mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 09:31:50 +00:00
38a382ae5d
There is no need for kobject_unregister() anymore, thanks to Kay's kobject cleanup changes, so replace all instances of it with kobject_put(). Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
831 lines
22 KiB
C
831 lines
22 KiB
C
/*
|
|
* Routines to indentify caches on Intel CPU.
|
|
*
|
|
* Changes:
|
|
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
|
|
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
|
|
* Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/device.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/smp.h>
|
|
|
|
#define LVL_1_INST 1
|
|
#define LVL_1_DATA 2
|
|
#define LVL_2 3
|
|
#define LVL_3 4
|
|
#define LVL_TRACE 5
|
|
|
|
struct _cache_table
|
|
{
|
|
unsigned char descriptor;
|
|
char cache_type;
|
|
short size;
|
|
};
|
|
|
|
/* all the cache descriptor types we care about (no TLB or trace cache entries) */
|
|
static struct _cache_table cache_table[] __cpuinitdata =
|
|
{
|
|
{ 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
|
|
{ 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
|
|
{ 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
|
|
{ 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
|
|
{ 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
|
|
{ 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
|
|
{ 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
|
|
{ 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x00, 0, 0}
|
|
};
|
|
|
|
|
|
enum _cache_type
|
|
{
|
|
CACHE_TYPE_NULL = 0,
|
|
CACHE_TYPE_DATA = 1,
|
|
CACHE_TYPE_INST = 2,
|
|
CACHE_TYPE_UNIFIED = 3
|
|
};
|
|
|
|
union _cpuid4_leaf_eax {
|
|
struct {
|
|
enum _cache_type type:5;
|
|
unsigned int level:3;
|
|
unsigned int is_self_initializing:1;
|
|
unsigned int is_fully_associative:1;
|
|
unsigned int reserved:4;
|
|
unsigned int num_threads_sharing:12;
|
|
unsigned int num_cores_on_die:6;
|
|
} split;
|
|
u32 full;
|
|
};
|
|
|
|
union _cpuid4_leaf_ebx {
|
|
struct {
|
|
unsigned int coherency_line_size:12;
|
|
unsigned int physical_line_partition:10;
|
|
unsigned int ways_of_associativity:10;
|
|
} split;
|
|
u32 full;
|
|
};
|
|
|
|
union _cpuid4_leaf_ecx {
|
|
struct {
|
|
unsigned int number_of_sets:32;
|
|
} split;
|
|
u32 full;
|
|
};
|
|
|
|
struct _cpuid4_info {
|
|
union _cpuid4_leaf_eax eax;
|
|
union _cpuid4_leaf_ebx ebx;
|
|
union _cpuid4_leaf_ecx ecx;
|
|
unsigned long size;
|
|
cpumask_t shared_cpu_map;
|
|
};
|
|
|
|
unsigned short num_cache_leaves;
|
|
|
|
/* AMD doesn't have CPUID4. Emulate it here to report the same
|
|
information to the user. This makes some assumptions about the machine:
|
|
L2 not shared, no SMT etc. that is currently true on AMD CPUs.
|
|
|
|
In theory the TLBs could be reported as fake type (they are in "dummy").
|
|
Maybe later */
|
|
union l1_cache {
|
|
struct {
|
|
unsigned line_size : 8;
|
|
unsigned lines_per_tag : 8;
|
|
unsigned assoc : 8;
|
|
unsigned size_in_kb : 8;
|
|
};
|
|
unsigned val;
|
|
};
|
|
|
|
union l2_cache {
|
|
struct {
|
|
unsigned line_size : 8;
|
|
unsigned lines_per_tag : 4;
|
|
unsigned assoc : 4;
|
|
unsigned size_in_kb : 16;
|
|
};
|
|
unsigned val;
|
|
};
|
|
|
|
union l3_cache {
|
|
struct {
|
|
unsigned line_size : 8;
|
|
unsigned lines_per_tag : 4;
|
|
unsigned assoc : 4;
|
|
unsigned res : 2;
|
|
unsigned size_encoded : 14;
|
|
};
|
|
unsigned val;
|
|
};
|
|
|
|
static unsigned short assocs[] __cpuinitdata = {
|
|
[1] = 1, [2] = 2, [4] = 4, [6] = 8,
|
|
[8] = 16, [0xa] = 32, [0xb] = 48,
|
|
[0xc] = 64,
|
|
[0xf] = 0xffff // ??
|
|
};
|
|
|
|
static unsigned char levels[] __cpuinitdata = { 1, 1, 2, 3 };
|
|
static unsigned char types[] __cpuinitdata = { 1, 2, 3, 3 };
|
|
|
|
static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
|
|
union _cpuid4_leaf_ebx *ebx,
|
|
union _cpuid4_leaf_ecx *ecx)
|
|
{
|
|
unsigned dummy;
|
|
unsigned line_size, lines_per_tag, assoc, size_in_kb;
|
|
union l1_cache l1i, l1d;
|
|
union l2_cache l2;
|
|
union l3_cache l3;
|
|
union l1_cache *l1 = &l1d;
|
|
|
|
eax->full = 0;
|
|
ebx->full = 0;
|
|
ecx->full = 0;
|
|
|
|
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
|
|
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
|
|
|
|
switch (leaf) {
|
|
case 1:
|
|
l1 = &l1i;
|
|
case 0:
|
|
if (!l1->val)
|
|
return;
|
|
assoc = l1->assoc;
|
|
line_size = l1->line_size;
|
|
lines_per_tag = l1->lines_per_tag;
|
|
size_in_kb = l1->size_in_kb;
|
|
break;
|
|
case 2:
|
|
if (!l2.val)
|
|
return;
|
|
assoc = l2.assoc;
|
|
line_size = l2.line_size;
|
|
lines_per_tag = l2.lines_per_tag;
|
|
/* cpu_data has errata corrections for K7 applied */
|
|
size_in_kb = current_cpu_data.x86_cache_size;
|
|
break;
|
|
case 3:
|
|
if (!l3.val)
|
|
return;
|
|
assoc = l3.assoc;
|
|
line_size = l3.line_size;
|
|
lines_per_tag = l3.lines_per_tag;
|
|
size_in_kb = l3.size_encoded * 512;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
eax->split.is_self_initializing = 1;
|
|
eax->split.type = types[leaf];
|
|
eax->split.level = levels[leaf];
|
|
if (leaf == 3)
|
|
eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1;
|
|
else
|
|
eax->split.num_threads_sharing = 0;
|
|
eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
|
|
|
|
|
|
if (assoc == 0xf)
|
|
eax->split.is_fully_associative = 1;
|
|
ebx->split.coherency_line_size = line_size - 1;
|
|
ebx->split.ways_of_associativity = assocs[assoc] - 1;
|
|
ebx->split.physical_line_partition = lines_per_tag - 1;
|
|
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
|
|
(ebx->split.ways_of_associativity + 1) - 1;
|
|
}
|
|
|
|
static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
|
|
{
|
|
union _cpuid4_leaf_eax eax;
|
|
union _cpuid4_leaf_ebx ebx;
|
|
union _cpuid4_leaf_ecx ecx;
|
|
unsigned edx;
|
|
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
|
|
amd_cpuid4(index, &eax, &ebx, &ecx);
|
|
else
|
|
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
|
|
if (eax.split.type == CACHE_TYPE_NULL)
|
|
return -EIO; /* better error ? */
|
|
|
|
this_leaf->eax = eax;
|
|
this_leaf->ebx = ebx;
|
|
this_leaf->ecx = ecx;
|
|
this_leaf->size = (ecx.split.number_of_sets + 1) *
|
|
(ebx.split.coherency_line_size + 1) *
|
|
(ebx.split.physical_line_partition + 1) *
|
|
(ebx.split.ways_of_associativity + 1);
|
|
return 0;
|
|
}
|
|
|
|
static int __cpuinit find_num_cache_leaves(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
union _cpuid4_leaf_eax cache_eax;
|
|
int i = -1;
|
|
|
|
do {
|
|
++i;
|
|
/* Do cpuid(4) loop to find out num_cache_leaves */
|
|
cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
|
|
cache_eax.full = eax;
|
|
} while (cache_eax.split.type != CACHE_TYPE_NULL);
|
|
return i;
|
|
}
|
|
|
|
unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
|
|
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
|
|
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
|
|
unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
|
|
#ifdef CONFIG_X86_HT
|
|
unsigned int cpu = c->cpu_index;
|
|
#endif
|
|
|
|
if (c->cpuid_level > 3) {
|
|
static int is_initialized;
|
|
|
|
if (is_initialized == 0) {
|
|
/* Init num_cache_leaves from boot CPU */
|
|
num_cache_leaves = find_num_cache_leaves();
|
|
is_initialized++;
|
|
}
|
|
|
|
/*
|
|
* Whenever possible use cpuid(4), deterministic cache
|
|
* parameters cpuid leaf to find the cache details
|
|
*/
|
|
for (i = 0; i < num_cache_leaves; i++) {
|
|
struct _cpuid4_info this_leaf;
|
|
|
|
int retval;
|
|
|
|
retval = cpuid4_cache_lookup(i, &this_leaf);
|
|
if (retval >= 0) {
|
|
switch(this_leaf.eax.split.level) {
|
|
case 1:
|
|
if (this_leaf.eax.split.type ==
|
|
CACHE_TYPE_DATA)
|
|
new_l1d = this_leaf.size/1024;
|
|
else if (this_leaf.eax.split.type ==
|
|
CACHE_TYPE_INST)
|
|
new_l1i = this_leaf.size/1024;
|
|
break;
|
|
case 2:
|
|
new_l2 = this_leaf.size/1024;
|
|
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
l2_id = c->apicid >> index_msb;
|
|
break;
|
|
case 3:
|
|
new_l3 = this_leaf.size/1024;
|
|
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
l3_id = c->apicid >> index_msb;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
|
|
* trace cache
|
|
*/
|
|
if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
|
|
/* supports eax=2 call */
|
|
int i, j, n;
|
|
int regs[4];
|
|
unsigned char *dp = (unsigned char *)regs;
|
|
int only_trace = 0;
|
|
|
|
if (num_cache_leaves != 0 && c->x86 == 15)
|
|
only_trace = 1;
|
|
|
|
/* Number of times to iterate */
|
|
n = cpuid_eax(2) & 0xFF;
|
|
|
|
for ( i = 0 ; i < n ; i++ ) {
|
|
cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
|
|
|
|
/* If bit 31 is set, this is an unknown format */
|
|
for ( j = 0 ; j < 3 ; j++ ) {
|
|
if ( regs[j] < 0 ) regs[j] = 0;
|
|
}
|
|
|
|
/* Byte 0 is level count, not a descriptor */
|
|
for ( j = 1 ; j < 16 ; j++ ) {
|
|
unsigned char des = dp[j];
|
|
unsigned char k = 0;
|
|
|
|
/* look up this descriptor in the table */
|
|
while (cache_table[k].descriptor != 0)
|
|
{
|
|
if (cache_table[k].descriptor == des) {
|
|
if (only_trace && cache_table[k].cache_type != LVL_TRACE)
|
|
break;
|
|
switch (cache_table[k].cache_type) {
|
|
case LVL_1_INST:
|
|
l1i += cache_table[k].size;
|
|
break;
|
|
case LVL_1_DATA:
|
|
l1d += cache_table[k].size;
|
|
break;
|
|
case LVL_2:
|
|
l2 += cache_table[k].size;
|
|
break;
|
|
case LVL_3:
|
|
l3 += cache_table[k].size;
|
|
break;
|
|
case LVL_TRACE:
|
|
trace += cache_table[k].size;
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_l1d)
|
|
l1d = new_l1d;
|
|
|
|
if (new_l1i)
|
|
l1i = new_l1i;
|
|
|
|
if (new_l2) {
|
|
l2 = new_l2;
|
|
#ifdef CONFIG_X86_HT
|
|
per_cpu(cpu_llc_id, cpu) = l2_id;
|
|
#endif
|
|
}
|
|
|
|
if (new_l3) {
|
|
l3 = new_l3;
|
|
#ifdef CONFIG_X86_HT
|
|
per_cpu(cpu_llc_id, cpu) = l3_id;
|
|
#endif
|
|
}
|
|
|
|
if (trace)
|
|
printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
|
|
else if ( l1i )
|
|
printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
|
|
|
|
if (l1d)
|
|
printk(", L1 D cache: %dK\n", l1d);
|
|
else
|
|
printk("\n");
|
|
|
|
if (l2)
|
|
printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
|
|
|
|
if (l3)
|
|
printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
|
|
|
|
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
|
|
|
|
return l2;
|
|
}
|
|
|
|
/* pointer to _cpuid4_info array (for each cache leaf) */
|
|
static struct _cpuid4_info *cpuid4_info[NR_CPUS];
|
|
#define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
|
|
{
|
|
struct _cpuid4_info *this_leaf, *sibling_leaf;
|
|
unsigned long num_threads_sharing;
|
|
int index_msb, i;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
this_leaf = CPUID4_INFO_IDX(cpu, index);
|
|
num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
|
|
|
|
if (num_threads_sharing == 1)
|
|
cpu_set(cpu, this_leaf->shared_cpu_map);
|
|
else {
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
|
|
for_each_online_cpu(i) {
|
|
if (cpu_data(i).apicid >> index_msb ==
|
|
c->apicid >> index_msb) {
|
|
cpu_set(i, this_leaf->shared_cpu_map);
|
|
if (i != cpu && cpuid4_info[i]) {
|
|
sibling_leaf = CPUID4_INFO_IDX(i, index);
|
|
cpu_set(cpu, sibling_leaf->shared_cpu_map);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
|
|
{
|
|
struct _cpuid4_info *this_leaf, *sibling_leaf;
|
|
int sibling;
|
|
|
|
this_leaf = CPUID4_INFO_IDX(cpu, index);
|
|
for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
|
|
sibling_leaf = CPUID4_INFO_IDX(sibling, index);
|
|
cpu_clear(cpu, sibling_leaf->shared_cpu_map);
|
|
}
|
|
}
|
|
#else
|
|
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
|
|
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
|
|
#endif
|
|
|
|
static void __cpuinit free_cache_attributes(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_cache_leaves; i++)
|
|
cache_remove_shared_cpu_map(cpu, i);
|
|
|
|
kfree(cpuid4_info[cpu]);
|
|
cpuid4_info[cpu] = NULL;
|
|
}
|
|
|
|
static int __cpuinit detect_cache_attributes(unsigned int cpu)
|
|
{
|
|
struct _cpuid4_info *this_leaf;
|
|
unsigned long j;
|
|
int retval;
|
|
cpumask_t oldmask;
|
|
|
|
if (num_cache_leaves == 0)
|
|
return -ENOENT;
|
|
|
|
cpuid4_info[cpu] = kzalloc(
|
|
sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
|
|
if (cpuid4_info[cpu] == NULL)
|
|
return -ENOMEM;
|
|
|
|
oldmask = current->cpus_allowed;
|
|
retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
|
|
if (retval)
|
|
goto out;
|
|
|
|
/* Do cpuid and store the results */
|
|
for (j = 0; j < num_cache_leaves; j++) {
|
|
this_leaf = CPUID4_INFO_IDX(cpu, j);
|
|
retval = cpuid4_cache_lookup(j, this_leaf);
|
|
if (unlikely(retval < 0)) {
|
|
int i;
|
|
|
|
for (i = 0; i < j; i++)
|
|
cache_remove_shared_cpu_map(cpu, i);
|
|
break;
|
|
}
|
|
cache_shared_cpu_map_setup(cpu, j);
|
|
}
|
|
set_cpus_allowed(current, oldmask);
|
|
|
|
out:
|
|
if (retval) {
|
|
kfree(cpuid4_info[cpu]);
|
|
cpuid4_info[cpu] = NULL;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
#include <linux/kobject.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
|
|
|
|
/* pointer to kobject for cpuX/cache */
|
|
static struct kobject * cache_kobject[NR_CPUS];
|
|
|
|
struct _index_kobject {
|
|
struct kobject kobj;
|
|
unsigned int cpu;
|
|
unsigned short index;
|
|
};
|
|
|
|
/* pointer to array of kobjects for cpuX/cache/indexY */
|
|
static struct _index_kobject *index_kobject[NR_CPUS];
|
|
#define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
|
|
|
|
#define show_one_plus(file_name, object, val) \
|
|
static ssize_t show_##file_name \
|
|
(struct _cpuid4_info *this_leaf, char *buf) \
|
|
{ \
|
|
return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
|
|
}
|
|
|
|
show_one_plus(level, eax.split.level, 0);
|
|
show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
|
|
show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
|
|
show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
|
|
show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
|
|
|
|
static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
|
|
{
|
|
return sprintf (buf, "%luK\n", this_leaf->size / 1024);
|
|
}
|
|
|
|
static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
|
|
{
|
|
char mask_str[NR_CPUS];
|
|
cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
|
|
return sprintf(buf, "%s\n", mask_str);
|
|
}
|
|
|
|
static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
|
|
switch(this_leaf->eax.split.type) {
|
|
case CACHE_TYPE_DATA:
|
|
return sprintf(buf, "Data\n");
|
|
break;
|
|
case CACHE_TYPE_INST:
|
|
return sprintf(buf, "Instruction\n");
|
|
break;
|
|
case CACHE_TYPE_UNIFIED:
|
|
return sprintf(buf, "Unified\n");
|
|
break;
|
|
default:
|
|
return sprintf(buf, "Unknown\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct _cache_attr {
|
|
struct attribute attr;
|
|
ssize_t (*show)(struct _cpuid4_info *, char *);
|
|
ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
|
|
};
|
|
|
|
#define define_one_ro(_name) \
|
|
static struct _cache_attr _name = \
|
|
__ATTR(_name, 0444, show_##_name, NULL)
|
|
|
|
define_one_ro(level);
|
|
define_one_ro(type);
|
|
define_one_ro(coherency_line_size);
|
|
define_one_ro(physical_line_partition);
|
|
define_one_ro(ways_of_associativity);
|
|
define_one_ro(number_of_sets);
|
|
define_one_ro(size);
|
|
define_one_ro(shared_cpu_map);
|
|
|
|
static struct attribute * default_attrs[] = {
|
|
&type.attr,
|
|
&level.attr,
|
|
&coherency_line_size.attr,
|
|
&physical_line_partition.attr,
|
|
&ways_of_associativity.attr,
|
|
&number_of_sets.attr,
|
|
&size.attr,
|
|
&shared_cpu_map.attr,
|
|
NULL
|
|
};
|
|
|
|
#define to_object(k) container_of(k, struct _index_kobject, kobj)
|
|
#define to_attr(a) container_of(a, struct _cache_attr, attr)
|
|
|
|
static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
|
|
{
|
|
struct _cache_attr *fattr = to_attr(attr);
|
|
struct _index_kobject *this_leaf = to_object(kobj);
|
|
ssize_t ret;
|
|
|
|
ret = fattr->show ?
|
|
fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
|
|
buf) :
|
|
0;
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store(struct kobject * kobj, struct attribute * attr,
|
|
const char * buf, size_t count)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct sysfs_ops sysfs_ops = {
|
|
.show = show,
|
|
.store = store,
|
|
};
|
|
|
|
static struct kobj_type ktype_cache = {
|
|
.sysfs_ops = &sysfs_ops,
|
|
.default_attrs = default_attrs,
|
|
};
|
|
|
|
static struct kobj_type ktype_percpu_entry = {
|
|
.sysfs_ops = &sysfs_ops,
|
|
};
|
|
|
|
static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
|
|
{
|
|
kfree(cache_kobject[cpu]);
|
|
kfree(index_kobject[cpu]);
|
|
cache_kobject[cpu] = NULL;
|
|
index_kobject[cpu] = NULL;
|
|
free_cache_attributes(cpu);
|
|
}
|
|
|
|
static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
|
|
{
|
|
int err;
|
|
|
|
if (num_cache_leaves == 0)
|
|
return -ENOENT;
|
|
|
|
err = detect_cache_attributes(cpu);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Allocate all required memory */
|
|
cache_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
|
|
if (unlikely(cache_kobject[cpu] == NULL))
|
|
goto err_out;
|
|
|
|
index_kobject[cpu] = kzalloc(
|
|
sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
|
|
if (unlikely(index_kobject[cpu] == NULL))
|
|
goto err_out;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
cpuid4_cache_sysfs_exit(cpu);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static cpumask_t cache_dev_map = CPU_MASK_NONE;
|
|
|
|
/* Add/Remove cache interface for CPU device */
|
|
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
|
|
{
|
|
unsigned int cpu = sys_dev->id;
|
|
unsigned long i, j;
|
|
struct _index_kobject *this_object;
|
|
int retval;
|
|
|
|
retval = cpuid4_cache_sysfs_init(cpu);
|
|
if (unlikely(retval < 0))
|
|
return retval;
|
|
|
|
retval = kobject_init_and_add(cache_kobject[cpu], &ktype_percpu_entry,
|
|
&sys_dev->kobj, "%s", "cache");
|
|
if (retval < 0) {
|
|
cpuid4_cache_sysfs_exit(cpu);
|
|
return retval;
|
|
}
|
|
|
|
for (i = 0; i < num_cache_leaves; i++) {
|
|
this_object = INDEX_KOBJECT_PTR(cpu,i);
|
|
this_object->cpu = cpu;
|
|
this_object->index = i;
|
|
retval = kobject_init_and_add(&(this_object->kobj),
|
|
&ktype_cache, cache_kobject[cpu],
|
|
"index%1lu", i);
|
|
if (unlikely(retval)) {
|
|
for (j = 0; j < i; j++) {
|
|
kobject_put(&(INDEX_KOBJECT_PTR(cpu,j)->kobj));
|
|
}
|
|
kobject_put(cache_kobject[cpu]);
|
|
cpuid4_cache_sysfs_exit(cpu);
|
|
break;
|
|
}
|
|
kobject_uevent(&(this_object->kobj), KOBJ_ADD);
|
|
}
|
|
if (!retval)
|
|
cpu_set(cpu, cache_dev_map);
|
|
|
|
kobject_uevent(cache_kobject[cpu], KOBJ_ADD);
|
|
return retval;
|
|
}
|
|
|
|
static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
|
|
{
|
|
unsigned int cpu = sys_dev->id;
|
|
unsigned long i;
|
|
|
|
if (cpuid4_info[cpu] == NULL)
|
|
return;
|
|
if (!cpu_isset(cpu, cache_dev_map))
|
|
return;
|
|
cpu_clear(cpu, cache_dev_map);
|
|
|
|
for (i = 0; i < num_cache_leaves; i++)
|
|
kobject_put(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
|
|
kobject_put(cache_kobject[cpu]);
|
|
cpuid4_cache_sysfs_exit(cpu);
|
|
}
|
|
|
|
static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
struct sys_device *sys_dev;
|
|
|
|
sys_dev = get_cpu_sysdev(cpu);
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
cache_add_dev(sys_dev);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
cache_remove_dev(sys_dev);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
|
|
{
|
|
.notifier_call = cacheinfo_cpu_callback,
|
|
};
|
|
|
|
static int __cpuinit cache_sysfs_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (num_cache_leaves == 0)
|
|
return 0;
|
|
|
|
for_each_online_cpu(i) {
|
|
int err;
|
|
struct sys_device *sys_dev = get_cpu_sysdev(i);
|
|
|
|
err = cache_add_dev(sys_dev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
register_hotcpu_notifier(&cacheinfo_cpu_notifier);
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(cache_sysfs_init);
|
|
|
|
#endif
|