mirror of
https://github.com/torvalds/linux.git
synced 2024-11-19 10:31:48 +00:00
21f8479617
Armv8.4-A extension enables MRS instruction encodings inside ESR_ELx.ISS during exception class ESR_ELx_EC_SYS64 (0x18). This encoding can be used to emulate MRS instructions which can avoid fetch/decode from user space thus improving performance. This adds a new sys64_hook structure element with applicable ESR mask/value pair for MRS instructions on various system registers but constrained by sysreg encodings which is currently allowed to be emulated. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
820 lines
20 KiB
C
820 lines
20 KiB
C
/*
|
|
* Based on arch/arm/kernel/traps.c
|
|
*
|
|
* Copyright (C) 1995-2009 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mm_types.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/stack_pointer.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
static const char *handler[]= {
|
|
"Synchronous Abort",
|
|
"IRQ",
|
|
"FIQ",
|
|
"Error"
|
|
};
|
|
|
|
int show_unhandled_signals = 0;
|
|
|
|
static void dump_backtrace_entry(unsigned long where)
|
|
{
|
|
printk(" %pS\n", (void *)where);
|
|
}
|
|
|
|
static void __dump_instr(const char *lvl, struct pt_regs *regs)
|
|
{
|
|
unsigned long addr = instruction_pointer(regs);
|
|
char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
|
|
int i;
|
|
|
|
for (i = -4; i < 1; i++) {
|
|
unsigned int val, bad;
|
|
|
|
bad = get_user(val, &((u32 *)addr)[i]);
|
|
|
|
if (!bad)
|
|
p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
|
|
else {
|
|
p += sprintf(p, "bad PC value");
|
|
break;
|
|
}
|
|
}
|
|
printk("%sCode: %s\n", lvl, str);
|
|
}
|
|
|
|
static void dump_instr(const char *lvl, struct pt_regs *regs)
|
|
{
|
|
if (!user_mode(regs)) {
|
|
mm_segment_t fs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
__dump_instr(lvl, regs);
|
|
set_fs(fs);
|
|
} else {
|
|
__dump_instr(lvl, regs);
|
|
}
|
|
}
|
|
|
|
void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
|
|
{
|
|
struct stackframe frame;
|
|
int skip;
|
|
|
|
pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
|
|
|
|
if (!tsk)
|
|
tsk = current;
|
|
|
|
if (!try_get_task_stack(tsk))
|
|
return;
|
|
|
|
if (tsk == current) {
|
|
frame.fp = (unsigned long)__builtin_frame_address(0);
|
|
frame.pc = (unsigned long)dump_backtrace;
|
|
} else {
|
|
/*
|
|
* task blocked in __switch_to
|
|
*/
|
|
frame.fp = thread_saved_fp(tsk);
|
|
frame.pc = thread_saved_pc(tsk);
|
|
}
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
frame.graph = tsk->curr_ret_stack;
|
|
#endif
|
|
|
|
skip = !!regs;
|
|
printk("Call trace:\n");
|
|
do {
|
|
/* skip until specified stack frame */
|
|
if (!skip) {
|
|
dump_backtrace_entry(frame.pc);
|
|
} else if (frame.fp == regs->regs[29]) {
|
|
skip = 0;
|
|
/*
|
|
* Mostly, this is the case where this function is
|
|
* called in panic/abort. As exception handler's
|
|
* stack frame does not contain the corresponding pc
|
|
* at which an exception has taken place, use regs->pc
|
|
* instead.
|
|
*/
|
|
dump_backtrace_entry(regs->pc);
|
|
}
|
|
} while (!unwind_frame(tsk, &frame));
|
|
|
|
put_task_stack(tsk);
|
|
}
|
|
|
|
void show_stack(struct task_struct *tsk, unsigned long *sp)
|
|
{
|
|
dump_backtrace(NULL, tsk);
|
|
barrier();
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
#define S_PREEMPT " PREEMPT"
|
|
#else
|
|
#define S_PREEMPT ""
|
|
#endif
|
|
#define S_SMP " SMP"
|
|
|
|
static int __die(const char *str, int err, struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
static int die_counter;
|
|
int ret;
|
|
|
|
pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
|
|
str, err, ++die_counter);
|
|
|
|
/* trap and error numbers are mostly meaningless on ARM */
|
|
ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
|
|
if (ret == NOTIFY_STOP)
|
|
return ret;
|
|
|
|
print_modules();
|
|
__show_regs(regs);
|
|
pr_emerg("Process %.*s (pid: %d, stack limit = 0x%p)\n",
|
|
TASK_COMM_LEN, tsk->comm, task_pid_nr(tsk),
|
|
end_of_stack(tsk));
|
|
|
|
if (!user_mode(regs)) {
|
|
dump_backtrace(regs, tsk);
|
|
dump_instr(KERN_EMERG, regs);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DEFINE_RAW_SPINLOCK(die_lock);
|
|
|
|
/*
|
|
* This function is protected against re-entrancy.
|
|
*/
|
|
void die(const char *str, struct pt_regs *regs, int err)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&die_lock, flags);
|
|
|
|
oops_enter();
|
|
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
ret = __die(str, err, regs);
|
|
|
|
if (regs && kexec_should_crash(current))
|
|
crash_kexec(regs);
|
|
|
|
bust_spinlocks(0);
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
oops_exit();
|
|
|
|
if (in_interrupt())
|
|
panic("Fatal exception in interrupt");
|
|
if (panic_on_oops)
|
|
panic("Fatal exception");
|
|
|
|
raw_spin_unlock_irqrestore(&die_lock, flags);
|
|
|
|
if (ret != NOTIFY_STOP)
|
|
do_exit(SIGSEGV);
|
|
}
|
|
|
|
static bool show_unhandled_signals_ratelimited(void)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
return show_unhandled_signals && __ratelimit(&rs);
|
|
}
|
|
|
|
void arm64_force_sig_info(struct siginfo *info, const char *str,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned int esr = tsk->thread.fault_code;
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
|
|
if (!unhandled_signal(tsk, info->si_signo))
|
|
goto send_sig;
|
|
|
|
if (!show_unhandled_signals_ratelimited())
|
|
goto send_sig;
|
|
|
|
pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
|
|
if (esr)
|
|
pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
|
|
|
|
pr_cont("%s", str);
|
|
print_vma_addr(KERN_CONT " in ", regs->pc);
|
|
pr_cont("\n");
|
|
__show_regs(regs);
|
|
|
|
send_sig:
|
|
force_sig_info(info->si_signo, info, tsk);
|
|
}
|
|
|
|
void arm64_notify_die(const char *str, struct pt_regs *regs,
|
|
struct siginfo *info, int err)
|
|
{
|
|
if (user_mode(regs)) {
|
|
WARN_ON(regs != current_pt_regs());
|
|
current->thread.fault_address = 0;
|
|
current->thread.fault_code = err;
|
|
arm64_force_sig_info(info, str, current);
|
|
} else {
|
|
die(str, regs, err);
|
|
}
|
|
}
|
|
|
|
void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
|
|
{
|
|
regs->pc += size;
|
|
|
|
/*
|
|
* If we were single stepping, we want to get the step exception after
|
|
* we return from the trap.
|
|
*/
|
|
if (user_mode(regs))
|
|
user_fastforward_single_step(current);
|
|
}
|
|
|
|
static LIST_HEAD(undef_hook);
|
|
static DEFINE_RAW_SPINLOCK(undef_lock);
|
|
|
|
void register_undef_hook(struct undef_hook *hook)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&undef_lock, flags);
|
|
list_add(&hook->node, &undef_hook);
|
|
raw_spin_unlock_irqrestore(&undef_lock, flags);
|
|
}
|
|
|
|
void unregister_undef_hook(struct undef_hook *hook)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&undef_lock, flags);
|
|
list_del(&hook->node);
|
|
raw_spin_unlock_irqrestore(&undef_lock, flags);
|
|
}
|
|
|
|
static int call_undef_hook(struct pt_regs *regs)
|
|
{
|
|
struct undef_hook *hook;
|
|
unsigned long flags;
|
|
u32 instr;
|
|
int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
|
|
void __user *pc = (void __user *)instruction_pointer(regs);
|
|
|
|
if (!user_mode(regs)) {
|
|
__le32 instr_le;
|
|
if (probe_kernel_address((__force __le32 *)pc, instr_le))
|
|
goto exit;
|
|
instr = le32_to_cpu(instr_le);
|
|
} else if (compat_thumb_mode(regs)) {
|
|
/* 16-bit Thumb instruction */
|
|
__le16 instr_le;
|
|
if (get_user(instr_le, (__le16 __user *)pc))
|
|
goto exit;
|
|
instr = le16_to_cpu(instr_le);
|
|
if (aarch32_insn_is_wide(instr)) {
|
|
u32 instr2;
|
|
|
|
if (get_user(instr_le, (__le16 __user *)(pc + 2)))
|
|
goto exit;
|
|
instr2 = le16_to_cpu(instr_le);
|
|
instr = (instr << 16) | instr2;
|
|
}
|
|
} else {
|
|
/* 32-bit ARM instruction */
|
|
__le32 instr_le;
|
|
if (get_user(instr_le, (__le32 __user *)pc))
|
|
goto exit;
|
|
instr = le32_to_cpu(instr_le);
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&undef_lock, flags);
|
|
list_for_each_entry(hook, &undef_hook, node)
|
|
if ((instr & hook->instr_mask) == hook->instr_val &&
|
|
(regs->pstate & hook->pstate_mask) == hook->pstate_val)
|
|
fn = hook->fn;
|
|
|
|
raw_spin_unlock_irqrestore(&undef_lock, flags);
|
|
exit:
|
|
return fn ? fn(regs, instr) : 1;
|
|
}
|
|
|
|
void force_signal_inject(int signal, int code, unsigned long address)
|
|
{
|
|
siginfo_t info;
|
|
const char *desc;
|
|
struct pt_regs *regs = current_pt_regs();
|
|
|
|
if (WARN_ON(!user_mode(regs)))
|
|
return;
|
|
|
|
clear_siginfo(&info);
|
|
|
|
switch (signal) {
|
|
case SIGILL:
|
|
desc = "undefined instruction";
|
|
break;
|
|
case SIGSEGV:
|
|
desc = "illegal memory access";
|
|
break;
|
|
default:
|
|
desc = "unknown or unrecoverable error";
|
|
break;
|
|
}
|
|
|
|
/* Force signals we don't understand to SIGKILL */
|
|
if (WARN_ON(signal != SIGKILL &&
|
|
siginfo_layout(signal, code) != SIL_FAULT)) {
|
|
signal = SIGKILL;
|
|
}
|
|
|
|
info.si_signo = signal;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = (void __user *)address;
|
|
|
|
arm64_notify_die(desc, regs, &info, 0);
|
|
}
|
|
|
|
/*
|
|
* Set up process info to signal segmentation fault - called on access error.
|
|
*/
|
|
void arm64_notify_segfault(unsigned long addr)
|
|
{
|
|
int code;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
if (find_vma(current->mm, addr) == NULL)
|
|
code = SEGV_MAPERR;
|
|
else
|
|
code = SEGV_ACCERR;
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
force_signal_inject(SIGSEGV, code, addr);
|
|
}
|
|
|
|
asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
|
|
{
|
|
/* check for AArch32 breakpoint instructions */
|
|
if (!aarch32_break_handler(regs))
|
|
return;
|
|
|
|
if (call_undef_hook(regs) == 0)
|
|
return;
|
|
|
|
BUG_ON(!user_mode(regs));
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
|
|
}
|
|
|
|
#define __user_cache_maint(insn, address, res) \
|
|
if (address >= user_addr_max()) { \
|
|
res = -EFAULT; \
|
|
} else { \
|
|
uaccess_ttbr0_enable(); \
|
|
asm volatile ( \
|
|
"1: " insn ", %1\n" \
|
|
" mov %w0, #0\n" \
|
|
"2:\n" \
|
|
" .pushsection .fixup,\"ax\"\n" \
|
|
" .align 2\n" \
|
|
"3: mov %w0, %w2\n" \
|
|
" b 2b\n" \
|
|
" .popsection\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: "=r" (res) \
|
|
: "r" (address), "i" (-EFAULT)); \
|
|
uaccess_ttbr0_disable(); \
|
|
}
|
|
|
|
static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
unsigned long address;
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
|
|
int ret = 0;
|
|
|
|
address = untagged_addr(pt_regs_read_reg(regs, rt));
|
|
|
|
switch (crm) {
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
|
|
__user_cache_maint("sys 3, c7, c12, 1", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
|
|
__user_cache_maint("ic ivau", address, ret);
|
|
break;
|
|
default:
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
|
|
return;
|
|
}
|
|
|
|
if (ret)
|
|
arm64_notify_segfault(address);
|
|
else
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
|
|
|
|
pt_regs_write_reg(regs, rt, val);
|
|
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
|
|
pt_regs_write_reg(regs, rt, arch_counter_get_cntvct());
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
|
|
pt_regs_write_reg(regs, rt, arch_timer_get_rate());
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void mrs_handler(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
u32 sysreg, rt;
|
|
|
|
rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
sysreg = esr_sys64_to_sysreg(esr);
|
|
|
|
if (do_emulate_mrs(regs, sysreg, rt) != 0)
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
|
|
}
|
|
|
|
struct sys64_hook {
|
|
unsigned int esr_mask;
|
|
unsigned int esr_val;
|
|
void (*handler)(unsigned int esr, struct pt_regs *regs);
|
|
};
|
|
|
|
static struct sys64_hook sys64_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
|
|
.handler = user_cache_maint_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CTR_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
|
|
.handler = ctr_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTVCT_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
|
|
.handler = cntvct_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTFRQ_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
|
|
.handler = cntfrq_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CPUID registers */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
|
|
.handler = mrs_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
struct sys64_hook *hook;
|
|
|
|
for (hook = sys64_hooks; hook->handler; hook++)
|
|
if ((hook->esr_mask & esr) == hook->esr_val) {
|
|
hook->handler(esr, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* New SYS instructions may previously have been undefined at EL0. Fall
|
|
* back to our usual undefined instruction handler so that we handle
|
|
* these consistently.
|
|
*/
|
|
do_undefinstr(regs);
|
|
}
|
|
|
|
static const char *esr_class_str[] = {
|
|
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
|
|
[ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
|
|
[ESR_ELx_EC_WFx] = "WFI/WFE",
|
|
[ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
|
|
[ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
|
|
[ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
|
|
[ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
|
|
[ESR_ELx_EC_FP_ASIMD] = "ASIMD",
|
|
[ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
|
|
[ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
|
|
[ESR_ELx_EC_ILL] = "PSTATE.IL",
|
|
[ESR_ELx_EC_SVC32] = "SVC (AArch32)",
|
|
[ESR_ELx_EC_HVC32] = "HVC (AArch32)",
|
|
[ESR_ELx_EC_SMC32] = "SMC (AArch32)",
|
|
[ESR_ELx_EC_SVC64] = "SVC (AArch64)",
|
|
[ESR_ELx_EC_HVC64] = "HVC (AArch64)",
|
|
[ESR_ELx_EC_SMC64] = "SMC (AArch64)",
|
|
[ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
|
|
[ESR_ELx_EC_SVE] = "SVE",
|
|
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
|
|
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
|
|
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
|
|
[ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
|
|
[ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
|
|
[ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
|
|
[ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
|
|
[ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
|
|
[ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
|
|
[ESR_ELx_EC_SERROR] = "SError",
|
|
[ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
|
|
[ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
|
|
[ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
|
|
[ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
|
|
[ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
|
|
[ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
|
|
[ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
|
|
[ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
|
|
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
|
|
};
|
|
|
|
const char *esr_get_class_string(u32 esr)
|
|
{
|
|
return esr_class_str[ESR_ELx_EC(esr)];
|
|
}
|
|
|
|
/*
|
|
* bad_mode handles the impossible case in the exception vector. This is always
|
|
* fatal.
|
|
*/
|
|
asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
|
|
{
|
|
console_verbose();
|
|
|
|
pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
|
|
handler[reason], smp_processor_id(), esr,
|
|
esr_get_class_string(esr));
|
|
|
|
local_daif_mask();
|
|
panic("bad mode");
|
|
}
|
|
|
|
/*
|
|
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
|
|
* exceptions taken from EL0. Unlike bad_mode, this returns.
|
|
*/
|
|
asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
|
|
{
|
|
siginfo_t info;
|
|
void __user *pc = (void __user *)instruction_pointer(regs);
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = ILL_ILLOPC;
|
|
info.si_addr = pc;
|
|
|
|
current->thread.fault_address = 0;
|
|
current->thread.fault_code = esr;
|
|
|
|
arm64_force_sig_info(&info, "Bad EL0 synchronous exception", current);
|
|
}
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
|
|
DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
|
|
__aligned(16);
|
|
|
|
asmlinkage void handle_bad_stack(struct pt_regs *regs)
|
|
{
|
|
unsigned long tsk_stk = (unsigned long)current->stack;
|
|
unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
|
|
unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
|
|
unsigned int esr = read_sysreg(esr_el1);
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
console_verbose();
|
|
pr_emerg("Insufficient stack space to handle exception!");
|
|
|
|
pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
|
|
pr_emerg("FAR: 0x%016lx\n", far);
|
|
|
|
pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
|
|
tsk_stk, tsk_stk + THREAD_SIZE);
|
|
pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
|
|
irq_stk, irq_stk + THREAD_SIZE);
|
|
pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
|
|
ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
|
|
|
|
__show_regs(regs);
|
|
|
|
/*
|
|
* We use nmi_panic to limit the potential for recusive overflows, and
|
|
* to get a better stack trace.
|
|
*/
|
|
nmi_panic(NULL, "kernel stack overflow");
|
|
cpu_park_loop();
|
|
}
|
|
#endif
|
|
|
|
void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
|
|
{
|
|
console_verbose();
|
|
|
|
pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
|
|
smp_processor_id(), esr, esr_get_class_string(esr));
|
|
if (regs)
|
|
__show_regs(regs);
|
|
|
|
nmi_panic(regs, "Asynchronous SError Interrupt");
|
|
|
|
cpu_park_loop();
|
|
unreachable();
|
|
}
|
|
|
|
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
u32 aet = arm64_ras_serror_get_severity(esr);
|
|
|
|
switch (aet) {
|
|
case ESR_ELx_AET_CE: /* corrected error */
|
|
case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
|
|
/*
|
|
* The CPU can make progress. We may take UEO again as
|
|
* a more severe error.
|
|
*/
|
|
return false;
|
|
|
|
case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
|
|
case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
|
|
/*
|
|
* The CPU can't make progress. The exception may have
|
|
* been imprecise.
|
|
*/
|
|
return true;
|
|
|
|
case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
|
|
default:
|
|
/* Error has been silently propagated */
|
|
arm64_serror_panic(regs, esr);
|
|
}
|
|
}
|
|
|
|
asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
nmi_enter();
|
|
|
|
/* non-RAS errors are not containable */
|
|
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
|
|
arm64_serror_panic(regs, esr);
|
|
|
|
nmi_exit();
|
|
}
|
|
|
|
void __pte_error(const char *file, int line, unsigned long val)
|
|
{
|
|
pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
|
|
}
|
|
|
|
void __pmd_error(const char *file, int line, unsigned long val)
|
|
{
|
|
pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
|
|
}
|
|
|
|
void __pud_error(const char *file, int line, unsigned long val)
|
|
{
|
|
pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
|
|
}
|
|
|
|
void __pgd_error(const char *file, int line, unsigned long val)
|
|
{
|
|
pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
|
|
}
|
|
|
|
/* GENERIC_BUG traps */
|
|
|
|
int is_valid_bugaddr(unsigned long addr)
|
|
{
|
|
/*
|
|
* bug_handler() only called for BRK #BUG_BRK_IMM.
|
|
* So the answer is trivial -- any spurious instances with no
|
|
* bug table entry will be rejected by report_bug() and passed
|
|
* back to the debug-monitors code and handled as a fatal
|
|
* unexpected debug exception.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static int bug_handler(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
if (user_mode(regs))
|
|
return DBG_HOOK_ERROR;
|
|
|
|
switch (report_bug(regs->pc, regs)) {
|
|
case BUG_TRAP_TYPE_BUG:
|
|
die("Oops - BUG", regs, 0);
|
|
break;
|
|
|
|
case BUG_TRAP_TYPE_WARN:
|
|
break;
|
|
|
|
default:
|
|
/* unknown/unrecognised bug trap type */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
/* If thread survives, skip over the BUG instruction and continue: */
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook bug_break_hook = {
|
|
.esr_val = 0xf2000000 | BUG_BRK_IMM,
|
|
.esr_mask = 0xffffffff,
|
|
.fn = bug_handler,
|
|
};
|
|
|
|
/*
|
|
* Initial handler for AArch64 BRK exceptions
|
|
* This handler only used until debug_traps_init().
|
|
*/
|
|
int __init early_brk64(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
/* This registration must happen early, before debug_traps_init(). */
|
|
void __init trap_init(void)
|
|
{
|
|
register_break_hook(&bug_break_hook);
|
|
}
|