err)
goto failed_mount;
err = ext4_check_journal_data_mode(sb);
if (err)
goto failed_mount;
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
/* i_version is always enabled now */
sb->s_flags |= SB_I_VERSION;
err = ext4_check_feature_compatibility(sb, es, silent);
if (err)
goto failed_mount;
err = ext4_block_group_meta_init(sb, silent);
if (err)
goto failed_mount;
ext4_hash_info_init(sb);
err = ext4_handle_clustersize(sb);
if (err)
goto failed_mount;
err = ext4_check_geometry(sb, es);
if (err)
goto failed_mount;
timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
spin_lock_init(&sbi->s_error_lock);
INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
if (err)
goto failed_mount3;
err = ext4_es_register_shrinker(sbi);
if (err)
goto failed_mount3;
sbi->s_stripe = ext4_get_stripe_size(sbi);
/*
* It's hard to get stripe aligned blocks if stripe is not aligned with
* cluster, just disable stripe and alert user to simpfy code and avoid
* stripe aligned allocation which will rarely successes.
*/
if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
sbi->s_stripe % sbi->s_cluster_ratio != 0) {
ext4_msg(sb, KERN_WARNING,
"stripe (%lu) is not aligned with cluster size (%u), "
"stripe is disabled",
sbi->s_stripe, sbi->s_cluster_ratio);
sbi->s_stripe = 0;
}
sbi->s_extent_max_zeroout_kb = 32;
/*
* set up enough so that it can read an inode
*/
sb->s_op = &ext4_sops;
sb->s_export_op = &ext4_export_ops;
sb->s_xattr = ext4_xattr_handlers;
#ifdef CONFIG_FS_ENCRYPTION
sb->s_cop = &ext4_cryptops;
#endif
#ifdef CONFIG_FS_VERITY
sb->s_vop = &ext4_verityops;
#endif
#ifdef CONFIG_QUOTA
sb->dq_op = &ext4_quota_operations;
if (ext4_has_feature_quota(sb))
sb->s_qcop = &dquot_quotactl_sysfile_ops;
else
sb->s_qcop = &ext4_qctl_operations;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
#endif
super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
super_set_sysfs_name_bdev(sb);
INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
mutex_init(&sbi->s_orphan_lock);
ext4_fast_commit_init(sb);
sb->s_root = NULL;
needs_recovery = (es->s_last_orphan != 0 ||
ext4_has_feature_orphan_present(sb) ||
ext4_has_feature_journal_needs_recovery(sb));
if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
if (err)
goto failed_mount3a;
}
err = -EINVAL;
/*
* The first inode we look at is the journal inode. Don't try
* root first: it may be modified in the journal!
*/
if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
err = ext4_load_and_init_journal(sb, es, ctx);
if (err)
goto failed_mount3a;
} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
ext4_has_feature_journal_needs_recovery(sb)) {
ext4_msg(sb, KERN_ERR, "required journal recovery "
"suppressed and not mounted read-only");
goto failed_mount3a;
} else {
/* Nojournal mode, all journal mount options are illegal */
if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_async_commit, fs mounted w/o journal");
goto failed_mount3a;
}
if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_checksum, fs mounted w/o journal");
goto failed_mount3a;
}
if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"commit=%lu, fs mounted w/o journal",
sbi->s_commit_interval / HZ);
goto failed_mount3a;
}
if (EXT4_MOUNT_DATA_FLAGS &
(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"data=, fs mounted w/o journal");
goto failed_mount3a;
}
sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
clear_opt(sb, JOURNAL_CHECKSUM);
clear_opt(sb, DATA_FLAGS);
clear_opt2(sb, JOURNAL_FAST_COMMIT);
sbi->s_journal = NULL;
needs_recovery = 0;
}
if (!test_opt(sb, NO_MBCACHE)) {
sbi->s_ea_block_cache = ext4_xattr_create_cache();
if (!sbi->s_ea_block_cache) {
ext4_msg(sb, KERN_ERR,
"Failed to create ea_block_cache");
err = -EINVAL;
goto failed_mount_wq;
}
if (ext4_has_feature_ea_inode(sb)) {
sbi->s_ea_inode_cache = ext4_xattr_create_cache();
if (!sbi->s_ea_inode_cache) {
ext4_msg(sb, KERN_ERR,
"Failed to create ea_inode_cache");
err = -EINVAL;
goto failed_mount_wq;
}
}
}
/*
* Get the # of file system overhead blocks from the
* superblock if present.
*/
sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
/* ignore the precalculated value if it is ridiculous */
if (sbi->s_overhead > ext4_blocks_count(es))
sbi->s_overhead = 0;
/*
* If the bigalloc feature is not enabled recalculating the
* overhead doesn't take long, so we might as well just redo
* it to make sure we are using the correct value.
*/
if (!ext4_has_feature_bigalloc(sb))
sbi->s_overhead = 0;
if (sbi->s_overhead == 0) {
err = ext4_calculate_overhead(sb);
if (err)
goto failed_mount_wq;
}
/*
* The maximum number of concurrent works can be high and
* concurrency isn't really necessary. Limit it to 1.
*/
EXT4_SB(sb)->rsv_conversion_wq =
alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
if (!EXT4_SB(sb)->rsv_conversion_wq) {
printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
err = -ENOMEM;
goto failed_mount4;
}
/*
* The jbd2_journal_load will have done any necessary log recovery,
* so we can safely mount the rest of the filesystem now.
*/
root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
if (IS_ERR(root)) {
ext4_msg(sb, KERN_ERR, "get root inode failed");
err = PTR_ERR(root);
root = NULL;
goto failed_mount4;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
iput(root);
err = -EFSCORRUPTED;
goto failed_mount4;
}
generic_set_sb_d_ops(sb);
sb->s_root = d_make_root(root);
if (!sb->s_root) {
ext4_msg(sb, KERN_ERR, "get root dentry failed");
err = -ENOMEM;
goto failed_mount4;
}
err = ext4_setup_super(sb, es, sb_rdonly(sb));
if (err == -EROFS) {
sb->s_flags |= SB_RDONLY;
} else if (err)
goto failed_mount4a;
ext4_set_resv_clusters(sb);
if (test_opt(sb, BLOCK_VALIDITY)) {
err = ext4_setup_system_zone(sb);
if (err) {
ext4_msg(sb, KERN_ERR, "failed to initialize system "
"zone (%d)", err);
goto failed_mount4a;
}
}
ext4_fc_replay_cleanup(sb);
ext4_ext_init(sb);
/*
* Enable optimize_scan if number of groups is > threshold. This can be
* turned off by passing "mb_optimize_scan=0". This can also be
* turned on forcefully by passing "mb_optimize_scan=1".
*/
if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
set_opt2(sb, MB_OPTIMIZE_SCAN);
else
clear_opt2(sb, MB_OPTIMIZE_SCAN);
}
err = ext4_mb_init(sb);
if (err) {
ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
err);
goto failed_mount5;
}
/*
* We can only set up the journal commit callback once
* mballoc is initialized
*/
if (sbi->s_journal)
sbi->s_journal->j_commit_callback =
ext4_journal_commit_callback;
err = ext4_percpu_param_init(sbi);
if (err)
goto failed_mount6;
if (ext4_has_feature_flex_bg(sb))
if (!ext4_fill_flex_info(sb)) {
ext4_msg(sb, KERN_ERR,
"unable to initialize "
"flex_bg meta info!");
err = -ENOMEM;
goto failed_mount6;
}
err = ext4_register_li_request(sb, first_not_zeroed);
if (err)
goto failed_mount6;
err = ext4_register_sysfs(sb);
if (err)
goto failed_mount7;
err = ext4_init_orphan_info(sb);
if (err)
goto failed_mount8;
#ifdef CONFIG_QUOTA
/* Enable quota usage during mount. */
if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
err = ext4_enable_quotas(sb);
if (err)
goto failed_mount9;
}
#endif /* CONFIG_QUOTA */
/*
* Save the original bdev mapping's wb_err value which could be
* used to detect the metadata async write error.
*/
spin_lock_init(&sbi->s_bdev_wb_lock);
errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
&sbi->s_bdev_wb_err);
EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
ext4_orphan_cleanup(sb, es);
EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
/*
* Update the checksum after updating free space/inode counters and
* ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
* checksum in the buffer cache until it is written out and
* e2fsprogs programs trying to open a file system immediately
* after it is mounted can fail.
*/
ext4_superblock_csum_set(sb);
if (needs_recovery) {
ext4_msg(sb, KERN_INFO, "recovery complete");
err = ext4_mark_recovery_complete(sb, es);
if (err)
goto failed_mount10;
}
if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
ext4_msg(sb, KERN_WARNING,
"mounting with \"discard\" option, but the device does not support discard");
if (es->s_error_count)
mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
atomic_set(&sbi->s_warning_count, 0);
atomic_set(&sbi->s_msg_count, 0);
return 0;
failed_mount10:
ext4_quotas_off(sb, EXT4_MAXQUOTAS);
failed_mount9: __maybe_unused
ext4_release_orphan_info(sb);
failed_mount8:
ext4_unregister_sysfs(sb);
kobject_put(&sbi->s_kobj);
failed_mount7:
ext4_unregister_li_request(sb);
failed_mount6:
ext4_mb_release(sb);
ext4_flex_groups_free(sbi);
ext4_percpu_param_destroy(sbi);
failed_mount5:
ext4_ext_release(sb);
ext4_release_system_zone(sb);
failed_mount4a:
dput(sb->s_root);
sb->s_root = NULL;
failed_mount4:
ext4_msg(sb, KERN_ERR, "mount failed");
if (EXT4_SB(sb)->rsv_conversion_wq)
destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
failed_mount_wq:
ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
sbi->s_ea_inode_cache = NULL;
ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
sbi->s_ea_block_cache = NULL;
if (sbi->s_journal) {
/* flush s_sb_upd_work before journal destroy. */
flush_work(&sbi->s_sb_upd_work);
jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
}
failed_mount3a:
ext4_es_unregister_shrinker(sbi);
failed_mount3:
/* flush s_sb_upd_work before sbi destroy */
flush_work(&sbi->s_sb_upd_work);
del_timer_sync(&sbi->s_err_report);
ext4_stop_mmpd(sbi);
ext4_group_desc_free(sbi);
failed_mount:
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
#if IS_ENABLED(CONFIG_UNICODE)
utf8_unload(sb->s_encoding);
#endif
#ifdef CONFIG_QUOTA
for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(get_qf_name(sb, sbi, i));
#endif
fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
brelse(sbi->s_sbh);
if (sbi->s_journal_bdev_file) {
invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
bdev_fput(sbi->s_journal_bdev_file);
}
out_fail:
invalidate_bdev(sb->s_bdev);
sb->s_fs_info = NULL;
return err;
}
static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi;
const char *descr;
int ret;
sbi = ext4_alloc_sbi(sb);
if (!sbi)
return -ENOMEM;
fc->s_fs_info = sbi;
/* Cleanup superblock name */
strreplace(sb->s_id, '/', '!');
sbi->s_sb_block = 1; /* Default super block location */
if (ctx->spec & EXT4_SPEC_s_sb_block)
sbi->s_sb_block = ctx->s_sb_block;
ret = __ext4_fill_super(fc, sb);
if (ret < 0)
goto free_sbi;
if (sbi->s_journal) {
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
descr = " journalled data mode";
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
descr = " ordered data mode";
else
descr = " writeback data mode";
} else
descr = "out journal";
if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
"Quota mode: %s.", &sb->s_uuid,
sb_rdonly(sb) ? "ro" : "r/w", descr,
ext4_quota_mode(sb));
/* Update the s_overhead_clusters if necessary */
ext4_update_overhead(sb, false);
return 0;
free_sbi:
ext4_free_sbi(sbi);
fc->s_fs_info = NULL;
return ret;
}
static int ext4_get_tree(struct fs_context *fc)
{
return get_tree_bdev(fc, ext4_fill_super);
}
/*
* Setup any per-fs journal parameters now. We'll do this both on
* initial mount, once the journal has been initialised but before we've
* done any recovery; and again on any subsequent remount.
*/
static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
journal->j_commit_interval = sbi->s_commit_interval;
journal->j_min_batch_time = sbi->s_min_batch_time;
journal->j_max_batch_time = sbi->s_max_batch_time;
ext4_fc_init(sb, journal);
write_lock(&journal->j_state_lock);
if (test_opt(sb, BARRIER))
journal->j_flags |= JBD2_BARRIER;
else
journal->j_flags &= ~JBD2_BARRIER;
if (test_opt(sb, DATA_ERR_ABORT))
journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
else
journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
/*
* Always enable journal cycle record option, letting the journal
* records log transactions continuously between each mount.
*/
journal->j_flags |= JBD2_CYCLE_RECORD;
write_unlock(&journal->j_state_lock);
}
static struct inode *ext4_get_journal_inode(struct super_block *sb,
unsigned int journal_inum)
{
struct inode *journal_inode;
/*
* Test for the existence of a valid inode on disk. Bad things
* happen if we iget() an unused inode, as the subsequent iput()
* will try to delete it.
*/
journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
if (IS_ERR(journal_inode)) {
ext4_msg(sb, KERN_ERR, "no journal found");
return ERR_CAST(journal_inode);
}
if (!journal_inode->i_nlink) {
make_bad_inode(journal_inode);
iput(journal_inode);
ext4_msg(sb, KERN_ERR, "journal inode is deleted");
return ERR_PTR(-EFSCORRUPTED);
}
if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
ext4_msg(sb, KERN_ERR, "invalid journal inode");
iput(journal_inode);
return ERR_PTR(-EFSCORRUPTED);
}
ext4_debug("Journal inode found at %p: %lld bytes\n",
journal_inode, journal_inode->i_size);
return journal_inode;
}
static int ext4_journal_bmap(journal_t *journal, sector_t *block)
{
struct ext4_map_blocks map;
int ret;
if (journal->j_inode == NULL)
return 0;
map.m_lblk = *block;
map.m_len = 1;
ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
if (ret <= 0) {
ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
"journal bmap failed: block %llu ret %d\n",
*block, ret);
jbd2_journal_abort(journal, ret ? ret : -EIO);
return ret;
}
*block = map.m_pblk;
return 0;
}
static journal_t *ext4_open_inode_journal(struct super_block *sb,
unsigned int journal_inum)
{
struct inode *journal_inode;
journal_t *journal;
journal_inode = ext4_get_journal_inode(sb, journal_inum);
if (IS_ERR(journal_inode))
return ERR_CAST(journal_inode);
journal = jbd2_journal_init_inode(journal_inode);
if (IS_ERR(journal)) {
ext4_msg(sb, KERN_ERR, "Could not load journal inode");
iput(journal_inode);
return ERR_CAST(journal);
}
journal->j_private = sb;
journal->j_bmap = ext4_journal_bmap;
ext4_init_journal_params(sb, journal);
return journal;
}
static struct file *ext4_get_journal_blkdev(struct super_block *sb,
dev_t j_dev, ext4_fsblk_t *j_start,
ext4_fsblk_t *j_len)
{
struct buffer_head *bh;
struct block_device *bdev;
struct file *bdev_file;
int hblock, blocksize;
ext4_fsblk_t sb_block;
unsigned long offset;
struct ext4_super_block *es;
int errno;
bdev_file = bdev_file_open_by_dev(j_dev,
BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
sb, &fs_holder_ops);
if (IS_ERR(bdev_file)) {
ext4_msg(sb, KERN_ERR,
"failed to open journal device unknown-block(%u,%u) %ld",
MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
return bdev_file;
}
bdev = file_bdev(bdev_file);
blocksize = sb->s_blocksize;
hblock = bdev_logical_block_size(bdev);
if (blocksize < hblock) {
ext4_msg(sb, KERN_ERR,
"blocksize too small for journal device");
errno = -EINVAL;
goto out_bdev;
}
sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
offset = EXT4_MIN_BLOCK_SIZE % blocksize;
set_blocksize(bdev, blocksize);
bh = __bread(bdev, sb_block, blocksize);
if (!bh) {
ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
"external journal");
errno = -EINVAL;
goto out_bdev;
}
es = (struct ext4_super_block *) (bh->b_data + offset);
if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
!(le32_to_cpu(es->s_feature_incompat) &
EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
errno = -EFSCORRUPTED;
goto out_bh;
}
if ((le32_to_cpu(es->s_feature_ro_compat) &
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
es->s_checksum != ext4_superblock_csum(sb, es)) {
ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
errno = -EFSCORRUPTED;
goto out_bh;
}
if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
ext4_msg(sb, KERN_ERR, "journal UUID does not match");
errno = -EFSCORRUPTED;
goto out_bh;
}
*j_start = sb_block + 1;
*j_len = ext4_blocks_count(es);
brelse(bh);
return bdev_file;
out_bh:
brelse(bh);
out_bdev:
bdev_fput(bdev_file);
return ERR_PTR(errno);
}
static journal_t *ext4_open_dev_journal(struct super_block *sb,
dev_t j_dev)
{
journal_t *journal;
ext4_fsblk_t j_start;
ext4_fsblk_t j_len;
struct file *bdev_file;
int errno = 0;
bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
if (IS_ERR(bdev_file))
return ERR_CAST(bdev_file);
journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
j_len, sb->s_blocksize);
if (IS_ERR(journal)) {
ext4_msg(sb, KERN_ERR, "failed to create device journal");
errno = PTR_ERR(journal);
goto out_bdev;
}
if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
ext4_msg(sb, KERN_ERR, "External journal has more than one "
"user (unsupported) - %d",
be32_to_cpu(journal->j_superblock->s_nr_users));
errno = -EINVAL;
goto out_journal;
}
journal->j_private = sb;
EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
ext4_init_journal_params(sb, journal);
return journal;
out_journal:
jbd2_journal_destroy(journal);
out_bdev:
bdev_fput(bdev_file);
return ERR_PTR(errno);
}
static int ext4_load_journal(struct super_block *sb,
struct ext4_super_block *es,
unsigned long journal_devnum)
{
journal_t *journal;
unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
dev_t journal_dev;
int err = 0;
int really_read_only;
int journal_dev_ro;
if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
return -EFSCORRUPTED;
if (journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
ext4_msg(sb, KERN_INFO, "external journal device major/minor "
"numbers have changed");
journal_dev = new_decode_dev(journal_devnum);
} else
journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
if (journal_inum && journal_dev) {
ext4_msg(sb, KERN_ERR,
"filesystem has both journal inode and journal device!");
return -EINVAL;
}
if (journal_inum) {
journal = ext4_open_inode_journal(sb, journal_inum);
if (IS_ERR(journal))
return PTR_ERR(journal);
} else {
journal = ext4_open_dev_journal(sb, journal_dev);
if (IS_ERR(journal))
return PTR_ERR(journal);
}
journal_dev_ro = bdev_read_only(journal->j_dev);
really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
if (journal_dev_ro && !sb_rdonly(sb)) {
ext4_msg(sb, KERN_ERR,
"journal device read-only, try mounting with '-o ro'");
err = -EROFS;
goto err_out;
}
/*
* Are we loading a blank journal or performing recovery after a
* crash? For recovery, we need to check in advance whether we
* can get read-write access to the device.
*/
if (ext4_has_feature_journal_needs_recovery(sb)) {
if (sb_rdonly(sb)) {
ext4_msg(sb, KERN_INFO, "INFO: recovery "
"required on readonly filesystem");
if (really_read_only) {
ext4_msg(sb, KERN_ERR, "write access "
"unavailable, cannot proceed "
"(try mounting with noload)");
err = -EROFS;
goto err_out;
}
ext4_msg(sb, KERN_INFO, "write access will "
"be enabled during recovery");
}
}
if (!(journal->j_flags & JBD2_BARRIER))
ext4_msg(sb, KERN_INFO, "barriers disabled");
if (!ext4_has_feature_journal_needs_recovery(sb))
err = jbd2_journal_wipe(journal, !really_read_only);
if (!err) {
char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
__le16 orig_state;
bool changed = false;
if (save)
memcpy(save, ((char *) es) +
EXT4_S_ERR_START, EXT4_S_ERR_LEN);
err = jbd2_journal_load(journal);
if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
save, EXT4_S_ERR_LEN)) {
memcpy(((char *) es) + EXT4_S_ERR_START,
save, EXT4_S_ERR_LEN);
changed = true;
}
kfree(save);
orig_state = es->s_state;
es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
EXT4_ERROR_FS);
if (orig_state != es->s_state)
changed = true;
/* Write out restored error information to the superblock */
if (changed && !really_read_only) {
int err2;
err2 = ext4_commit_super(sb);
err = err ? : err2;
}
}
if (err) {
ext4_msg(sb, KERN_ERR, "error loading journal");
goto err_out;
}
EXT4_SB(sb)->s_journal = journal;
err = ext4_clear_journal_err(sb, es);
if (err) {
EXT4_SB(sb)->s_journal = NULL;
jbd2_journal_destroy(journal);
return err;
}
if (!really_read_only && journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
es->s_journal_dev = cpu_to_le32(journal_devnum);
ext4_commit_super(sb);
}
if (!really_read_only && journal_inum &&
journal_inum != le32_to_cpu(es->s_journal_inum)) {
es->s_journal_inum = cpu_to_le32(journal_inum);
ext4_commit_super(sb);
}
return 0;
err_out:
jbd2_journal_destroy(journal);
return err;
}
/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
static void ext4_update_super(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
struct buffer_head *sbh = sbi->s_sbh;
lock_buffer(sbh);
/*
* If the file system is mounted read-only, don't update the
* superblock write time. This avoids updating the superblock
* write time when we are mounting the root file system
* read/only but we need to replay the journal; at that point,
* for people who are east of GMT and who make their clock
* tick in localtime for Windows bug-for-bug compatibility,
* the clock is set in the future, and this will cause e2fsck
* to complain and force a full file system check.
*/
if (!sb_rdonly(sb))
ext4_update_tstamp(es, s_wtime);
es->s_kbytes_written =
cpu_to_le64(sbi->s_kbytes_written +
((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
sbi->s_sectors_written_start) >> 1));
if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
ext4_free_blocks_count_set(es,
EXT4_C2B(sbi, percpu_counter_sum_positive(
&sbi->s_freeclusters_counter)));
if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
es->s_free_inodes_count =
cpu_to_le32(percpu_counter_sum_positive(
&sbi->s_freeinodes_counter));
/* Copy error information to the on-disk superblock */
spin_lock(&sbi->s_error_lock);
if (sbi->s_add_error_count > 0) {
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
if (!es->s_first_error_time && !es->s_first_error_time_hi) {
__ext4_update_tstamp(&es->s_first_error_time,
&es->s_first_error_time_hi,
sbi->s_first_error_time);
strtomem_pad(es->s_first_error_func,
sbi->s_first_error_func, 0);
es->s_first_error_line =
cpu_to_le32(sbi->s_first_error_line);
es->s_first_error_ino =
cpu_to_le32(sbi->s_first_error_ino);
es->s_first_error_block =
cpu_to_le64(sbi->s_first_error_block);
es->s_first_error_errcode =
ext4_errno_to_code(sbi->s_first_error_code);
}
__ext4_update_tstamp(&es->s_last_error_time,
&es->s_last_error_time_hi,
sbi->s_last_error_time);
strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
es->s_last_error_errcode =
ext4_errno_to_code(sbi->s_last_error_code);
/*
* Start the daily error reporting function if it hasn't been
* started already
*/
if (!es->s_error_count)
mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
sbi->s_add_error_count = 0;
}
spin_unlock(&sbi->s_error_lock);
ext4_superblock_csum_set(sb);
unlock_buffer(sbh);
}
static int ext4_commit_super(struct super_block *sb)
{
struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
if (!sbh)
return -EINVAL;
if (block_device_ejected(sb))
return -ENODEV;
ext4_update_super(sb);
lock_buffer(sbh);
/* Buffer got discarded which means block device got invalidated */
if (!buffer_mapped(sbh)) {
unlock_buffer(sbh);
return -EIO;
}
if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
/*
* Oh, dear. A previous attempt to write the
* superblock failed. This could happen because the
* USB device was yanked out. Or it could happen to
* be a transient write error and maybe the block will
* be remapped. Nothing we can do but to retry the
* write and hope for the best.
*/
ext4_msg(sb, KERN_ERR, "previous I/O error to "
"superblock detected");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
get_bh(sbh);
/* Clear potential dirty bit if it was journalled update */
clear_buffer_dirty(sbh);
sbh->b_end_io = end_buffer_write_sync;
submit_bh(REQ_OP_WRITE | REQ_SYNC |
(test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
wait_on_buffer(sbh);
if (buffer_write_io_error(sbh)) {
ext4_msg(sb, KERN_ERR, "I/O error while writing "
"superblock");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
return -EIO;
}
return 0;
}
/*
* Have we just finished recovery? If so, and if we are mounting (or
* remounting) the filesystem readonly, then we will end up with a
* consistent fs on disk. Record that fact.
*/
static int ext4_mark_recovery_complete(struct super_block *sb,
struct ext4_super_block *es)
{
int err;
journal_t *journal = EXT4_SB(sb)->s_journal;
if (!ext4_has_feature_journal(sb)) {
if (journal != NULL) {
ext4_error(sb, "Journal got removed while the fs was "
"mounted!");
return -EFSCORRUPTED;
}
return 0;
}
jbd2_journal_lock_updates(journal);
err = jbd2_journal_flush(journal, 0);
if (err < 0)
goto out;
if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
ext4_has_feature_orphan_present(sb))) {
if (!ext4_orphan_file_empty(sb)) {
ext4_error(sb, "Orphan file not empty on read-only fs.");
err = -EFSCORRUPTED;
goto out;
}
ext4_clear_feature_journal_needs_recovery(sb);
ext4_clear_feature_orphan_present(sb);
ext4_commit_super(sb);
}
out:
jbd2_journal_unlock_updates(journal);
return err;
}
/*
* If we are mounting (or read-write remounting) a filesystem whose journal
* has recorded an error from a previous lifetime, move that error to the
* main filesystem now.
*/
static int ext4_clear_journal_err(struct super_block *sb,
struct ext4_super_block *es)
{
journal_t *journal;
int j_errno;
const char *errstr;
if (!ext4_has_feature_journal(sb)) {
ext4_error(sb, "Journal got removed while the fs was mounted!");
return -EFSCORRUPTED;
}
journal = EXT4_SB(sb)->s_journal;
/*
* Now check for any error status which may have been recorded in the
* journal by a prior ext4_error() or ext4_abort()
*/
j_errno = jbd2_journal_errno(journal);
if (j_errno) {
char nbuf[16];
errstr = ext4_decode_error(sb, j_errno, nbuf);
ext4_warning(sb, "Filesystem error recorded "
"from previous mount: %s", errstr);
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
j_errno = ext4_commit_super(sb);
if (j_errno)
return j_errno;
ext4_warning(sb, "Marked fs in need of filesystem check.");
jbd2_journal_clear_err(journal);
jbd2_journal_update_sb_errno(journal);
}
return 0;
}
/*
* Force the running and committing transactions to commit,
* and wait on the commit.
*/
int ext4_force_commit(struct super_block *sb)
{
return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
}
static int ext4_sync_fs(struct super_block *sb, int wait)
{
int ret = 0;
tid_t target;
bool needs_barrier = false;
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (unlikely(ext4_forced_shutdown(sb)))
return 0;
trace_ext4_sync_fs(sb, wait);
flush_workqueue(sbi->rsv_conversion_wq);
/*
* Writeback quota in non-journalled quota case - journalled quota has
* no dirty dquots
*/
dquot_writeback_dquots(sb, -1);
/*
* Data writeback is possible w/o journal transaction, so barrier must
* being sent at the end of the function. But we can skip it if
* transaction_commit will do it for us.
*/
if (sbi->s_journal) {
target = jbd2_get_latest_transaction(sbi->s_journal);
if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
!jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
needs_barrier = true;
if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
if (wait)
ret = jbd2_log_wait_commit(sbi->s_journal,
target);
}
} else if (wait && test_opt(sb, BARRIER))
needs_barrier = true;
if (needs_barrier) {
int err;
err = blkdev_issue_flush(sb->s_bdev);
if (!ret)
ret = err;
}
return ret;
}
/*
* LVM calls this function before a (read-only) snapshot is created. This
* gives us a chance to flush the journal completely and mark the fs clean.
*
* Note that only this function cannot bring a filesystem to be in a clean
* state independently. It relies on upper layer to stop all data & metadata
* modifications.
*/
static int ext4_freeze(struct super_block *sb)
{
int error = 0;
journal_t *journal = EXT4_SB(sb)->s_journal;
if (journal) {
/* Now we set up the journal barrier. */
jbd2_journal_lock_updates(journal);
/*
* Don't clear the needs_recovery flag if we failed to
* flush the journal.
*/
error = jbd2_journal_flush(journal, 0);
if (error < 0)
goto out;
/* Journal blocked and flushed, clear needs_recovery flag. */
ext4_clear_feature_journal_needs_recovery(sb);
if (ext4_orphan_file_empty(sb))
ext4_clear_feature_orphan_present(sb);
}
error = ext4_commit_super(sb);
out:
if (journal)
/* we rely on upper layer to stop further updates */
jbd2_journal_unlock_updates(journal);
return error;
}
/*
* Called by LVM after the snapshot is done. We need to reset the RECOVER
* flag here, even though the filesystem is not technically dirty yet.
*/
static int ext4_unfreeze(struct super_block *sb)
{
if (ext4_forced_shutdown(sb))
return 0;
if (EXT4_SB(sb)->s_journal) {
/* Reset the needs_recovery flag before the fs is unlocked. */
ext4_set_feature_journal_needs_recovery(sb);
if (ext4_has_feature_orphan_file(sb))
ext4_set_feature_orphan_present(sb);
}
ext4_commit_super(sb);
return 0;
}
/*
* Structure to save mount options for ext4_remount's benefit
*/
struct ext4_mount_options {
unsigned long s_mount_opt;
unsigned long s_mount_opt2;
kuid_t s_resuid;
kgid_t s_resgid;
unsigned long s_commit_interval;
u32 s_min_batch_time, s_max_batch_time;
#ifdef CONFIG_QUOTA
int s_jquota_fmt;
char *s_qf_names[EXT4_MAXQUOTAS];
#endif
};
static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_super_block *es;
struct ext4_sb_info *sbi = EXT4_SB(sb);
unsigned long old_sb_flags;
struct ext4_mount_options old_opts;
ext4_group_t g;
int err = 0;
int alloc_ctx;
#ifdef CONFIG_QUOTA
int enable_quota = 0;
int i, j;
char *to_free[EXT4_MAXQUOTAS];
#endif
/* Store the original options */
old_sb_flags = sb->s_flags;
old_opts.s_mount_opt = sbi->s_mount_opt;
old_opts.s_mount_opt2 = sbi->s_mount_opt2;
old_opts.s_resuid = sbi->s_resuid;
old_opts.s_resgid = sbi->s_resgid;
old_opts.s_commit_interval = sbi->s_commit_interval;
old_opts.s_min_batch_time = sbi->s_min_batch_time;
old_opts.s_max_batch_time = sbi->s_max_batch_time;
#ifdef CONFIG_QUOTA
old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
for (i = 0; i < EXT4_MAXQUOTAS; i++)
if (sbi->s_qf_names[i]) {
char *qf_name = get_qf_name(sb, sbi, i);
old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
if (!old_opts.s_qf_names[i]) {
for (j = 0; j < i; j++)
kfree(old_opts.s_qf_names[j]);
return -ENOMEM;
}
} else
old_opts.s_qf_names[i] = NULL;
#endif
if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
if (sbi->s_journal && sbi->s_journal->j_task->io_context)
ctx->journal_ioprio =
sbi->s_journal->j_task->io_context->ioprio;
else
ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
}
/*
* Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
* two calls to ext4_should_dioread_nolock() to return inconsistent
* values, triggering WARN_ON in ext4_add_complete_io(). we grab
* here s_writepages_rwsem to avoid race between writepages ops and
* remount.
*/
alloc_ctx = ext4_writepages_down_write(sb);
ext4_apply_options(fc, sb);
ext4_writepages_up_write(sb, alloc_ctx);
if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
test_opt(sb, JOURNAL_CHECKSUM)) {
ext4_msg(sb, KERN_ERR, "changing journal_checksum "
"during remount not supported; ignoring");
sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
}
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
if (test_opt2(sb, EXPLICIT_DELALLOC)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and delalloc");
err = -EINVAL;
goto restore_opts;
}
if (test_opt(sb, DIOREAD_NOLOCK)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and dioread_nolock");
err = -EINVAL;
goto restore_opts;
}
} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_async_commit in data=ordered mode");
err = -EINVAL;
goto restore_opts;
}
}
if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
err = -EINVAL;
goto restore_opts;
}
if (test_opt2(sb, ABORT))
ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
es = sbi->s_es;
if (sbi->s_journal) {
ext4_init_journal_params(sb, sbi->s_journal);
set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
}
/* Flush outstanding errors before changing fs state */
flush_work(&sbi->s_sb_upd_work);
if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
if (ext4_forced_shutdown(sb)) {
err = -EROFS;
goto restore_opts;
}
if (fc->sb_flags & SB_RDONLY) {
err = sync_filesystem(sb);
if (err < 0)
goto restore_opts;
err = dquot_suspend(sb, -1);
if (err < 0)
goto restore_opts;
/*
* First of all, the unconditional stuff we have to do
* to disable replay of the journal when we next remount
*/
sb->s_flags |= SB_RDONLY;
/*
* OK, test if we are remounting a valid rw partition
* readonly, and if so set the rdonly flag and then
* mark the partition as valid again.
*/
if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
(sbi->s_mount_state & EXT4_VALID_FS))
es->s_state = cpu_to_le16(sbi->s_mount_state);
if (sbi->s_journal) {
/*
* We let remount-ro finish even if marking fs
* as clean failed...
*/
ext4_mark_recovery_complete(sb, es);
}
} else {
/* Make sure we can mount this feature set readwrite */
if (ext4_has_feature_readonly(sb) ||
!ext4_feature_set_ok(sb, 0)) {
err = -EROFS;
goto restore_opts;
}
/*
* Make sure the group descriptor checksums
* are sane. If they aren't, refuse to remount r/w.
*/
for (g = 0; g < sbi->s_groups_count; g++) {
struct ext4_group_desc *gdp =
ext4_get_group_desc(sb, g, NULL);
if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
ext4_msg(sb, KERN_ERR,
"ext4_remount: Checksum for group %u failed (%u!=%u)",
g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
le16_to_cpu(gdp->bg_checksum));
err = -EFSBADCRC;
goto restore_opts;
}
}
/*
* If we have an unprocessed orphan list hanging
* around from a previously readonly bdev mount,
* require a full umount/remount for now.
*/
if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
ext4_msg(sb, KERN_WARNING, "Couldn't "
"remount RDWR because of unprocessed "
"orphan inode list. Please "
"umount/remount instead");
err = -EINVAL;
goto restore_opts;
}
/*
* Mounting a RDONLY partition read-write, so reread
* and store the current valid flag. (It may have
* been changed by e2fsck since we originally mounted
* the partition.)
*/
if (sbi->s_journal) {
err = ext4_clear_journal_err(sb, es);
if (err)
goto restore_opts;
}
sbi->s_mount_state = (le16_to_cpu(es->s_state) &
~EXT4_FC_REPLAY);
err = ext4_setup_super(sb, es, 0);
if (err)
goto restore_opts;
sb->s_flags &= ~SB_RDONLY;
if (ext4_has_feature_mmp(sb)) {
err = ext4_multi_mount_protect(sb,
le64_to_cpu(es->s_mmp_block));
if (err)
goto restore_opts;
}
#ifdef CONFIG_QUOTA
enable_quota = 1;
#endif
}
}
/*
* Handle creation of system zone data early because it can fail.
* Releasing of existing data is done when we are sure remount will
* succeed.
*/
if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
err = ext4_setup_system_zone(sb);
if (err)
goto restore_opts;
}
if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
err = ext4_commit_super(sb);
if (err)
goto restore_opts;
}
#ifdef CONFIG_QUOTA
if (enable_quota) {
if (sb_any_quota_suspended(sb))
dquot_resume(sb, -1);
else if (ext4_has_feature_quota(sb)) {
err = ext4_enable_quotas(sb);
if (err)
goto restore_opts;
}
}
/* Release old quota file names */
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(old_opts.s_qf_names[i]);
#endif
if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
ext4_release_system_zone(sb);
/*
* Reinitialize lazy itable initialization thread based on
* current settings
*/
if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
ext4_unregister_li_request(sb);
else {
ext4_group_t first_not_zeroed;
first_not_zeroed = ext4_has_uninit_itable(sb);
ext4_register_li_request(sb, first_not_zeroed);
}
if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
ext4_stop_mmpd(sbi);
return 0;
restore_opts:
/*
* If there was a failing r/w to ro transition, we may need to
* re-enable quota
*/
if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
sb_any_quota_suspended(sb))
dquot_resume(sb, -1);
alloc_ctx = ext4_writepages_down_write(sb);
sb->s_flags = old_sb_flags;
sbi->s_mount_opt = old_opts.s_mount_opt;
sbi->s_mount_opt2 = old_opts.s_mount_opt2;
sbi->s_resuid = old_opts.s_resuid;
sbi->s_resgid = old_opts.s_resgid;
sbi->s_commit_interval = old_opts.s_commit_interval;
sbi->s_min_batch_time = old_opts.s_min_batch_time;
sbi->s_max_batch_time = old_opts.s_max_batch_time;
ext4_writepages_up_write(sb, alloc_ctx);
if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
ext4_release_system_zone(sb);
#ifdef CONFIG_QUOTA
sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
for (i = 0; i < EXT4_MAXQUOTAS; i++) {
to_free[i] = get_qf_name(sb, sbi, i);
rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
}
synchronize_rcu();
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(to_free[i]);
#endif
if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
ext4_stop_mmpd(sbi);
return err;
}
static int ext4_reconfigure(struct fs_context *fc)
{
struct super_block *sb = fc->root->d_sb;
int ret;
fc->s_fs_info = EXT4_SB(sb);
ret = ext4_check_opt_consistency(fc, sb);
if (ret < 0)
return ret;
ret = __ext4_remount(fc, sb);
if (ret < 0)
return ret;
ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
&sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
ext4_quota_mode(sb));
return 0;
}
#ifdef CONFIG_QUOTA
static int ext4_statfs_project(struct super_block *sb,
kprojid_t projid, struct kstatfs *buf)
{
struct kqid qid;
struct dquot *dquot;
u64 limit;
u64 curblock;
qid = make_kqid_projid(projid);
dquot = dqget(sb, qid);
if (IS_ERR(dquot))
return PTR_ERR(dquot);
spin_lock(&dquot->dq_dqb_lock);
limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
dquot->dq_dqb.dqb_bhardlimit);
limit >>= sb->s_blocksize_bits;
if (limit && buf->f_blocks > limit) {
curblock = (dquot->dq_dqb.dqb_curspace +
dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
buf->f_blocks = limit;
buf->f_bfree = buf->f_bavail =
(buf->f_blocks > curblock) ?
(buf->f_blocks - curblock) : 0;
}
limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
dquot->dq_dqb.dqb_ihardlimit);
if (limit && buf->f_files > limit) {
buf->f_files = limit;
buf->f_ffree =
(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
(buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
}
spin_unlock(&dquot->dq_dqb_lock);
dqput(dquot);
return 0;
}
#endif
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
ext4_fsblk_t overhead = 0, resv_blocks;
s64 bfree;
resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
if (!test_opt(sb, MINIX_DF))
overhead = sbi->s_overhead;
buf->f_type = EXT4_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
/* prevent underflow in case that few free space is available */
buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
buf->f_bavail = buf->f_bfree -
(ext4_r_blocks_count(es) + resv_blocks);
if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
buf->f_bavail = 0;
buf->f_files = le32_to_cpu(es->s_inodes_count);
buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
buf->f_namelen = EXT4_NAME_LEN;
buf->f_fsid = uuid_to_fsid(es->s_uuid);
#ifdef CONFIG_QUOTA
if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
sb_has_quota_limits_enabled(sb, PRJQUOTA))
ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
#endif
return 0;
}
#ifdef CONFIG_QUOTA
/*
* Helper functions so that transaction is started before we acquire dqio_sem
* to keep correct lock ordering of transaction > dqio_sem
*/
static inline struct inode *dquot_to_inode(struct dquot *dquot)
{
return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
}
static int ext4_write_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
struct inode *inode;
inode = dquot_to_inode(dquot);
handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit(dquot);
if (ret < 0)
ext4_error_err(dquot->dq_sb, -ret,
"Failed to commit dquot type %d",
dquot->dq_id.type);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_acquire_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_acquire(dquot);
if (ret < 0)
ext4_error_err(dquot->dq_sb, -ret,
"Failed to acquire dquot type %d",
dquot->dq_id.type);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_release_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle)) {
/* Release dquot anyway to avoid endless cycle in dqput() */
dquot_release(dquot);
return PTR_ERR(handle);
}
ret = dquot_release(dquot);
if (ret < 0)
ext4_error_err(dquot->dq_sb, -ret,
"Failed to release dquot type %d",
dquot->dq_id.type);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_mark_dquot_dirty(struct dquot *dquot)
{
struct super_block *sb = dquot->dq_sb;
if (ext4_is_quota_journalled(sb)) {
dquot_mark_dquot_dirty(dquot);
return ext4_write_dquot(dquot);
} else {
return dquot_mark_dquot_dirty(dquot);
}
}
static int ext4_write_info(struct super_block *sb, int type)
{
int ret, err;
handle_t *handle;
/* Data block + inode block */
handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit_info(sb, type);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static void lockdep_set_quota_inode(struct inode *inode, int subclass)
{
struct ext4_inode_info *ei = EXT4_I(inode);
/* The first argument of lockdep_set_subclass has to be
* *exactly* the same as the argument to init_rwsem() --- in
* this case, in init_once() --- or lockdep gets unhappy
* because the name of the lock is set using the
* stringification of the argument to init_rwsem().
*/
(void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
lockdep_set_subclass(&ei->i_data_sem, subclass);
}
/*
* Standard function to be called on quota_on
*/
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
const struct path *path)
{
int err;
if (!test_opt(sb, QUOTA))
return -EINVAL;
/* Quotafile not on the same filesystem? */
if (path->dentry->d_sb != sb)
return -EXDEV;
/* Quota already enabled for this file? */
if (IS_NOQUOTA(d_inode(path->dentry)))
return -EBUSY;
/* Journaling quota? */
if (EXT4_SB(sb)->s_qf_names[type]) {
/* Quotafile not in fs root? */
if (path->dentry->d_parent != sb->s_root)
ext4_msg(sb, KERN_WARNING,
"Quota file not on filesystem root. "
"Journaled quota will not work");
sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
} else {
/*
* Clear the flag just in case mount options changed since
* last time.
*/
sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
}
lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
err = dquot_quota_on(sb, type, format_id, path);
if (!err) {
struct inode *inode = d_inode(path->dentry);
handle_t *handle;
/*
* Set inode flags to prevent userspace from messing with quota
* files. If this fails, we return success anyway since quotas
* are already enabled and this is not a hard failure.
*/
inode_lock(inode);
handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
if (IS_ERR(handle))
goto unlock_inode;
EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
S_NOATIME | S_IMMUTABLE);
err = ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
unlock_inode:
inode_unlock(inode);
if (err)
dquot_quota_off(sb, type);
}
if (err)
lockdep_set_quota_inode(path->dentry->d_inode,
I_DATA_SEM_NORMAL);
return err;
}
static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
{
switch (type) {
case USRQUOTA:
return qf_inum == EXT4_USR_QUOTA_INO;
case GRPQUOTA:
return qf_inum == EXT4_GRP_QUOTA_INO;
case PRJQUOTA:
return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
default:
BUG();
}
}
static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
unsigned int flags)
{
int err;
struct inode *qf_inode;
unsigned long qf_inums[EXT4_MAXQUOTAS] = {
le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
};
BUG_ON(!ext4_has_feature_quota(sb));
if (!qf_inums[type])
return -EPERM;
if (!ext4_check_quota_inum(type, qf_inums[type])) {
ext4_error(sb, "Bad quota inum: %lu, type: %d",
qf_inums[type], type);
return -EUCLEAN;
}
qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
if (IS_ERR(qf_inode)) {
ext4_error(sb, "Bad quota inode: %lu, type: %d",
qf_inums[type], type);
return PTR_ERR(qf_inode);
}
/* Don't account quota for quota files to avoid recursion */
qf_inode->i_flags |= S_NOQUOTA;
lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
if (err)
lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
iput(qf_inode);
return err;
}
/* Enable usage tracking for all quota types. */
int ext4_enable_quotas(struct super_block *sb)
{
int type, err = 0;
unsigned long qf_inums[EXT4_MAXQUOTAS] = {
le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
};
bool quota_mopt[EXT4_MAXQUOTAS] = {
test_opt(sb, USRQUOTA),
test_opt(sb, GRPQUOTA),
test_opt(sb, PRJQUOTA),
};
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
for (type = 0; type < EXT4_MAXQUOTAS; type++) {
if (qf_inums[type]) {
err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
DQUOT_USAGE_ENABLED |
(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
if (err) {
ext4_warning(sb,
"Failed to enable quota tracking "
"(type=%d, err=%d, ino=%lu). "
"Please run e2fsck to fix.", type,
err, qf_inums[type]);
ext4_quotas_off(sb, type);
return err;
}
}
}
return 0;
}
static int ext4_quota_off(struct super_block *sb, int type)
{
struct inode *inode = sb_dqopt(sb)->files[type];
handle_t *handle;
int err;
/* Force all delayed allocation blocks to be allocated.
* Caller already holds s_umount sem */
if (test_opt(sb, DELALLOC))
sync_filesystem(sb);
if (!inode || !igrab(inode))
goto out;
err = dquot_quota_off(sb, type);
if (err || ext4_has_feature_quota(sb))
goto out_put;
/*
* When the filesystem was remounted read-only first, we cannot cleanup
* inode flags here. Bad luck but people should be using QUOTA feature
* these days anyway.
*/
if (sb_rdonly(sb))
goto out_put;
inode_lock(inode);
/*
* Update modification times of quota files when userspace can
* start looking at them. If we fail, we return success anyway since
* this is not a hard failure and quotas are already disabled.
*/
handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
if (IS_ERR(handle)) {
err = PTR_ERR(handle);
goto out_unlock;
}
EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
err = ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
out_unlock:
inode_unlock(inode);
out_put:
lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
iput(inode);
return err;
out:
return dquot_quota_off(sb, type);
}
/* Read data from quotafile - avoid pagecache and such because we cannot afford
* acquiring the locks... As quota files are never truncated and quota code
* itself serializes the operations (and no one else should touch the files)
* we don't have to be afraid of races */
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
struct buffer_head *bh;
loff_t i_size = i_size_read(inode);
if (off > i_size)
return 0;
if (off+len > i_size)
len = i_size-off;
toread = len;
while (toread > 0) {
tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
bh = ext4_bread(NULL, inode, blk, 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
if (!bh) /* A hole? */
memset(data, 0, tocopy);
else
memcpy(data, bh->b_data+offset, tocopy);
brelse(bh);
offset = 0;
toread -= tocopy;
data += tocopy;
blk++;
}
return len;
}
/* Write to quotafile (we know the transaction is already started and has
* enough credits) */
static ssize_t ext4_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
int retries = 0;
struct buffer_head *bh;
handle_t *handle = journal_current_handle();
if (!handle) {
ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
" cancelled because transaction is not started",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
/*
* Since we account only one data block in transaction credits,
* then it is impossible to cross a block boundary.
*/
if (sb->s_blocksize - offset < len) {
ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
" cancelled because not block aligned",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
do {
bh = ext4_bread(handle, inode, blk,
EXT4_GET_BLOCKS_CREATE |
EXT4_GET_BLOCKS_METADATA_NOFAIL);
} while (PTR_ERR(bh) == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries));
if (IS_ERR(bh))
return PTR_ERR(bh);
if (!bh)
goto out;
BUFFER_TRACE(bh, "get write access");
err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
if (err) {
brelse(bh);
return err;
}
lock_buffer(bh);
memcpy(bh->b_data+offset, data, len);
flush_dcache_page(bh->b_page);
unlock_buffer(bh);
err = ext4_handle_dirty_metadata(handle, NULL, bh);
brelse(bh);
out:
if (inode->i_size < off + len) {
i_size_write(inode, off + len);
EXT4_I(inode)->i_disksize = inode->i_size;
err2 = ext4_mark_inode_dirty(handle, inode);
if (unlikely(err2 && !err))
err = err2;
}
return err ? err : len;
}
#endif
#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
static inline void register_as_ext2(void)
{
int err = register_filesystem(&ext2_fs_type);
if (err)
printk(KERN_WARNING
"EXT4-fs: Unable to register as ext2 (%d)\n", err);
}
static inline void unregister_as_ext2(void)
{
unregister_filesystem(&ext2_fs_type);
}
static inline int ext2_feature_set_ok(struct super_block *sb)
{
if (ext4_has_unknown_ext2_incompat_features(sb))
return 0;
if (sb_rdonly(sb))
return 1;
if (ext4_has_unknown_ext2_ro_compat_features(sb))
return 0;
return 1;
}
#else
static inline void register_as_ext2(void) { }
static inline void unregister_as_ext2(void) { }
static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
#endif
static inline void register_as_ext3(void)
{
int err = register_filesystem(&ext3_fs_type);
if (err)
printk(KERN_WARNING
"EXT4-fs: Unable to register as ext3 (%d)\n", err);
}
static inline void unregister_as_ext3(void)
{
unregister_filesystem(&ext3_fs_type);
}
static inline int ext3_feature_set_ok(struct super_block *sb)
{
if (ext4_has_unknown_ext3_incompat_features(sb))
return 0;
if (!ext4_has_feature_journal(sb))
return 0;
if (sb_rdonly(sb))
return 1;
if (ext4_has_unknown_ext3_ro_compat_features(sb))
return 0;
return 1;
}
static void ext4_kill_sb(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
kill_block_super(sb);
if (bdev_file)
bdev_fput(bdev_file);
}
static struct file_system_type ext4_fs_type = {
.owner = THIS_MODULE,
.name = "ext4",
.init_fs_context = ext4_init_fs_context,
.parameters = ext4_param_specs,
.kill_sb = ext4_kill_sb,
.fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
};
MODULE_ALIAS_FS("ext4");
/* Shared across all ext4 file systems */
wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
static int __init ext4_init_fs(void)
{
int i, err;
ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
ext4_li_info = NULL;
/* Build-time check for flags consistency */
ext4_check_flag_values();
for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
init_waitqueue_head(&ext4__ioend_wq[i]);
err = ext4_init_es();
if (err)
return err;
err = ext4_init_pending();
if (err)
goto out7;
err = ext4_init_post_read_processing();
if (err)
goto out6;
err = ext4_init_pageio();
if (err)
goto out5;
err = ext4_init_system_zone();
if (err)
goto out4;
err = ext4_init_sysfs();
if (err)
goto out3;
err = ext4_init_mballoc();
if (err)
goto out2;
err = init_inodecache();
if (err)
goto out1;
err = ext4_fc_init_dentry_cache();
if (err)
goto out05;
register_as_ext3();
register_as_ext2();
err = register_filesystem(&ext4_fs_type);
if (err)
goto out;
return 0;
out:
unregister_as_ext2();
unregister_as_ext3();
ext4_fc_destroy_dentry_cache();
out05:
destroy_inodecache();
out1:
ext4_exit_mballoc();
out2:
ext4_exit_sysfs();
out3:
ext4_exit_system_zone();
out4:
ext4_exit_pageio();
out5:
ext4_exit_post_read_processing();
out6:
ext4_exit_pending();
out7:
ext4_exit_es();
return err;
}
static void __exit ext4_exit_fs(void)
{
ext4_destroy_lazyinit_thread();
unregister_as_ext2();
unregister_as_ext3();
unregister_filesystem(&ext4_fs_type);
ext4_fc_destroy_dentry_cache();
destroy_inodecache();
ext4_exit_mballoc();
ext4_exit_sysfs();
ext4_exit_system_zone();
ext4_exit_pageio();
ext4_exit_post_read_processing();
ext4_exit_es();
ext4_exit_pending();
}
MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
MODULE_DESCRIPTION("Fourth Extended Filesystem");
MODULE_LICENSE("GPL");
MODULE_SOFTDEP("pre: crc32c");
module_init(ext4_init_fs)
module_exit(ext4_exit_fs)