linux/sound/firewire/dice/dice-pcm.c
Takashi Sakamoto 9f079c1bdc ALSA: dice: disable double_pcm_frames mode for M-Audio Profire 610, 2626 and Avid M-Box 3 Pro
ALSA dice driver detects jumbo payload at high sampling transfer frequency
for below models:

 * Avid M-Box 3 Pro
 * M-Audio Profire 610
 * M-Audio Profire 2626

Although many DICE-based devices have a quirk at high sampling transfer
frequency to multiplex double number of PCM frames into data block than
the number in IEC 61883-1/6, the above devices are just compliant to
IEC 61883-1/6.

This commit disables the mode of double_pcm_frames for the models.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Link: https://lore.kernel.org/r/20210518012510.37126-1-o-takashi@sakamocchi.jp
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-05-18 08:57:21 +02:00

460 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* dice_pcm.c - a part of driver for DICE based devices
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Copyright (c) 2014 Takashi Sakamoto <o-takashi@sakamocchi.jp>
*/
#include "dice.h"
static int dice_rate_constraint(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_substream *substream = rule->private;
struct snd_dice *dice = substream->private_data;
unsigned int index = substream->pcm->device;
const struct snd_interval *c =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval *r =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval rates = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int *pcm_channels;
enum snd_dice_rate_mode mode;
unsigned int i, rate;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
pcm_channels = dice->tx_pcm_chs[index];
else
pcm_channels = dice->rx_pcm_chs[index];
for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) {
rate = snd_dice_rates[i];
if (snd_dice_stream_get_rate_mode(dice, rate, &mode) < 0)
continue;
if (!snd_interval_test(c, pcm_channels[mode]))
continue;
rates.min = min(rates.min, rate);
rates.max = max(rates.max, rate);
}
return snd_interval_refine(r, &rates);
}
static int dice_channels_constraint(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_substream *substream = rule->private;
struct snd_dice *dice = substream->private_data;
unsigned int index = substream->pcm->device;
const struct snd_interval *r =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *c =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval channels = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int *pcm_channels;
enum snd_dice_rate_mode mode;
unsigned int i, rate;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
pcm_channels = dice->tx_pcm_chs[index];
else
pcm_channels = dice->rx_pcm_chs[index];
for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) {
rate = snd_dice_rates[i];
if (snd_dice_stream_get_rate_mode(dice, rate, &mode) < 0)
continue;
if (!snd_interval_test(r, rate))
continue;
channels.min = min(channels.min, pcm_channels[mode]);
channels.max = max(channels.max, pcm_channels[mode]);
}
return snd_interval_refine(c, &channels);
}
static int limit_channels_and_rates(struct snd_dice *dice,
struct snd_pcm_runtime *runtime,
enum amdtp_stream_direction dir,
unsigned int index)
{
struct snd_pcm_hardware *hw = &runtime->hw;
unsigned int *pcm_channels;
unsigned int i;
if (dir == AMDTP_IN_STREAM)
pcm_channels = dice->tx_pcm_chs[index];
else
pcm_channels = dice->rx_pcm_chs[index];
hw->channels_min = UINT_MAX;
hw->channels_max = 0;
for (i = 0; i < ARRAY_SIZE(snd_dice_rates); ++i) {
enum snd_dice_rate_mode mode;
unsigned int rate, channels;
rate = snd_dice_rates[i];
if (snd_dice_stream_get_rate_mode(dice, rate, &mode) < 0)
continue;
hw->rates |= snd_pcm_rate_to_rate_bit(rate);
channels = pcm_channels[mode];
if (channels == 0)
continue;
hw->channels_min = min(hw->channels_min, channels);
hw->channels_max = max(hw->channels_max, channels);
}
snd_pcm_limit_hw_rates(runtime);
return 0;
}
static int init_hw_info(struct snd_dice *dice,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_pcm_hardware *hw = &runtime->hw;
unsigned int index = substream->pcm->device;
enum amdtp_stream_direction dir;
struct amdtp_stream *stream;
int err;
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
hw->formats = AM824_IN_PCM_FORMAT_BITS;
dir = AMDTP_IN_STREAM;
stream = &dice->tx_stream[index];
} else {
hw->formats = AM824_OUT_PCM_FORMAT_BITS;
dir = AMDTP_OUT_STREAM;
stream = &dice->rx_stream[index];
}
err = limit_channels_and_rates(dice, substream->runtime, dir,
index);
if (err < 0)
return err;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
dice_rate_constraint, substream,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
if (err < 0)
return err;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
dice_channels_constraint, substream,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (err < 0)
return err;
return amdtp_am824_add_pcm_hw_constraints(stream, runtime);
}
static int pcm_open(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_domain *d = &dice->domain;
unsigned int source;
bool internal;
int err;
err = snd_dice_stream_lock_try(dice);
if (err < 0)
return err;
err = init_hw_info(dice, substream);
if (err < 0)
goto err_locked;
err = snd_dice_transaction_get_clock_source(dice, &source);
if (err < 0)
goto err_locked;
switch (source) {
case CLOCK_SOURCE_AES1:
case CLOCK_SOURCE_AES2:
case CLOCK_SOURCE_AES3:
case CLOCK_SOURCE_AES4:
case CLOCK_SOURCE_AES_ANY:
case CLOCK_SOURCE_ADAT:
case CLOCK_SOURCE_TDIF:
case CLOCK_SOURCE_WC:
internal = false;
break;
default:
internal = true;
break;
}
mutex_lock(&dice->mutex);
// When source of clock is not internal or any stream is reserved for
// transmission of PCM frames, the available sampling rate is limited
// at current one.
if (!internal ||
(dice->substreams_counter > 0 && d->events_per_period > 0)) {
unsigned int frames_per_period = d->events_per_period;
unsigned int frames_per_buffer = d->events_per_buffer;
unsigned int rate;
err = snd_dice_transaction_get_rate(dice, &rate);
if (err < 0) {
mutex_unlock(&dice->mutex);
goto err_locked;
}
substream->runtime->hw.rate_min = rate;
substream->runtime->hw.rate_max = rate;
if (frames_per_period > 0) {
// For double_pcm_frame quirk.
if (rate > 96000 && !dice->disable_double_pcm_frames) {
frames_per_period *= 2;
frames_per_buffer *= 2;
}
err = snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
frames_per_period, frames_per_period);
if (err < 0) {
mutex_unlock(&dice->mutex);
goto err_locked;
}
err = snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
frames_per_buffer, frames_per_buffer);
if (err < 0) {
mutex_unlock(&dice->mutex);
goto err_locked;
}
}
}
mutex_unlock(&dice->mutex);
snd_pcm_set_sync(substream);
return 0;
err_locked:
snd_dice_stream_lock_release(dice);
return err;
}
static int pcm_close(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
snd_dice_stream_lock_release(dice);
return 0;
}
static int pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_dice *dice = substream->private_data;
int err = 0;
if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
unsigned int rate = params_rate(hw_params);
unsigned int events_per_period = params_period_size(hw_params);
unsigned int events_per_buffer = params_buffer_size(hw_params);
mutex_lock(&dice->mutex);
// For double_pcm_frame quirk.
if (rate > 96000 && !dice->disable_double_pcm_frames) {
events_per_period /= 2;
events_per_buffer /= 2;
}
err = snd_dice_stream_reserve_duplex(dice, rate,
events_per_period, events_per_buffer);
if (err >= 0)
++dice->substreams_counter;
mutex_unlock(&dice->mutex);
}
return err;
}
static int pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
mutex_lock(&dice->mutex);
if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN)
--dice->substreams_counter;
snd_dice_stream_stop_duplex(dice);
mutex_unlock(&dice->mutex);
return 0;
}
static int capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device];
int err;
mutex_lock(&dice->mutex);
err = snd_dice_stream_start_duplex(dice);
mutex_unlock(&dice->mutex);
if (err >= 0)
amdtp_stream_pcm_prepare(stream);
return 0;
}
static int playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device];
int err;
mutex_lock(&dice->mutex);
err = snd_dice_stream_start_duplex(dice);
mutex_unlock(&dice->mutex);
if (err >= 0)
amdtp_stream_pcm_prepare(stream);
return err;
}
static int capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device];
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
amdtp_stream_pcm_trigger(stream, substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
amdtp_stream_pcm_trigger(stream, NULL);
break;
default:
return -EINVAL;
}
return 0;
}
static int playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device];
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
amdtp_stream_pcm_trigger(stream, substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
amdtp_stream_pcm_trigger(stream, NULL);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device];
return amdtp_domain_stream_pcm_pointer(&dice->domain, stream);
}
static snd_pcm_uframes_t playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device];
return amdtp_domain_stream_pcm_pointer(&dice->domain, stream);
}
static int capture_ack(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->tx_stream[substream->pcm->device];
return amdtp_domain_stream_pcm_ack(&dice->domain, stream);
}
static int playback_ack(struct snd_pcm_substream *substream)
{
struct snd_dice *dice = substream->private_data;
struct amdtp_stream *stream = &dice->rx_stream[substream->pcm->device];
return amdtp_domain_stream_pcm_ack(&dice->domain, stream);
}
int snd_dice_create_pcm(struct snd_dice *dice)
{
static const struct snd_pcm_ops capture_ops = {
.open = pcm_open,
.close = pcm_close,
.hw_params = pcm_hw_params,
.hw_free = pcm_hw_free,
.prepare = capture_prepare,
.trigger = capture_trigger,
.pointer = capture_pointer,
.ack = capture_ack,
};
static const struct snd_pcm_ops playback_ops = {
.open = pcm_open,
.close = pcm_close,
.hw_params = pcm_hw_params,
.hw_free = pcm_hw_free,
.prepare = playback_prepare,
.trigger = playback_trigger,
.pointer = playback_pointer,
.ack = playback_ack,
};
struct snd_pcm *pcm;
unsigned int capture, playback;
int i, j;
int err;
for (i = 0; i < MAX_STREAMS; i++) {
capture = playback = 0;
for (j = 0; j < SND_DICE_RATE_MODE_COUNT; ++j) {
if (dice->tx_pcm_chs[i][j] > 0)
capture = 1;
if (dice->rx_pcm_chs[i][j] > 0)
playback = 1;
}
err = snd_pcm_new(dice->card, "DICE", i, playback, capture,
&pcm);
if (err < 0)
return err;
pcm->private_data = dice;
strcpy(pcm->name, dice->card->shortname);
if (capture > 0)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&capture_ops);
if (playback > 0)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&playback_ops);
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC,
NULL, 0, 0);
}
return 0;
}