linux/drivers/iio/adc/xilinx-xadc-core.c
Greg Kroah-Hartman f3cf3fb7ec First set of new device support, features and cleanups for IIO in the 4.5 cycle
Usual mixed bag, but the big item perhaps in this series is the DMA buffer
 support added by Lars-Peter Clausen. It's been in the works for a long time
 and it will be interesting to see what hardware support shows up now that
 this is available.
 
 New core features + associate cleanup.
 * Add generic DMA buffer infrastructure
 * Add a DMAengine framework based buffer
  Also associated minor changes.
    - Set the device buffer watermark based on the minimum watermark for all
      attached buffers rather than just the 'primary' one.
    - iio_buffer_init - only set the watermark default if one hasn't already
      been provided.  This allows simple support for devices with a fixed
      watermark.
    - read only attribute for watermark on fixed watermark devices.
    - add explicit buffer enable/disable callbacks to allow the buffer to
      do more than trivial actions when it is being turned on and off.
 * IIO_VAL_INT support in write_raw_get_fmt function.
 
 New device support
 * Freescale MMA7455/7456L accelerometers
 * Memsic MXC6255XC accelerometer
 * ST lis2dh12 accelerometer
 * TI ADS8688 ADC
 * TI Palamas (twl6035/7) gpadc
 
 New driver features
 * mma8452
   - support either of the available interrupt pins to cope with the case
     where board layout has lead to a particular one being connected.
 
 Staging graduation
 * Dummy driver
   - this driver acts as both an example and a test device for those with
     out hardware to develop userspace code against.
 
 Cleanups and minor bits and bobs.
 * treewide
   - Sort out the ordering of iio_device_register/unregister vs runtime
     pm function calls so that it's all nice and consistent and not race
     prone.
   - Check sscanf return values.  None of the cases will actually happen as
     the strings are supplied internally, but best to be consistent on this.
 * ad7780
   - switch over to the gpio descriptor interface and remove the now unused
     platform data which gets rid of a header entirely.
 * ad7793
   - drop a pointless else statement.
 * at91_adc
   - Swap kmalloc_array in for a kmalloc doing the same job.
 * dummy
   - get rid of some commented out lines that snuck in during the move of
     the driver.
 * lm3533-als
   - Print an error message on provision of an invalid resistance.
 * mcp320x
   - Add compatible strings with vendor prefix and deprecate those with
     no vendor prefix.
 * mxs-lradc
   - Use BIT macro in various places rather than shifted ones.
 * pa12203001
   - Power off the chip if the registration fails.
 * pulsedlight-lidar-lite
   - add runtime PM support.
 * xilinx XADC
   - constify an iio_buffer_setup_ops structure.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJWUcmhAAoJEFSFNJnE9BaIyjYP/0A+CZMUqIGbYG9qFxnq7yYZ
 977Wt/gGI8+Jq5RwNw6gTfhp2GrCN+5gzDbE2mBEn94c6SKBrj2Q9trW1FQ+Nhfx
 9bZoyq3ZPRCV+efEDGfeK/JWRwv+V6IWwAF2J/iCPWpRMTEsIW5kM1JSO3ISlnma
 diyil1hefGTJY8aCqGApthfX4fyZK98oCV6zojxpCZfFPdsa+vf5n1RQ143odnOk
 6NSfXHYLI+2e+mJ1lw4GdpZdF+rF+7jWsUYC5EDNmvlIJYiKmm13whSQeWO0NHo8
 oD0pYboSIWnmdXx4s3RbWF2+Y28O1+oJDKZfXabB8DjVwtvlGnmWBRhgKji2e6E6
 Hhct83YbDWtEpbNkXcWpnc5v5ynmAMTYTxADhinTGUtVQh3Q4wWduuoHK6IyeI4s
 dbfpO2Wh6N/5k3a4UoA69IcI2DzPzb2sIFWpdS8wuNv5xDhV2OmmY2PjTfq2w+Qz
 hEoMCNDUG6rQAYf4auXK5JjhI4CaG/mz/qjIibTUqGODYECzQQyvq+c2Gdq0S8O/
 CUHOgui6aHbyuhWmXlEzhhkjuvBQZYaTxCA+LGMzy8w7UY9m4n5L/fX9M9IfFsMH
 NFCPrUfmxKPQj/mHlhu7KHaTMUlQ0pTqV5flSwqsjstZ2QddvI5EAKiLwIEhg7/2
 RpnOZoiFIxykduEYLxeh
 =CfCl
 -----END PGP SIGNATURE-----

Merge tag 'iio-for-4.5a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio into staging-next

Jonathan writes:

First set of new device support, features and cleanups for IIO in the 4.5 cycle

Usual mixed bag, but the big item perhaps in this series is the DMA buffer
support added by Lars-Peter Clausen. It's been in the works for a long time
and it will be interesting to see what hardware support shows up now that
this is available.

New core features + associate cleanup.
* Add generic DMA buffer infrastructure
* Add a DMAengine framework based buffer
 Also associated minor changes.
   - Set the device buffer watermark based on the minimum watermark for all
     attached buffers rather than just the 'primary' one.
   - iio_buffer_init - only set the watermark default if one hasn't already
     been provided.  This allows simple support for devices with a fixed
     watermark.
   - read only attribute for watermark on fixed watermark devices.
   - add explicit buffer enable/disable callbacks to allow the buffer to
     do more than trivial actions when it is being turned on and off.
* IIO_VAL_INT support in write_raw_get_fmt function.

New device support
* Freescale MMA7455/7456L accelerometers
* Memsic MXC6255XC accelerometer
* ST lis2dh12 accelerometer
* TI ADS8688 ADC
* TI Palamas (twl6035/7) gpadc

New driver features
* mma8452
  - support either of the available interrupt pins to cope with the case
    where board layout has lead to a particular one being connected.

Staging graduation
* Dummy driver
  - this driver acts as both an example and a test device for those with
    out hardware to develop userspace code against.

Cleanups and minor bits and bobs.
* treewide
  - Sort out the ordering of iio_device_register/unregister vs runtime
    pm function calls so that it's all nice and consistent and not race
    prone.
  - Check sscanf return values.  None of the cases will actually happen as
    the strings are supplied internally, but best to be consistent on this.
* ad7780
  - switch over to the gpio descriptor interface and remove the now unused
    platform data which gets rid of a header entirely.
* ad7793
  - drop a pointless else statement.
* at91_adc
  - Swap kmalloc_array in for a kmalloc doing the same job.
* dummy
  - get rid of some commented out lines that snuck in during the move of
    the driver.
* lm3533-als
  - Print an error message on provision of an invalid resistance.
* mcp320x
  - Add compatible strings with vendor prefix and deprecate those with
    no vendor prefix.
* mxs-lradc
  - Use BIT macro in various places rather than shifted ones.
* pa12203001
  - Power off the chip if the registration fails.
* pulsedlight-lidar-lite
  - add runtime PM support.
* xilinx XADC
  - constify an iio_buffer_setup_ops structure.
2015-12-01 09:13:29 -08:00

1322 lines
33 KiB
C

/*
* Xilinx XADC driver
*
* Copyright 2013-2014 Analog Devices Inc.
* Author: Lars-Peter Clauen <lars@metafoo.de>
*
* Licensed under the GPL-2.
*
* Documentation for the parts can be found at:
* - XADC hardmacro: Xilinx UG480
* - ZYNQ XADC interface: Xilinx UG585
* - AXI XADC interface: Xilinx PG019
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "xilinx-xadc.h"
static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
/* ZYNQ register definitions */
#define XADC_ZYNQ_REG_CFG 0x00
#define XADC_ZYNQ_REG_INTSTS 0x04
#define XADC_ZYNQ_REG_INTMSK 0x08
#define XADC_ZYNQ_REG_STATUS 0x0c
#define XADC_ZYNQ_REG_CFIFO 0x10
#define XADC_ZYNQ_REG_DFIFO 0x14
#define XADC_ZYNQ_REG_CTL 0x18
#define XADC_ZYNQ_CFG_ENABLE BIT(31)
#define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
#define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
#define XADC_ZYNQ_CFG_WEDGE BIT(13)
#define XADC_ZYNQ_CFG_REDGE BIT(12)
#define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
#define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
#define XADC_ZYNQ_CFG_IGAP(x) (x)
#define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
#define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
#define XADC_ZYNQ_INT_ALARM_MASK 0xff
#define XADC_ZYNQ_INT_ALARM_OFFSET 0
#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
#define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
#define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
#define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
#define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
#define XADC_ZYNQ_STATUS_OT BIT(7)
#define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
#define XADC_ZYNQ_CTL_RESET BIT(4)
#define XADC_ZYNQ_CMD_NOP 0x00
#define XADC_ZYNQ_CMD_READ 0x01
#define XADC_ZYNQ_CMD_WRITE 0x02
#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
/* AXI register definitions */
#define XADC_AXI_REG_RESET 0x00
#define XADC_AXI_REG_STATUS 0x04
#define XADC_AXI_REG_ALARM_STATUS 0x08
#define XADC_AXI_REG_CONVST 0x0c
#define XADC_AXI_REG_XADC_RESET 0x10
#define XADC_AXI_REG_GIER 0x5c
#define XADC_AXI_REG_IPISR 0x60
#define XADC_AXI_REG_IPIER 0x68
#define XADC_AXI_ADC_REG_OFFSET 0x200
#define XADC_AXI_RESET_MAGIC 0xa
#define XADC_AXI_GIER_ENABLE BIT(31)
#define XADC_AXI_INT_EOS BIT(4)
#define XADC_AXI_INT_ALARM_MASK 0x3c0f
#define XADC_FLAGS_BUFFERED BIT(0)
static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
uint32_t val)
{
writel(val, xadc->base + reg);
}
static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
uint32_t *val)
{
*val = readl(xadc->base + reg);
}
/*
* The ZYNQ interface uses two asynchronous FIFOs for communication with the
* XADC. Reads and writes to the XADC register are performed by submitting a
* request to the command FIFO (CFIFO), once the request has been completed the
* result can be read from the data FIFO (DFIFO). The method currently used in
* this driver is to submit the request for a read/write operation, then go to
* sleep and wait for an interrupt that signals that a response is available in
* the data FIFO.
*/
static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
}
static void xadc_zynq_drain_fifo(struct xadc *xadc)
{
uint32_t status, tmp;
xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
}
}
static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
unsigned int val)
{
xadc->zynq_intmask &= ~mask;
xadc->zynq_intmask |= val;
xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
xadc->zynq_intmask | xadc->zynq_masked_alarm);
}
static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
uint16_t val)
{
uint32_t cmd[1];
uint32_t tmp;
int ret;
spin_lock_irq(&xadc->lock);
xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
XADC_ZYNQ_INT_DFIFO_GTH);
reinit_completion(&xadc->completion);
cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
spin_unlock_irq(&xadc->lock);
ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
if (ret == 0)
ret = -EIO;
else
ret = 0;
xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
return ret;
}
static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
uint16_t *val)
{
uint32_t cmd[2];
uint32_t resp, tmp;
int ret;
cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
spin_lock_irq(&xadc->lock);
xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
XADC_ZYNQ_INT_DFIFO_GTH);
xadc_zynq_drain_fifo(xadc);
reinit_completion(&xadc->completion);
xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
spin_unlock_irq(&xadc->lock);
ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
if (ret == 0)
ret = -EIO;
if (ret < 0)
return ret;
xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
*val = resp & 0xffff;
return 0;
}
static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
{
return ((alarm & 0x80) >> 4) |
((alarm & 0x78) << 1) |
(alarm & 0x07);
}
/*
* The ZYNQ threshold interrupts are level sensitive. Since we can't make the
* threshold condition go way from within the interrupt handler, this means as
* soon as a threshold condition is present we would enter the interrupt handler
* again and again. To work around this we mask all active thresholds interrupts
* in the interrupt handler and start a timer. In this timer we poll the
* interrupt status and only if the interrupt is inactive we unmask it again.
*/
static void xadc_zynq_unmask_worker(struct work_struct *work)
{
struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
unsigned int misc_sts, unmask;
xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
spin_lock_irq(&xadc->lock);
/* Clear those bits which are not active anymore */
unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
xadc->zynq_masked_alarm &= misc_sts;
/* Also clear those which are masked out anyway */
xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
/* Clear the interrupts before we unmask them */
xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
xadc_zynq_update_intmsk(xadc, 0, 0);
spin_unlock_irq(&xadc->lock);
/* if still pending some alarm re-trigger the timer */
if (xadc->zynq_masked_alarm) {
schedule_delayed_work(&xadc->zynq_unmask_work,
msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
}
}
static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
{
struct iio_dev *indio_dev = devid;
struct xadc *xadc = iio_priv(indio_dev);
uint32_t status;
xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
if (!status)
return IRQ_NONE;
spin_lock(&xadc->lock);
xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
XADC_ZYNQ_INT_DFIFO_GTH);
complete(&xadc->completion);
}
status &= XADC_ZYNQ_INT_ALARM_MASK;
if (status) {
xadc->zynq_masked_alarm |= status;
/*
* mask the current event interrupt,
* unmask it when the interrupt is no more active.
*/
xadc_zynq_update_intmsk(xadc, 0, 0);
xadc_handle_events(indio_dev,
xadc_zynq_transform_alarm(status));
/* unmask the required interrupts in timer. */
schedule_delayed_work(&xadc->zynq_unmask_work,
msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
}
spin_unlock(&xadc->lock);
return IRQ_HANDLED;
}
#define XADC_ZYNQ_TCK_RATE_MAX 50000000
#define XADC_ZYNQ_IGAP_DEFAULT 20
static int xadc_zynq_setup(struct platform_device *pdev,
struct iio_dev *indio_dev, int irq)
{
struct xadc *xadc = iio_priv(indio_dev);
unsigned long pcap_rate;
unsigned int tck_div;
unsigned int div;
unsigned int igap;
unsigned int tck_rate;
/* TODO: Figure out how to make igap and tck_rate configurable */
igap = XADC_ZYNQ_IGAP_DEFAULT;
tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
xadc->zynq_intmask = ~0;
pcap_rate = clk_get_rate(xadc->clk);
if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
if (tck_rate > pcap_rate / 2) {
div = 2;
} else {
div = pcap_rate / tck_rate;
if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
div++;
}
if (div <= 3)
tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
else if (div <= 7)
tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
else if (div <= 15)
tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
else
tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
tck_div | XADC_ZYNQ_CFG_IGAP(igap));
return 0;
}
static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
{
unsigned int div;
uint32_t val;
xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
case XADC_ZYNQ_CFG_TCKRATE_DIV4:
div = 4;
break;
case XADC_ZYNQ_CFG_TCKRATE_DIV8:
div = 8;
break;
case XADC_ZYNQ_CFG_TCKRATE_DIV16:
div = 16;
break;
default:
div = 2;
break;
}
return clk_get_rate(xadc->clk) / div;
}
static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
{
unsigned long flags;
uint32_t status;
/* Move OT to bit 7 */
alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
spin_lock_irqsave(&xadc->lock, flags);
/* Clear previous interrupts if any. */
xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
~alarm & XADC_ZYNQ_INT_ALARM_MASK);
spin_unlock_irqrestore(&xadc->lock, flags);
}
static const struct xadc_ops xadc_zynq_ops = {
.read = xadc_zynq_read_adc_reg,
.write = xadc_zynq_write_adc_reg,
.setup = xadc_zynq_setup,
.get_dclk_rate = xadc_zynq_get_dclk_rate,
.interrupt_handler = xadc_zynq_interrupt_handler,
.update_alarm = xadc_zynq_update_alarm,
};
static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
uint16_t *val)
{
uint32_t val32;
xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
*val = val32 & 0xffff;
return 0;
}
static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
uint16_t val)
{
xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
return 0;
}
static int xadc_axi_setup(struct platform_device *pdev,
struct iio_dev *indio_dev, int irq)
{
struct xadc *xadc = iio_priv(indio_dev);
xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
return 0;
}
static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
{
struct iio_dev *indio_dev = devid;
struct xadc *xadc = iio_priv(indio_dev);
uint32_t status, mask;
unsigned int events;
xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
status &= mask;
if (!status)
return IRQ_NONE;
if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
iio_trigger_poll(xadc->trigger);
if (status & XADC_AXI_INT_ALARM_MASK) {
/*
* The order of the bits in the AXI-XADC status register does
* not match the order of the bits in the XADC alarm enable
* register. xadc_handle_events() expects the events to be in
* the same order as the XADC alarm enable register.
*/
events = (status & 0x000e) >> 1;
events |= (status & 0x0001) << 3;
events |= (status & 0x3c00) >> 6;
xadc_handle_events(indio_dev, events);
}
xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
return IRQ_HANDLED;
}
static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
{
uint32_t val;
unsigned long flags;
/*
* The order of the bits in the AXI-XADC status register does not match
* the order of the bits in the XADC alarm enable register. We get
* passed the alarm mask in the same order as in the XADC alarm enable
* register.
*/
alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
((alarm & 0xf0) << 6);
spin_lock_irqsave(&xadc->lock, flags);
xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
val &= ~XADC_AXI_INT_ALARM_MASK;
val |= alarm;
xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
spin_unlock_irqrestore(&xadc->lock, flags);
}
static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
{
return clk_get_rate(xadc->clk);
}
static const struct xadc_ops xadc_axi_ops = {
.read = xadc_axi_read_adc_reg,
.write = xadc_axi_write_adc_reg,
.setup = xadc_axi_setup,
.get_dclk_rate = xadc_axi_get_dclk,
.update_alarm = xadc_axi_update_alarm,
.interrupt_handler = xadc_axi_interrupt_handler,
.flags = XADC_FLAGS_BUFFERED,
};
static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
uint16_t mask, uint16_t val)
{
uint16_t tmp;
int ret;
ret = _xadc_read_adc_reg(xadc, reg, &tmp);
if (ret)
return ret;
return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
}
static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
uint16_t mask, uint16_t val)
{
int ret;
mutex_lock(&xadc->mutex);
ret = _xadc_update_adc_reg(xadc, reg, mask, val);
mutex_unlock(&xadc->mutex);
return ret;
}
static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
{
return xadc->ops->get_dclk_rate(xadc);
}
static int xadc_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *mask)
{
struct xadc *xadc = iio_priv(indio_dev);
unsigned int n;
n = bitmap_weight(mask, indio_dev->masklength);
kfree(xadc->data);
xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
if (!xadc->data)
return -ENOMEM;
return 0;
}
static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
{
switch (scan_index) {
case 5:
return XADC_REG_VCCPINT;
case 6:
return XADC_REG_VCCPAUX;
case 7:
return XADC_REG_VCCO_DDR;
case 8:
return XADC_REG_TEMP;
case 9:
return XADC_REG_VCCINT;
case 10:
return XADC_REG_VCCAUX;
case 11:
return XADC_REG_VPVN;
case 12:
return XADC_REG_VREFP;
case 13:
return XADC_REG_VREFN;
case 14:
return XADC_REG_VCCBRAM;
default:
return XADC_REG_VAUX(scan_index - 16);
}
}
static irqreturn_t xadc_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct xadc *xadc = iio_priv(indio_dev);
unsigned int chan;
int i, j;
if (!xadc->data)
goto out;
j = 0;
for_each_set_bit(i, indio_dev->active_scan_mask,
indio_dev->masklength) {
chan = xadc_scan_index_to_channel(i);
xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
j++;
}
iio_push_to_buffers(indio_dev, xadc->data);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
{
struct xadc *xadc = iio_trigger_get_drvdata(trigger);
unsigned long flags;
unsigned int convst;
unsigned int val;
int ret = 0;
mutex_lock(&xadc->mutex);
if (state) {
/* Only one of the two triggers can be active at the a time. */
if (xadc->trigger != NULL) {
ret = -EBUSY;
goto err_out;
} else {
xadc->trigger = trigger;
if (trigger == xadc->convst_trigger)
convst = XADC_CONF0_EC;
else
convst = 0;
}
ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
convst);
if (ret)
goto err_out;
} else {
xadc->trigger = NULL;
}
spin_lock_irqsave(&xadc->lock, flags);
xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
if (state)
val |= XADC_AXI_INT_EOS;
else
val &= ~XADC_AXI_INT_EOS;
xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
spin_unlock_irqrestore(&xadc->lock, flags);
err_out:
mutex_unlock(&xadc->mutex);
return ret;
}
static const struct iio_trigger_ops xadc_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = &xadc_trigger_set_state,
};
static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
const char *name)
{
struct iio_trigger *trig;
int ret;
trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
indio_dev->id, name);
if (trig == NULL)
return ERR_PTR(-ENOMEM);
trig->dev.parent = indio_dev->dev.parent;
trig->ops = &xadc_trigger_ops;
iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
ret = iio_trigger_register(trig);
if (ret)
goto error_free_trig;
return trig;
error_free_trig:
iio_trigger_free(trig);
return ERR_PTR(ret);
}
static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
{
uint16_t val;
switch (seq_mode) {
case XADC_CONF1_SEQ_SIMULTANEOUS:
case XADC_CONF1_SEQ_INDEPENDENT:
val = XADC_CONF2_PD_ADC_B;
break;
default:
val = 0;
break;
}
return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
val);
}
static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
{
unsigned int aux_scan_mode = scan_mode >> 16;
if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
return XADC_CONF1_SEQ_SIMULTANEOUS;
if ((aux_scan_mode & 0xff00) == 0 ||
(aux_scan_mode & 0x00ff) == 0)
return XADC_CONF1_SEQ_CONTINUOUS;
return XADC_CONF1_SEQ_SIMULTANEOUS;
}
static int xadc_postdisable(struct iio_dev *indio_dev)
{
struct xadc *xadc = iio_priv(indio_dev);
unsigned long scan_mask;
int ret;
int i;
scan_mask = 1; /* Run calibration as part of the sequence */
for (i = 0; i < indio_dev->num_channels; i++)
scan_mask |= BIT(indio_dev->channels[i].scan_index);
/* Enable all channels and calibration */
ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
if (ret)
return ret;
ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
if (ret)
return ret;
ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
XADC_CONF1_SEQ_CONTINUOUS);
if (ret)
return ret;
return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
}
static int xadc_preenable(struct iio_dev *indio_dev)
{
struct xadc *xadc = iio_priv(indio_dev);
unsigned long scan_mask;
int seq_mode;
int ret;
ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
XADC_CONF1_SEQ_DEFAULT);
if (ret)
goto err;
scan_mask = *indio_dev->active_scan_mask;
seq_mode = xadc_get_seq_mode(xadc, scan_mask);
ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
if (ret)
goto err;
ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
if (ret)
goto err;
ret = xadc_power_adc_b(xadc, seq_mode);
if (ret)
goto err;
ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
seq_mode);
if (ret)
goto err;
return 0;
err:
xadc_postdisable(indio_dev);
return ret;
}
static const struct iio_buffer_setup_ops xadc_buffer_ops = {
.preenable = &xadc_preenable,
.postenable = &iio_triggered_buffer_postenable,
.predisable = &iio_triggered_buffer_predisable,
.postdisable = &xadc_postdisable,
};
static int xadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2, long info)
{
struct xadc *xadc = iio_priv(indio_dev);
unsigned int div;
uint16_t val16;
int ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
ret = xadc_read_adc_reg(xadc, chan->address, &val16);
if (ret < 0)
return ret;
val16 >>= 4;
if (chan->scan_type.sign == 'u')
*val = val16;
else
*val = sign_extend32(val16, 11);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_VOLTAGE:
/* V = (val * 3.0) / 4096 */
switch (chan->address) {
case XADC_REG_VCCINT:
case XADC_REG_VCCAUX:
case XADC_REG_VREFP:
case XADC_REG_VREFN:
case XADC_REG_VCCBRAM:
case XADC_REG_VCCPINT:
case XADC_REG_VCCPAUX:
case XADC_REG_VCCO_DDR:
*val = 3000;
break;
default:
*val = 1000;
break;
}
*val2 = 12;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_TEMP:
/* Temp in C = (val * 503.975) / 4096 - 273.15 */
*val = 503975;
*val2 = 12;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
/* Only the temperature channel has an offset */
*val = -((273150 << 12) / 503975);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
if (ret)
return ret;
div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
if (div < 2)
div = 2;
*val = xadc_get_dclk_rate(xadc) / div / 26;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int xadc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val, int val2, long info)
{
struct xadc *xadc = iio_priv(indio_dev);
unsigned long clk_rate = xadc_get_dclk_rate(xadc);
unsigned int div;
if (info != IIO_CHAN_INFO_SAMP_FREQ)
return -EINVAL;
if (val <= 0)
return -EINVAL;
/* Max. 150 kSPS */
if (val > 150000)
val = 150000;
val *= 26;
/* Min 1MHz */
if (val < 1000000)
val = 1000000;
/*
* We want to round down, but only if we do not exceed the 150 kSPS
* limit.
*/
div = clk_rate / val;
if (clk_rate / div / 26 > 150000)
div++;
if (div < 2)
div = 2;
else if (div > 0xff)
div = 0xff;
return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
div << XADC_CONF2_DIV_OFFSET);
}
static const struct iio_event_spec xadc_temp_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_HYSTERESIS),
},
};
/* Separate values for upper and lower thresholds, but only a shared enabled */
static const struct iio_event_spec xadc_voltage_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
},
};
#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
.type = IIO_TEMP, \
.indexed = 1, \
.channel = (_chan), \
.address = (_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.event_spec = xadc_temp_events, \
.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
.scan_index = (_scan_index), \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_CPU, \
}, \
}
#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (_chan), \
.address = (_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
.scan_index = (_scan_index), \
.scan_type = { \
.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_CPU, \
}, \
.extend_name = _ext, \
}
static const struct iio_chan_spec xadc_channels[] = {
XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
};
static const struct iio_info xadc_info = {
.read_raw = &xadc_read_raw,
.write_raw = &xadc_write_raw,
.read_event_config = &xadc_read_event_config,
.write_event_config = &xadc_write_event_config,
.read_event_value = &xadc_read_event_value,
.write_event_value = &xadc_write_event_value,
.update_scan_mode = &xadc_update_scan_mode,
.driver_module = THIS_MODULE,
};
static const struct of_device_id xadc_of_match_table[] = {
{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
{ },
};
MODULE_DEVICE_TABLE(of, xadc_of_match_table);
static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
unsigned int *conf)
{
struct xadc *xadc = iio_priv(indio_dev);
struct iio_chan_spec *channels, *chan;
struct device_node *chan_node, *child;
unsigned int num_channels;
const char *external_mux;
u32 ext_mux_chan;
int reg;
int ret;
*conf = 0;
ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
if (ret < 0 || strcasecmp(external_mux, "none") == 0)
xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
else if (strcasecmp(external_mux, "single") == 0)
xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
else if (strcasecmp(external_mux, "dual") == 0)
xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
else
return -EINVAL;
if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
ret = of_property_read_u32(np, "xlnx,external-mux-channel",
&ext_mux_chan);
if (ret < 0)
return ret;
if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
if (ext_mux_chan == 0)
ext_mux_chan = XADC_REG_VPVN;
else if (ext_mux_chan <= 16)
ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
else
return -EINVAL;
} else {
if (ext_mux_chan > 0 && ext_mux_chan <= 8)
ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
else
return -EINVAL;
}
*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
}
channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
if (!channels)
return -ENOMEM;
num_channels = 9;
chan = &channels[9];
chan_node = of_get_child_by_name(np, "xlnx,channels");
if (chan_node) {
for_each_child_of_node(chan_node, child) {
if (num_channels >= ARRAY_SIZE(xadc_channels)) {
of_node_put(child);
break;
}
ret = of_property_read_u32(child, "reg", &reg);
if (ret || reg > 16)
continue;
if (of_property_read_bool(child, "xlnx,bipolar"))
chan->scan_type.sign = 's';
if (reg == 0) {
chan->scan_index = 11;
chan->address = XADC_REG_VPVN;
} else {
chan->scan_index = 15 + reg;
chan->address = XADC_REG_VAUX(reg - 1);
}
num_channels++;
chan++;
}
}
of_node_put(chan_node);
indio_dev->num_channels = num_channels;
indio_dev->channels = krealloc(channels, sizeof(*channels) *
num_channels, GFP_KERNEL);
/* If we can't resize the channels array, just use the original */
if (!indio_dev->channels)
indio_dev->channels = channels;
return 0;
}
static int xadc_probe(struct platform_device *pdev)
{
const struct of_device_id *id;
struct iio_dev *indio_dev;
unsigned int bipolar_mask;
struct resource *mem;
unsigned int conf0;
struct xadc *xadc;
int ret;
int irq;
int i;
if (!pdev->dev.of_node)
return -ENODEV;
id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
if (!id)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return -ENXIO;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
if (!indio_dev)
return -ENOMEM;
xadc = iio_priv(indio_dev);
xadc->ops = id->data;
init_completion(&xadc->completion);
mutex_init(&xadc->mutex);
spin_lock_init(&xadc->lock);
INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xadc->base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(xadc->base))
return PTR_ERR(xadc->base);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->name = "xadc";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &xadc_info;
ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
if (ret)
goto err_device_free;
if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
ret = iio_triggered_buffer_setup(indio_dev,
&iio_pollfunc_store_time, &xadc_trigger_handler,
&xadc_buffer_ops);
if (ret)
goto err_device_free;
xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
if (IS_ERR(xadc->convst_trigger)) {
ret = PTR_ERR(xadc->convst_trigger);
goto err_triggered_buffer_cleanup;
}
xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
"samplerate");
if (IS_ERR(xadc->samplerate_trigger)) {
ret = PTR_ERR(xadc->samplerate_trigger);
goto err_free_convst_trigger;
}
}
xadc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(xadc->clk)) {
ret = PTR_ERR(xadc->clk);
goto err_free_samplerate_trigger;
}
clk_prepare_enable(xadc->clk);
ret = xadc->ops->setup(pdev, indio_dev, irq);
if (ret)
goto err_free_samplerate_trigger;
ret = request_irq(irq, xadc->ops->interrupt_handler, 0,
dev_name(&pdev->dev), indio_dev);
if (ret)
goto err_clk_disable_unprepare;
for (i = 0; i < 16; i++)
xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
&xadc->threshold[i]);
ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
if (ret)
goto err_free_irq;
bipolar_mask = 0;
for (i = 0; i < indio_dev->num_channels; i++) {
if (indio_dev->channels[i].scan_type.sign == 's')
bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
}
ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
if (ret)
goto err_free_irq;
ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
bipolar_mask >> 16);
if (ret)
goto err_free_irq;
/* Disable all alarms */
xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
XADC_CONF1_ALARM_MASK);
/* Set thresholds to min/max */
for (i = 0; i < 16; i++) {
/*
* Set max voltage threshold and both temperature thresholds to
* 0xffff, min voltage threshold to 0.
*/
if (i % 8 < 4 || i == 7)
xadc->threshold[i] = 0xffff;
else
xadc->threshold[i] = 0;
xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
xadc->threshold[i]);
}
/* Go to non-buffered mode */
xadc_postdisable(indio_dev);
ret = iio_device_register(indio_dev);
if (ret)
goto err_free_irq;
platform_set_drvdata(pdev, indio_dev);
return 0;
err_free_irq:
free_irq(irq, indio_dev);
err_free_samplerate_trigger:
if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
iio_trigger_free(xadc->samplerate_trigger);
err_free_convst_trigger:
if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
iio_trigger_free(xadc->convst_trigger);
err_triggered_buffer_cleanup:
if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
iio_triggered_buffer_cleanup(indio_dev);
err_clk_disable_unprepare:
clk_disable_unprepare(xadc->clk);
err_device_free:
kfree(indio_dev->channels);
return ret;
}
static int xadc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct xadc *xadc = iio_priv(indio_dev);
int irq = platform_get_irq(pdev, 0);
iio_device_unregister(indio_dev);
if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
iio_trigger_free(xadc->samplerate_trigger);
iio_trigger_free(xadc->convst_trigger);
iio_triggered_buffer_cleanup(indio_dev);
}
free_irq(irq, indio_dev);
clk_disable_unprepare(xadc->clk);
cancel_delayed_work(&xadc->zynq_unmask_work);
kfree(xadc->data);
kfree(indio_dev->channels);
return 0;
}
static struct platform_driver xadc_driver = {
.probe = xadc_probe,
.remove = xadc_remove,
.driver = {
.name = "xadc",
.of_match_table = xadc_of_match_table,
},
};
module_platform_driver(xadc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Xilinx XADC IIO driver");