mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 14:42:24 +00:00
d7c9661115
This chip is no longer being actively developed for (it was superceded by the TILEPro64 in 2008), and in any case the existing compiler and toolchain in the community do not support it. It's unlikely that the kernel works with TILE64 at this point as the configuration has not been tested in years. The support is also awkward as it requires maintaining a significant number of ifdefs. So, just remove it altogether. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
560 lines
18 KiB
ArmAsm
560 lines
18 KiB
ArmAsm
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <arch/chip.h>
|
|
|
|
|
|
/*
|
|
* This file shares the implementation of the userspace memcpy and
|
|
* the kernel's memcpy, copy_to_user and copy_from_user.
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
#define IS_MEMCPY 0
|
|
#define IS_COPY_FROM_USER 1
|
|
#define IS_COPY_FROM_USER_ZEROING 2
|
|
#define IS_COPY_TO_USER -1
|
|
|
|
.section .text.memcpy_common, "ax"
|
|
.align 64
|
|
|
|
/* Use this to preface each bundle that can cause an exception so
|
|
* the kernel can clean up properly. The special cleanup code should
|
|
* not use these, since it knows what it is doing.
|
|
*/
|
|
#define EX \
|
|
.pushsection __ex_table, "a"; \
|
|
.align 4; \
|
|
.word 9f, memcpy_common_fixup; \
|
|
.popsection; \
|
|
9
|
|
|
|
|
|
/* __copy_from_user_inatomic takes the kernel target address in r0,
|
|
* the user source in r1, and the bytes to copy in r2.
|
|
* It returns the number of uncopiable bytes (hopefully zero) in r0.
|
|
*/
|
|
ENTRY(__copy_from_user_inatomic)
|
|
.type __copy_from_user_inatomic, @function
|
|
FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
|
|
.text.memcpy_common, \
|
|
.Lend_memcpy_common - __copy_from_user_inatomic)
|
|
{ movei r29, IS_COPY_FROM_USER; j memcpy_common }
|
|
.size __copy_from_user_inatomic, . - __copy_from_user_inatomic
|
|
|
|
/* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
|
|
* any uncopiable bytes are zeroed in the target.
|
|
*/
|
|
ENTRY(__copy_from_user_zeroing)
|
|
.type __copy_from_user_zeroing, @function
|
|
FEEDBACK_REENTER(__copy_from_user_inatomic)
|
|
{ movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
|
|
.size __copy_from_user_zeroing, . - __copy_from_user_zeroing
|
|
|
|
/* __copy_to_user_inatomic takes the user target address in r0,
|
|
* the kernel source in r1, and the bytes to copy in r2.
|
|
* It returns the number of uncopiable bytes (hopefully zero) in r0.
|
|
*/
|
|
ENTRY(__copy_to_user_inatomic)
|
|
.type __copy_to_user_inatomic, @function
|
|
FEEDBACK_REENTER(__copy_from_user_inatomic)
|
|
{ movei r29, IS_COPY_TO_USER; j memcpy_common }
|
|
.size __copy_to_user_inatomic, . - __copy_to_user_inatomic
|
|
|
|
ENTRY(memcpy)
|
|
.type memcpy, @function
|
|
FEEDBACK_REENTER(__copy_from_user_inatomic)
|
|
{ movei r29, IS_MEMCPY }
|
|
.size memcpy, . - memcpy
|
|
/* Fall through */
|
|
|
|
.type memcpy_common, @function
|
|
memcpy_common:
|
|
/* On entry, r29 holds one of the IS_* macro values from above. */
|
|
|
|
|
|
/* r0 is the dest, r1 is the source, r2 is the size. */
|
|
|
|
/* Save aside original dest so we can return it at the end. */
|
|
{ sw sp, lr; move r23, r0; or r4, r0, r1 }
|
|
|
|
/* Check for an empty size. */
|
|
{ bz r2, .Ldone; andi r4, r4, 3 }
|
|
|
|
/* Save aside original values in case of a fault. */
|
|
{ move r24, r1; move r25, r2 }
|
|
move r27, lr
|
|
|
|
/* Check for an unaligned source or dest. */
|
|
{ bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
|
|
|
|
.Lcheck_aligned_copy_size:
|
|
/* If we are copying < 256 bytes, branch to simple case. */
|
|
{ blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
|
|
|
|
/* Copying >= 256 bytes, so jump to complex prefetching loop. */
|
|
{ andi r6, r1, 63; j .Lcopy_many }
|
|
|
|
/*
|
|
*
|
|
* Aligned 4 byte at a time copy loop
|
|
*
|
|
*/
|
|
|
|
.Lcopy_8_loop:
|
|
/* Copy two words at a time to hide load latency. */
|
|
EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
|
|
EX: { lw r4, r1; addi r1, r1, 4 }
|
|
EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
|
|
EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
|
|
.Lcopy_8_check:
|
|
{ bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
|
|
|
|
/* Copy odd leftover word, if any. */
|
|
{ bnzt r4, .Lcheck_odd_stragglers }
|
|
EX: { lw r3, r1; addi r1, r1, 4 }
|
|
EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
|
|
|
|
.Lcheck_odd_stragglers:
|
|
{ bnz r2, .Lcopy_unaligned_few }
|
|
|
|
.Ldone:
|
|
/* For memcpy return original dest address, else zero. */
|
|
{ mz r0, r29, r23; jrp lr }
|
|
|
|
|
|
/*
|
|
*
|
|
* Prefetching multiple cache line copy handler (for large transfers).
|
|
*
|
|
*/
|
|
|
|
/* Copy words until r1 is cache-line-aligned. */
|
|
.Lalign_loop:
|
|
EX: { lw r3, r1; addi r1, r1, 4 }
|
|
{ andi r6, r1, 63 }
|
|
EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
|
|
.Lcopy_many:
|
|
{ bnzt r6, .Lalign_loop; addi r9, r0, 63 }
|
|
|
|
{ addi r3, r1, 60; andi r9, r9, -64 }
|
|
|
|
/* No need to prefetch dst, we'll just do the wh64
|
|
* right before we copy a line.
|
|
*/
|
|
EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 }
|
|
/* Intentionally stall for a few cycles to leave L2 cache alone. */
|
|
{ bnzt zero, .; move r27, lr }
|
|
EX: { lw r6, r3; addi r3, r3, 64 }
|
|
/* Intentionally stall for a few cycles to leave L2 cache alone. */
|
|
{ bnzt zero, . }
|
|
EX: { lw r7, r3; addi r3, r3, 64 }
|
|
/* Intentionally stall for a few cycles to leave L2 cache alone. */
|
|
{ bz zero, .Lbig_loop2 }
|
|
|
|
/* On entry to this loop:
|
|
* - r0 points to the start of dst line 0
|
|
* - r1 points to start of src line 0
|
|
* - r2 >= (256 - 60), only the first time the loop trips.
|
|
* - r3 contains r1 + 128 + 60 [pointer to end of source line 2]
|
|
* This is our prefetch address. When we get near the end
|
|
* rather than prefetching off the end this is changed to point
|
|
* to some "safe" recently loaded address.
|
|
* - r5 contains *(r1 + 60) [i.e. last word of source line 0]
|
|
* - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1]
|
|
* - r9 contains ((r0 + 63) & -64)
|
|
* [start of next dst cache line.]
|
|
*/
|
|
|
|
.Lbig_loop:
|
|
{ jal .Lcopy_line2; add r15, r1, r2 }
|
|
|
|
.Lbig_loop2:
|
|
/* Copy line 0, first stalling until r5 is ready. */
|
|
EX: { move r12, r5; lw r16, r1 }
|
|
{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
|
|
/* Prefetch several lines ahead. */
|
|
EX: { lw r5, r3; addi r3, r3, 64 }
|
|
{ jal .Lcopy_line }
|
|
|
|
/* Copy line 1, first stalling until r6 is ready. */
|
|
EX: { move r12, r6; lw r16, r1 }
|
|
{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
|
|
/* Prefetch several lines ahead. */
|
|
EX: { lw r6, r3; addi r3, r3, 64 }
|
|
{ jal .Lcopy_line }
|
|
|
|
/* Copy line 2, first stalling until r7 is ready. */
|
|
EX: { move r12, r7; lw r16, r1 }
|
|
{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
|
|
/* Prefetch several lines ahead. */
|
|
EX: { lw r7, r3; addi r3, r3, 64 }
|
|
/* Use up a caches-busy cycle by jumping back to the top of the
|
|
* loop. Might as well get it out of the way now.
|
|
*/
|
|
{ j .Lbig_loop }
|
|
|
|
|
|
/* On entry:
|
|
* - r0 points to the destination line.
|
|
* - r1 points to the source line.
|
|
* - r3 is the next prefetch address.
|
|
* - r9 holds the last address used for wh64.
|
|
* - r12 = WORD_15
|
|
* - r16 = WORD_0.
|
|
* - r17 == r1 + 16.
|
|
* - r27 holds saved lr to restore.
|
|
*
|
|
* On exit:
|
|
* - r0 is incremented by 64.
|
|
* - r1 is incremented by 64, unless that would point to a word
|
|
* beyond the end of the source array, in which case it is redirected
|
|
* to point to an arbitrary word already in the cache.
|
|
* - r2 is decremented by 64.
|
|
* - r3 is unchanged, unless it points to a word beyond the
|
|
* end of the source array, in which case it is redirected
|
|
* to point to an arbitrary word already in the cache.
|
|
* Redirecting is OK since if we are that close to the end
|
|
* of the array we will not come back to this subroutine
|
|
* and use the contents of the prefetched address.
|
|
* - r4 is nonzero iff r2 >= 64.
|
|
* - r9 is incremented by 64, unless it points beyond the
|
|
* end of the last full destination cache line, in which
|
|
* case it is redirected to a "safe address" that can be
|
|
* clobbered (sp - 64)
|
|
* - lr contains the value in r27.
|
|
*/
|
|
|
|
/* r26 unused */
|
|
|
|
.Lcopy_line:
|
|
/* TODO: when r3 goes past the end, we would like to redirect it
|
|
* to prefetch the last partial cache line (if any) just once, for the
|
|
* benefit of the final cleanup loop. But we don't want to
|
|
* prefetch that line more than once, or subsequent prefetches
|
|
* will go into the RTF. But then .Lbig_loop should unconditionally
|
|
* branch to top of loop to execute final prefetch, and its
|
|
* nop should become a conditional branch.
|
|
*/
|
|
|
|
/* We need two non-memory cycles here to cover the resources
|
|
* used by the loads initiated by the caller.
|
|
*/
|
|
{ add r15, r1, r2 }
|
|
.Lcopy_line2:
|
|
{ slt_u r13, r3, r15; addi r17, r1, 16 }
|
|
|
|
/* NOTE: this will stall for one cycle as L1 is busy. */
|
|
|
|
/* Fill second L1D line. */
|
|
EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
|
|
|
|
/* Prepare destination line for writing. */
|
|
EX: { wh64 r9; addi r9, r9, 64 }
|
|
/* Load seven words that are L1D hits to cover wh64 L2 usage. */
|
|
|
|
/* Load the three remaining words from the last L1D line, which
|
|
* we know has already filled the L1D.
|
|
*/
|
|
EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */
|
|
EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */
|
|
EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */
|
|
|
|
/* Load the three remaining words from the first L1D line, first
|
|
* stalling until it has filled by "looking at" r16.
|
|
*/
|
|
EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */
|
|
EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */
|
|
EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
|
|
|
|
/* Load second word from the second L1D line, first
|
|
* stalling until it has filled by "looking at" r17.
|
|
*/
|
|
EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */
|
|
|
|
/* Store last word to the destination line, potentially dirtying it
|
|
* for the first time, which keeps the L2 busy for two cycles.
|
|
*/
|
|
EX: { sw r10, r12 } /* store(WORD_15) */
|
|
|
|
/* Use two L1D hits to cover the sw L2 access above. */
|
|
EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */
|
|
EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */
|
|
|
|
/* Fill third L1D line. */
|
|
EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */
|
|
|
|
/* Store first L1D line. */
|
|
EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
|
|
EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
|
|
EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
|
|
EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
|
|
/* Store second L1D line. */
|
|
EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
|
|
EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */
|
|
EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */
|
|
EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */
|
|
|
|
EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */
|
|
EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */
|
|
EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */
|
|
|
|
/* Store third L1D line. */
|
|
EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */
|
|
EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */
|
|
EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */
|
|
EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */
|
|
|
|
/* Store rest of fourth L1D line. */
|
|
EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */
|
|
{
|
|
EX: sw r0, r8 /* store(WORD_13) */
|
|
addi r0, r0, 4
|
|
/* Will r2 be > 64 after we subtract 64 below? */
|
|
shri r4, r2, 7
|
|
}
|
|
{
|
|
EX: sw r0, r11 /* store(WORD_14) */
|
|
addi r0, r0, 8
|
|
/* Record 64 bytes successfully copied. */
|
|
addi r2, r2, -64
|
|
}
|
|
|
|
{ jrp lr; move lr, r27 }
|
|
|
|
/* Convey to the backtrace library that the stack frame is size
|
|
* zero, and the real return address is on the stack rather than
|
|
* in 'lr'.
|
|
*/
|
|
{ info 8 }
|
|
|
|
.align 64
|
|
.Lcopy_unaligned_maybe_many:
|
|
/* Skip the setup overhead if we aren't copying many bytes. */
|
|
{ slti_u r8, r2, 20; sub r4, zero, r0 }
|
|
{ bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
|
|
{ bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
|
|
|
|
/*
|
|
*
|
|
* unaligned 4 byte at a time copy handler.
|
|
*
|
|
*/
|
|
|
|
/* Copy single bytes until r0 == 0 mod 4, so we can store words. */
|
|
.Lalign_dest_loop:
|
|
EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
|
|
EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
|
|
{ bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
|
|
|
|
/* If source and dest are now *both* aligned, do an aligned copy. */
|
|
{ bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
|
|
|
|
.Ldest_is_word_aligned:
|
|
|
|
EX: { andi r8, r0, 63; lwadd_na r6, r1, 4}
|
|
{ slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
|
|
|
|
/* This copies unaligned words until either there are fewer
|
|
* than 4 bytes left to copy, or until the destination pointer
|
|
* is cache-aligned, whichever comes first.
|
|
*
|
|
* On entry:
|
|
* - r0 is the next store address.
|
|
* - r1 points 4 bytes past the load address corresponding to r0.
|
|
* - r2 >= 4
|
|
* - r6 is the next aligned word loaded.
|
|
*/
|
|
.Lcopy_unaligned_src_words:
|
|
EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
|
|
/* stall */
|
|
{ dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
|
|
EX: { swadd r0, r6, 4; addi r2, r2, -4 }
|
|
{ bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
|
|
{ bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
|
|
|
|
/* On entry:
|
|
* - r0 is the next store address.
|
|
* - r1 points 4 bytes past the load address corresponding to r0.
|
|
* - r2 >= 4 (# of bytes left to store).
|
|
* - r6 is the next aligned src word value.
|
|
* - r9 = (r2 < 64U).
|
|
* - r18 points one byte past the end of source memory.
|
|
*/
|
|
.Ldest_is_L2_line_aligned:
|
|
|
|
{
|
|
/* Not a full cache line remains. */
|
|
bnz r9, .Lcleanup_unaligned_words
|
|
move r7, r6
|
|
}
|
|
|
|
/* r2 >= 64 */
|
|
|
|
/* Kick off two prefetches, but don't go past the end. */
|
|
{ addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
|
|
{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
|
|
{ mvz r3, r8, r1; addi r8, r3, 64 }
|
|
{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
|
|
{ mvz r3, r8, r1; movei r17, 0 }
|
|
|
|
.Lcopy_unaligned_line:
|
|
/* Prefetch another line. */
|
|
{ prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
|
|
/* Fire off a load of the last word we are about to copy. */
|
|
EX: { lw_na r15, r15; slt_u r8, r3, r18 }
|
|
|
|
EX: { mvz r3, r8, r1; wh64 r0 }
|
|
|
|
/* This loop runs twice.
|
|
*
|
|
* On entry:
|
|
* - r17 is even before the first iteration, and odd before
|
|
* the second. It is incremented inside the loop. Encountering
|
|
* an even value at the end of the loop makes it stop.
|
|
*/
|
|
.Lcopy_half_an_unaligned_line:
|
|
EX: {
|
|
/* Stall until the last byte is ready. In the steady state this
|
|
* guarantees all words to load below will be in the L2 cache, which
|
|
* avoids shunting the loads to the RTF.
|
|
*/
|
|
move zero, r15
|
|
lwadd_na r7, r1, 16
|
|
}
|
|
EX: { lwadd_na r11, r1, 12 }
|
|
EX: { lwadd_na r14, r1, -24 }
|
|
EX: { lwadd_na r8, r1, 4 }
|
|
EX: { lwadd_na r9, r1, 4 }
|
|
EX: {
|
|
lwadd_na r10, r1, 8
|
|
/* r16 = (r2 < 64), after we subtract 32 from r2 below. */
|
|
slti_u r16, r2, 64 + 32
|
|
}
|
|
EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 }
|
|
EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
|
|
EX: { swadd r0, r6, 4; dword_align r7, r8, r1 }
|
|
EX: { swadd r0, r7, 4; dword_align r8, r9, r1 }
|
|
EX: { swadd r0, r8, 4; dword_align r9, r10, r1 }
|
|
EX: { swadd r0, r9, 4; dword_align r10, r11, r1 }
|
|
EX: { swadd r0, r10, 4; dword_align r11, r12, r1 }
|
|
EX: { swadd r0, r11, 4; dword_align r12, r13, r1 }
|
|
EX: { swadd r0, r12, 4; dword_align r13, r14, r1 }
|
|
EX: { swadd r0, r13, 4; addi r2, r2, -32 }
|
|
{ move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
|
|
|
|
{ bzt r16, .Lcopy_unaligned_line; move r7, r6 }
|
|
|
|
/* On entry:
|
|
* - r0 is the next store address.
|
|
* - r1 points 4 bytes past the load address corresponding to r0.
|
|
* - r2 >= 0 (# of bytes left to store).
|
|
* - r7 is the next aligned src word value.
|
|
*/
|
|
.Lcleanup_unaligned_words:
|
|
/* Handle any trailing bytes. */
|
|
{ bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
|
|
{ bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
|
|
|
|
/* Move r1 back to the point where it corresponds to r0. */
|
|
{ addi r1, r1, -4 }
|
|
|
|
/* Fall through */
|
|
|
|
/*
|
|
*
|
|
* 1 byte at a time copy handler.
|
|
*
|
|
*/
|
|
|
|
.Lcopy_unaligned_few:
|
|
EX: { lb_u r3, r1; addi r1, r1, 1 }
|
|
EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
|
|
{ bnzt r2, .Lcopy_unaligned_few }
|
|
|
|
.Lcopy_unaligned_done:
|
|
|
|
/* For memcpy return original dest address, else zero. */
|
|
{ mz r0, r29, r23; jrp lr }
|
|
|
|
.Lend_memcpy_common:
|
|
.size memcpy_common, .Lend_memcpy_common - memcpy_common
|
|
|
|
.section .fixup,"ax"
|
|
memcpy_common_fixup:
|
|
.type memcpy_common_fixup, @function
|
|
|
|
/* Skip any bytes we already successfully copied.
|
|
* r2 (num remaining) is correct, but r0 (dst) and r1 (src)
|
|
* may not be quite right because of unrolling and prefetching.
|
|
* So we need to recompute their values as the address just
|
|
* after the last byte we are sure was successfully loaded and
|
|
* then stored.
|
|
*/
|
|
|
|
/* Determine how many bytes we successfully copied. */
|
|
{ sub r3, r25, r2 }
|
|
|
|
/* Add this to the original r0 and r1 to get their new values. */
|
|
{ add r0, r23, r3; add r1, r24, r3 }
|
|
|
|
{ bzt r29, memcpy_fixup_loop }
|
|
{ blzt r29, copy_to_user_fixup_loop }
|
|
|
|
copy_from_user_fixup_loop:
|
|
/* Try copying the rest one byte at a time, expecting a load fault. */
|
|
.Lcfu: { lb_u r3, r1; addi r1, r1, 1 }
|
|
{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
|
|
{ bnzt r2, copy_from_user_fixup_loop }
|
|
|
|
.Lcopy_from_user_fixup_zero_remainder:
|
|
{ bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */
|
|
/* byte-at-a-time loop faulted, so zero the rest. */
|
|
{ move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
|
|
1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
|
|
{ bnzt r3, 1b }
|
|
2: move lr, r27
|
|
{ move r0, r2; jrp lr }
|
|
|
|
copy_to_user_fixup_loop:
|
|
/* Try copying the rest one byte at a time, expecting a store fault. */
|
|
{ lb_u r3, r1; addi r1, r1, 1 }
|
|
.Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
|
|
{ bnzt r2, copy_to_user_fixup_loop }
|
|
.Lcopy_to_user_fixup_done:
|
|
move lr, r27
|
|
{ move r0, r2; jrp lr }
|
|
|
|
memcpy_fixup_loop:
|
|
/* Try copying the rest one byte at a time. We expect a disastrous
|
|
* fault to happen since we are in fixup code, but let it happen.
|
|
*/
|
|
{ lb_u r3, r1; addi r1, r1, 1 }
|
|
{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
|
|
{ bnzt r2, memcpy_fixup_loop }
|
|
/* This should be unreachable, we should have faulted again.
|
|
* But be paranoid and handle it in case some interrupt changed
|
|
* the TLB or something.
|
|
*/
|
|
move lr, r27
|
|
{ move r0, r23; jrp lr }
|
|
|
|
.size memcpy_common_fixup, . - memcpy_common_fixup
|
|
|
|
.section __ex_table,"a"
|
|
.align 4
|
|
.word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
|
|
.word .Lctu, .Lcopy_to_user_fixup_done
|