linux/drivers/iio/accel/adxl372.c
Matti Vaittinen 0a33755c4b iio: Don't silently expect attribute types
The iio_triggered_buffer_setup_ext() and the
devm_iio_kfifo_buffer_setup_ext() were changed by
commit 15097c7a1a ("iio: buffer: wrap all buffer attributes into iio_dev_attr")
to silently expect that all attributes given in buffer_attrs array are
device-attributes. This expectation was not forced by the API - and some
drivers did register attributes created by IIO_CONST_ATTR().

When using IIO_CONST_ATTRs the added attribute "wrapping" does not copy
the pointer to stored string constant and when the sysfs file is read the
kernel will access to invalid location.

Change the function signatures to expect an array of iio_dev_attrs to
avoid similar errors in the future.

Merge conflict resolved whilst applying due to patch crossing with
two new drivers (kx022a accelerometer and ad4130 ADC).

Signed-off-by: Matti Vaittinen <mazziesaccount@gmail.com>
Tested-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Link: https://lore.kernel.org/r/63f54787a684eb1232f1c5d275a09c786987fe4a.1664782676.git.mazziesaccount@gmail.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-11-23 19:44:04 +00:00

1268 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ADXL372 3-Axis Digital Accelerometer core driver
*
* Copyright 2018 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "adxl372.h"
/* ADXL372 registers definition */
#define ADXL372_DEVID 0x00
#define ADXL372_DEVID_MST 0x01
#define ADXL372_PARTID 0x02
#define ADXL372_STATUS_1 0x04
#define ADXL372_STATUS_2 0x05
#define ADXL372_FIFO_ENTRIES_2 0x06
#define ADXL372_FIFO_ENTRIES_1 0x07
#define ADXL372_X_DATA_H 0x08
#define ADXL372_X_DATA_L 0x09
#define ADXL372_Y_DATA_H 0x0A
#define ADXL372_Y_DATA_L 0x0B
#define ADXL372_Z_DATA_H 0x0C
#define ADXL372_Z_DATA_L 0x0D
#define ADXL372_X_MAXPEAK_H 0x15
#define ADXL372_X_MAXPEAK_L 0x16
#define ADXL372_Y_MAXPEAK_H 0x17
#define ADXL372_Y_MAXPEAK_L 0x18
#define ADXL372_Z_MAXPEAK_H 0x19
#define ADXL372_Z_MAXPEAK_L 0x1A
#define ADXL372_OFFSET_X 0x20
#define ADXL372_OFFSET_Y 0x21
#define ADXL372_OFFSET_Z 0x22
#define ADXL372_X_THRESH_ACT_H 0x23
#define ADXL372_X_THRESH_ACT_L 0x24
#define ADXL372_Y_THRESH_ACT_H 0x25
#define ADXL372_Y_THRESH_ACT_L 0x26
#define ADXL372_Z_THRESH_ACT_H 0x27
#define ADXL372_Z_THRESH_ACT_L 0x28
#define ADXL372_TIME_ACT 0x29
#define ADXL372_X_THRESH_INACT_H 0x2A
#define ADXL372_X_THRESH_INACT_L 0x2B
#define ADXL372_Y_THRESH_INACT_H 0x2C
#define ADXL372_Y_THRESH_INACT_L 0x2D
#define ADXL372_Z_THRESH_INACT_H 0x2E
#define ADXL372_Z_THRESH_INACT_L 0x2F
#define ADXL372_TIME_INACT_H 0x30
#define ADXL372_TIME_INACT_L 0x31
#define ADXL372_X_THRESH_ACT2_H 0x32
#define ADXL372_X_THRESH_ACT2_L 0x33
#define ADXL372_Y_THRESH_ACT2_H 0x34
#define ADXL372_Y_THRESH_ACT2_L 0x35
#define ADXL372_Z_THRESH_ACT2_H 0x36
#define ADXL372_Z_THRESH_ACT2_L 0x37
#define ADXL372_HPF 0x38
#define ADXL372_FIFO_SAMPLES 0x39
#define ADXL372_FIFO_CTL 0x3A
#define ADXL372_INT1_MAP 0x3B
#define ADXL372_INT2_MAP 0x3C
#define ADXL372_TIMING 0x3D
#define ADXL372_MEASURE 0x3E
#define ADXL372_POWER_CTL 0x3F
#define ADXL372_SELF_TEST 0x40
#define ADXL372_RESET 0x41
#define ADXL372_FIFO_DATA 0x42
#define ADXL372_DEVID_VAL 0xAD
#define ADXL372_PARTID_VAL 0xFA
#define ADXL372_RESET_CODE 0x52
/* ADXL372_POWER_CTL */
#define ADXL372_POWER_CTL_MODE_MSK GENMASK_ULL(1, 0)
#define ADXL372_POWER_CTL_MODE(x) (((x) & 0x3) << 0)
/* ADXL372_MEASURE */
#define ADXL372_MEASURE_LINKLOOP_MSK GENMASK_ULL(5, 4)
#define ADXL372_MEASURE_LINKLOOP_MODE(x) (((x) & 0x3) << 4)
#define ADXL372_MEASURE_BANDWIDTH_MSK GENMASK_ULL(2, 0)
#define ADXL372_MEASURE_BANDWIDTH_MODE(x) (((x) & 0x7) << 0)
/* ADXL372_TIMING */
#define ADXL372_TIMING_ODR_MSK GENMASK_ULL(7, 5)
#define ADXL372_TIMING_ODR_MODE(x) (((x) & 0x7) << 5)
/* ADXL372_FIFO_CTL */
#define ADXL372_FIFO_CTL_FORMAT_MSK GENMASK(5, 3)
#define ADXL372_FIFO_CTL_FORMAT_MODE(x) (((x) & 0x7) << 3)
#define ADXL372_FIFO_CTL_MODE_MSK GENMASK(2, 1)
#define ADXL372_FIFO_CTL_MODE_MODE(x) (((x) & 0x3) << 1)
#define ADXL372_FIFO_CTL_SAMPLES_MSK BIT(1)
#define ADXL372_FIFO_CTL_SAMPLES_MODE(x) (((x) > 0xFF) ? 1 : 0)
/* ADXL372_STATUS_1 */
#define ADXL372_STATUS_1_DATA_RDY(x) (((x) >> 0) & 0x1)
#define ADXL372_STATUS_1_FIFO_RDY(x) (((x) >> 1) & 0x1)
#define ADXL372_STATUS_1_FIFO_FULL(x) (((x) >> 2) & 0x1)
#define ADXL372_STATUS_1_FIFO_OVR(x) (((x) >> 3) & 0x1)
#define ADXL372_STATUS_1_USR_NVM_BUSY(x) (((x) >> 5) & 0x1)
#define ADXL372_STATUS_1_AWAKE(x) (((x) >> 6) & 0x1)
#define ADXL372_STATUS_1_ERR_USR_REGS(x) (((x) >> 7) & 0x1)
/* ADXL372_STATUS_2 */
#define ADXL372_STATUS_2_INACT(x) (((x) >> 4) & 0x1)
#define ADXL372_STATUS_2_ACT(x) (((x) >> 5) & 0x1)
#define ADXL372_STATUS_2_AC2(x) (((x) >> 6) & 0x1)
/* ADXL372_INT1_MAP */
#define ADXL372_INT1_MAP_DATA_RDY_MSK BIT(0)
#define ADXL372_INT1_MAP_DATA_RDY_MODE(x) (((x) & 0x1) << 0)
#define ADXL372_INT1_MAP_FIFO_RDY_MSK BIT(1)
#define ADXL372_INT1_MAP_FIFO_RDY_MODE(x) (((x) & 0x1) << 1)
#define ADXL372_INT1_MAP_FIFO_FULL_MSK BIT(2)
#define ADXL372_INT1_MAP_FIFO_FULL_MODE(x) (((x) & 0x1) << 2)
#define ADXL372_INT1_MAP_FIFO_OVR_MSK BIT(3)
#define ADXL372_INT1_MAP_FIFO_OVR_MODE(x) (((x) & 0x1) << 3)
#define ADXL372_INT1_MAP_INACT_MSK BIT(4)
#define ADXL372_INT1_MAP_INACT_MODE(x) (((x) & 0x1) << 4)
#define ADXL372_INT1_MAP_ACT_MSK BIT(5)
#define ADXL372_INT1_MAP_ACT_MODE(x) (((x) & 0x1) << 5)
#define ADXL372_INT1_MAP_AWAKE_MSK BIT(6)
#define ADXL372_INT1_MAP_AWAKE_MODE(x) (((x) & 0x1) << 6)
#define ADXL372_INT1_MAP_LOW_MSK BIT(7)
#define ADXL372_INT1_MAP_LOW_MODE(x) (((x) & 0x1) << 7)
/* ADX372_THRESH */
#define ADXL372_THRESH_VAL_H_MSK GENMASK(10, 3)
#define ADXL372_THRESH_VAL_H_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_H_MSK, x)
#define ADXL372_THRESH_VAL_L_MSK GENMASK(2, 0)
#define ADXL372_THRESH_VAL_L_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_L_MSK, x)
/* The ADXL372 includes a deep, 512 sample FIFO buffer */
#define ADXL372_FIFO_SIZE 512
#define ADXL372_X_AXIS_EN(x) ((x) & BIT(0))
#define ADXL372_Y_AXIS_EN(x) ((x) & BIT(1))
#define ADXL372_Z_AXIS_EN(x) ((x) & BIT(2))
/*
* At +/- 200g with 12-bit resolution, scale is computed as:
* (200 + 200) * 9.81 / (2^12 - 1) = 0.958241
*/
#define ADXL372_USCALE 958241
enum adxl372_op_mode {
ADXL372_STANDBY,
ADXL372_WAKE_UP,
ADXL372_INSTANT_ON,
ADXL372_FULL_BW_MEASUREMENT,
};
enum adxl372_act_proc_mode {
ADXL372_DEFAULT,
ADXL372_LINKED,
ADXL372_LOOPED,
};
enum adxl372_th_activity {
ADXL372_ACTIVITY,
ADXL372_ACTIVITY2,
ADXL372_INACTIVITY,
};
enum adxl372_odr {
ADXL372_ODR_400HZ,
ADXL372_ODR_800HZ,
ADXL372_ODR_1600HZ,
ADXL372_ODR_3200HZ,
ADXL372_ODR_6400HZ,
};
enum adxl372_bandwidth {
ADXL372_BW_200HZ,
ADXL372_BW_400HZ,
ADXL372_BW_800HZ,
ADXL372_BW_1600HZ,
ADXL372_BW_3200HZ,
};
static const unsigned int adxl372_th_reg_high_addr[3] = {
[ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H,
[ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H,
[ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H,
};
enum adxl372_fifo_format {
ADXL372_XYZ_FIFO,
ADXL372_X_FIFO,
ADXL372_Y_FIFO,
ADXL372_XY_FIFO,
ADXL372_Z_FIFO,
ADXL372_XZ_FIFO,
ADXL372_YZ_FIFO,
ADXL372_XYZ_PEAK_FIFO,
};
enum adxl372_fifo_mode {
ADXL372_FIFO_BYPASSED,
ADXL372_FIFO_STREAMED,
ADXL372_FIFO_TRIGGERED,
ADXL372_FIFO_OLD_SAVED
};
static const int adxl372_samp_freq_tbl[5] = {
400, 800, 1600, 3200, 6400,
};
static const int adxl372_bw_freq_tbl[5] = {
200, 400, 800, 1600, 3200,
};
struct adxl372_axis_lookup {
unsigned int bits;
enum adxl372_fifo_format fifo_format;
};
static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = {
{ BIT(0), ADXL372_X_FIFO },
{ BIT(1), ADXL372_Y_FIFO },
{ BIT(2), ADXL372_Z_FIFO },
{ BIT(0) | BIT(1), ADXL372_XY_FIFO },
{ BIT(0) | BIT(2), ADXL372_XZ_FIFO },
{ BIT(1) | BIT(2), ADXL372_YZ_FIFO },
{ BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO },
};
static const struct iio_event_spec adxl372_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
},
};
#define ADXL372_ACCEL_CHANNEL(index, reg, axis) { \
.type = IIO_ACCEL, \
.address = reg, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_BE, \
}, \
.event_spec = adxl372_events, \
.num_event_specs = ARRAY_SIZE(adxl372_events) \
}
static const struct iio_chan_spec adxl372_channels[] = {
ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X),
ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y),
ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z),
};
struct adxl372_state {
int irq;
struct device *dev;
struct regmap *regmap;
struct iio_trigger *dready_trig;
struct iio_trigger *peak_datardy_trig;
enum adxl372_fifo_mode fifo_mode;
enum adxl372_fifo_format fifo_format;
unsigned int fifo_axis_mask;
enum adxl372_op_mode op_mode;
enum adxl372_act_proc_mode act_proc_mode;
enum adxl372_odr odr;
enum adxl372_bandwidth bw;
u32 act_time_ms;
u32 inact_time_ms;
u8 fifo_set_size;
unsigned long int1_bitmask;
unsigned long int2_bitmask;
u16 watermark;
__be16 fifo_buf[ADXL372_FIFO_SIZE];
bool peak_fifo_mode_en;
struct mutex threshold_m; /* lock for threshold */
};
static const unsigned long adxl372_channel_masks[] = {
BIT(0), BIT(1), BIT(2),
BIT(0) | BIT(1),
BIT(0) | BIT(2),
BIT(1) | BIT(2),
BIT(0) | BIT(1) | BIT(2),
0
};
static ssize_t adxl372_read_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
u16 *threshold)
{
struct adxl372_state *st = iio_priv(indio_dev);
__be16 raw_regval;
u16 regval;
int ret;
ret = regmap_bulk_read(st->regmap, addr, &raw_regval, sizeof(raw_regval));
if (ret < 0)
return ret;
regval = be16_to_cpu(raw_regval);
regval >>= 5;
*threshold = regval;
return 0;
}
static ssize_t adxl372_write_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
u16 threshold)
{
struct adxl372_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->threshold_m);
ret = regmap_write(st->regmap, addr, ADXL372_THRESH_VAL_H_SEL(threshold));
if (ret < 0)
goto unlock;
ret = regmap_update_bits(st->regmap, addr + 1, GENMASK(7, 5),
ADXL372_THRESH_VAL_L_SEL(threshold) << 5);
unlock:
mutex_unlock(&st->threshold_m);
return ret;
}
static int adxl372_read_axis(struct adxl372_state *st, u8 addr)
{
__be16 regval;
int ret;
ret = regmap_bulk_read(st->regmap, addr, &regval, sizeof(regval));
if (ret < 0)
return ret;
return be16_to_cpu(regval);
}
static int adxl372_set_op_mode(struct adxl372_state *st,
enum adxl372_op_mode op_mode)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL,
ADXL372_POWER_CTL_MODE_MSK,
ADXL372_POWER_CTL_MODE(op_mode));
if (ret < 0)
return ret;
st->op_mode = op_mode;
return ret;
}
static int adxl372_set_odr(struct adxl372_state *st,
enum adxl372_odr odr)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL372_TIMING,
ADXL372_TIMING_ODR_MSK,
ADXL372_TIMING_ODR_MODE(odr));
if (ret < 0)
return ret;
st->odr = odr;
return ret;
}
static int adxl372_find_closest_match(const int *array,
unsigned int size, int val)
{
int i;
for (i = 0; i < size; i++) {
if (val <= array[i])
return i;
}
return size - 1;
}
static int adxl372_set_bandwidth(struct adxl372_state *st,
enum adxl372_bandwidth bw)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL372_MEASURE,
ADXL372_MEASURE_BANDWIDTH_MSK,
ADXL372_MEASURE_BANDWIDTH_MODE(bw));
if (ret < 0)
return ret;
st->bw = bw;
return ret;
}
static int adxl372_set_act_proc_mode(struct adxl372_state *st,
enum adxl372_act_proc_mode mode)
{
int ret;
ret = regmap_update_bits(st->regmap,
ADXL372_MEASURE,
ADXL372_MEASURE_LINKLOOP_MSK,
ADXL372_MEASURE_LINKLOOP_MODE(mode));
if (ret < 0)
return ret;
st->act_proc_mode = mode;
return ret;
}
static int adxl372_set_activity_threshold(struct adxl372_state *st,
enum adxl372_th_activity act,
bool ref_en, bool enable,
unsigned int threshold)
{
unsigned char buf[6];
unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr;
/* scale factor is 100 mg/code */
th_reg_high_val = (threshold / 100) >> 3;
th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable;
th_reg_high_addr = adxl372_th_reg_high_addr[act];
buf[0] = th_reg_high_val;
buf[1] = th_reg_low_val;
buf[2] = th_reg_high_val;
buf[3] = th_reg_low_val;
buf[4] = th_reg_high_val;
buf[5] = th_reg_low_val;
return regmap_bulk_write(st->regmap, th_reg_high_addr,
buf, ARRAY_SIZE(buf));
}
static int adxl372_set_activity_time_ms(struct adxl372_state *st,
unsigned int act_time_ms)
{
unsigned int reg_val, scale_factor;
int ret;
/*
* 3.3 ms per code is the scale factor of the TIME_ACT register for
* ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below.
*/
if (st->odr == ADXL372_ODR_6400HZ)
scale_factor = 3300;
else
scale_factor = 6600;
reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor);
/* TIME_ACT register is 8 bits wide */
if (reg_val > 0xFF)
reg_val = 0xFF;
ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val);
if (ret < 0)
return ret;
st->act_time_ms = act_time_ms;
return ret;
}
static int adxl372_set_inactivity_time_ms(struct adxl372_state *st,
unsigned int inact_time_ms)
{
unsigned int reg_val_h, reg_val_l, res, scale_factor;
int ret;
/*
* 13 ms per code is the scale factor of the TIME_INACT register for
* ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below.
*/
if (st->odr == ADXL372_ODR_6400HZ)
scale_factor = 13;
else
scale_factor = 26;
res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor);
reg_val_h = (res >> 8) & 0xFF;
reg_val_l = res & 0xFF;
ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h);
if (ret < 0)
return ret;
ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l);
if (ret < 0)
return ret;
st->inact_time_ms = inact_time_ms;
return ret;
}
static int adxl372_set_interrupts(struct adxl372_state *st,
unsigned long int1_bitmask,
unsigned long int2_bitmask)
{
int ret;
ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask);
if (ret < 0)
return ret;
return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask);
}
static int adxl372_configure_fifo(struct adxl372_state *st)
{
unsigned int fifo_samples, fifo_ctl;
int ret;
/* FIFO must be configured while in standby mode */
ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
if (ret < 0)
return ret;
/*
* watermark stores the number of sets; we need to write the FIFO
* registers with the number of samples
*/
fifo_samples = (st->watermark * st->fifo_set_size);
fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) |
ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) |
ADXL372_FIFO_CTL_SAMPLES_MODE(fifo_samples);
ret = regmap_write(st->regmap,
ADXL372_FIFO_SAMPLES, fifo_samples & 0xFF);
if (ret < 0)
return ret;
ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl);
if (ret < 0)
return ret;
return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
}
static int adxl372_get_status(struct adxl372_state *st,
u8 *status1, u8 *status2,
u16 *fifo_entries)
{
__be32 buf;
u32 val;
int ret;
/* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */
ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1,
&buf, sizeof(buf));
if (ret < 0)
return ret;
val = be32_to_cpu(buf);
*status1 = (val >> 24) & 0x0F;
*status2 = (val >> 16) & 0x0F;
/*
* FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2
* contains the two most significant bits
*/
*fifo_entries = val & 0x3FF;
return ret;
}
static void adxl372_arrange_axis_data(struct adxl372_state *st, __be16 *sample)
{
__be16 axis_sample[3];
int i = 0;
memset(axis_sample, 0, 3 * sizeof(__be16));
if (ADXL372_X_AXIS_EN(st->fifo_axis_mask))
axis_sample[i++] = sample[0];
if (ADXL372_Y_AXIS_EN(st->fifo_axis_mask))
axis_sample[i++] = sample[1];
if (ADXL372_Z_AXIS_EN(st->fifo_axis_mask))
axis_sample[i++] = sample[2];
memcpy(sample, axis_sample, 3 * sizeof(__be16));
}
static void adxl372_push_event(struct iio_dev *indio_dev, s64 timestamp, u8 status2)
{
unsigned int ev_dir = IIO_EV_DIR_NONE;
if (ADXL372_STATUS_2_ACT(status2))
ev_dir = IIO_EV_DIR_RISING;
if (ADXL372_STATUS_2_INACT(status2))
ev_dir = IIO_EV_DIR_FALLING;
if (ev_dir != IIO_EV_DIR_NONE)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_THRESH, ev_dir),
timestamp);
}
static irqreturn_t adxl372_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct adxl372_state *st = iio_priv(indio_dev);
u8 status1, status2;
u16 fifo_entries;
int i, ret;
ret = adxl372_get_status(st, &status1, &status2, &fifo_entries);
if (ret < 0)
goto err;
adxl372_push_event(indio_dev, iio_get_time_ns(indio_dev), status2);
if (st->fifo_mode != ADXL372_FIFO_BYPASSED &&
ADXL372_STATUS_1_FIFO_FULL(status1)) {
/*
* When reading data from multiple axes from the FIFO,
* to ensure that data is not overwritten and stored out
* of order at least one sample set must be left in the
* FIFO after every read.
*/
fifo_entries -= st->fifo_set_size;
/* Read data from the FIFO */
ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA,
st->fifo_buf,
fifo_entries * sizeof(u16));
if (ret < 0)
goto err;
/* Each sample is 2 bytes */
for (i = 0; i < fifo_entries; i += st->fifo_set_size) {
/* filter peak detection data */
if (st->peak_fifo_mode_en)
adxl372_arrange_axis_data(st, &st->fifo_buf[i]);
iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
}
}
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int adxl372_setup(struct adxl372_state *st)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADXL372_DEVID, &regval);
if (ret < 0)
return ret;
if (regval != ADXL372_DEVID_VAL) {
dev_err(st->dev, "Invalid chip id %x\n", regval);
return -ENODEV;
}
/*
* Perform a software reset to make sure the device is in a consistent
* state after start up.
*/
ret = regmap_write(st->regmap, ADXL372_RESET, ADXL372_RESET_CODE);
if (ret < 0)
return ret;
ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
if (ret < 0)
return ret;
/* Set threshold for activity detection to 1g */
ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY,
true, true, 1000);
if (ret < 0)
return ret;
/* Set threshold for inactivity detection to 100mg */
ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY,
true, true, 100);
if (ret < 0)
return ret;
/* Set activity processing in Looped mode */
ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED);
if (ret < 0)
return ret;
ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ);
if (ret < 0)
return ret;
ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ);
if (ret < 0)
return ret;
/* Set activity timer to 1ms */
ret = adxl372_set_activity_time_ms(st, 1);
if (ret < 0)
return ret;
/* Set inactivity timer to 10s */
ret = adxl372_set_inactivity_time_ms(st, 10000);
if (ret < 0)
return ret;
/* Set the mode of operation to full bandwidth measurement mode */
return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
}
static int adxl372_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct adxl372_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
else
return regmap_write(st->regmap, reg, writeval);
}
static int adxl372_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct adxl372_state *st = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = adxl372_read_axis(st, chan->address);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
*val = sign_extend32(ret >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = ADXL372_USCALE;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = adxl372_samp_freq_tbl[st->odr];
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*val = adxl372_bw_freq_tbl[st->bw];
return IIO_VAL_INT;
}
return -EINVAL;
}
static int adxl372_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct adxl372_state *st = iio_priv(indio_dev);
int odr_index, bw_index, ret;
switch (info) {
case IIO_CHAN_INFO_SAMP_FREQ:
odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl,
ARRAY_SIZE(adxl372_samp_freq_tbl),
val);
ret = adxl372_set_odr(st, odr_index);
if (ret < 0)
return ret;
/*
* The timer period depends on the ODR selected.
* At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms
*/
ret = adxl372_set_activity_time_ms(st, st->act_time_ms);
if (ret < 0)
return ret;
/*
* The timer period depends on the ODR selected.
* At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms
*/
ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms);
if (ret < 0)
return ret;
/*
* The maximum bandwidth is constrained to at most half of
* the ODR to ensure that the Nyquist criteria is not violated
*/
if (st->bw > odr_index)
ret = adxl372_set_bandwidth(st, odr_index);
return ret;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl,
ARRAY_SIZE(adxl372_bw_freq_tbl),
val);
return adxl372_set_bandwidth(st, bw_index);
default:
return -EINVAL;
}
}
static int adxl372_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct adxl372_state *st = iio_priv(indio_dev);
unsigned int addr;
u16 raw_value;
int ret;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
if (ret < 0)
return ret;
*val = raw_value * ADXL372_USCALE;
*val2 = 1000000;
return IIO_VAL_FRACTIONAL;
case IIO_EV_DIR_FALLING:
addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
if (ret < 0)
return ret;
*val = raw_value * ADXL372_USCALE;
*val2 = 1000000;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
*val = st->act_time_ms;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
case IIO_EV_DIR_FALLING:
*val = st->inact_time_ms;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl372_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct adxl372_state *st = iio_priv(indio_dev);
unsigned int val_ms;
unsigned int addr;
u16 raw_val;
switch (info) {
case IIO_EV_INFO_VALUE:
raw_val = DIV_ROUND_UP(val * 1000000, ADXL372_USCALE);
switch (dir) {
case IIO_EV_DIR_RISING:
addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
return adxl372_write_threshold_value(indio_dev, addr, raw_val);
case IIO_EV_DIR_FALLING:
addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
return adxl372_write_threshold_value(indio_dev, addr, raw_val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
val_ms = val * 1000 + DIV_ROUND_UP(val2, 1000);
switch (dir) {
case IIO_EV_DIR_RISING:
return adxl372_set_activity_time_ms(st, val_ms);
case IIO_EV_DIR_FALLING:
return adxl372_set_inactivity_time_ms(st, val_ms);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl372_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir)
{
struct adxl372_state *st = iio_priv(indio_dev);
switch (dir) {
case IIO_EV_DIR_RISING:
return FIELD_GET(ADXL372_INT1_MAP_ACT_MSK, st->int1_bitmask);
case IIO_EV_DIR_FALLING:
return FIELD_GET(ADXL372_INT1_MAP_INACT_MSK, st->int1_bitmask);
default:
return -EINVAL;
}
}
static int adxl372_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir,
int state)
{
struct adxl372_state *st = iio_priv(indio_dev);
switch (dir) {
case IIO_EV_DIR_RISING:
set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_ACT_MSK,
ADXL372_INT1_MAP_ACT_MODE(state));
break;
case IIO_EV_DIR_FALLING:
set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_INACT_MSK,
ADXL372_INT1_MAP_INACT_MODE(state));
break;
default:
return -EINVAL;
}
return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}
static ssize_t adxl372_show_filter_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct adxl372_state *st = iio_priv(indio_dev);
int i;
size_t len = 0;
for (i = 0; i <= st->odr; i++)
len += scnprintf(buf + len, PAGE_SIZE - len,
"%d ", adxl372_bw_freq_tbl[i]);
buf[len - 1] = '\n';
return len;
}
static ssize_t adxl372_get_fifo_enabled(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct adxl372_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n", st->fifo_mode);
}
static ssize_t adxl372_get_fifo_watermark(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct adxl372_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n", st->watermark);
}
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1");
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max,
__stringify(ADXL372_FIFO_SIZE));
static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
adxl372_get_fifo_watermark, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
adxl372_get_fifo_enabled, NULL, 0);
static const struct iio_dev_attr *adxl372_fifo_attributes[] = {
&iio_dev_attr_hwfifo_watermark_min,
&iio_dev_attr_hwfifo_watermark_max,
&iio_dev_attr_hwfifo_watermark,
&iio_dev_attr_hwfifo_enabled,
NULL,
};
static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
struct adxl372_state *st = iio_priv(indio_dev);
if (val > ADXL372_FIFO_SIZE)
val = ADXL372_FIFO_SIZE;
st->watermark = val;
return 0;
}
static int adxl372_buffer_postenable(struct iio_dev *indio_dev)
{
struct adxl372_state *st = iio_priv(indio_dev);
unsigned int mask;
int i, ret;
st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
ret = adxl372_set_interrupts(st, st->int1_bitmask, 0);
if (ret < 0)
return ret;
mask = *indio_dev->active_scan_mask;
for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) {
if (mask == adxl372_axis_lookup_table[i].bits)
break;
}
if (i == ARRAY_SIZE(adxl372_axis_lookup_table))
return -EINVAL;
st->fifo_format = adxl372_axis_lookup_table[i].fifo_format;
st->fifo_axis_mask = adxl372_axis_lookup_table[i].bits;
st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask,
indio_dev->masklength);
/* Configure the FIFO to store sets of impact event peak. */
if (st->peak_fifo_mode_en) {
st->fifo_set_size = 3;
st->fifo_format = ADXL372_XYZ_PEAK_FIFO;
}
/*
* The 512 FIFO samples can be allotted in several ways, such as:
* 170 sample sets of concurrent 3-axis data
* 256 sample sets of concurrent 2-axis data (user selectable)
* 512 sample sets of single-axis data
* 170 sets of impact event peak (x, y, z)
*/
if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE)
st->watermark = (ADXL372_FIFO_SIZE / st->fifo_set_size);
st->fifo_mode = ADXL372_FIFO_STREAMED;
ret = adxl372_configure_fifo(st);
if (ret < 0) {
st->fifo_mode = ADXL372_FIFO_BYPASSED;
st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
adxl372_set_interrupts(st, st->int1_bitmask, 0);
return ret;
}
return 0;
}
static int adxl372_buffer_predisable(struct iio_dev *indio_dev)
{
struct adxl372_state *st = iio_priv(indio_dev);
st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
adxl372_set_interrupts(st, st->int1_bitmask, 0);
st->fifo_mode = ADXL372_FIFO_BYPASSED;
adxl372_configure_fifo(st);
return 0;
}
static const struct iio_buffer_setup_ops adxl372_buffer_ops = {
.postenable = adxl372_buffer_postenable,
.predisable = adxl372_buffer_predisable,
};
static int adxl372_dready_trig_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct adxl372_state *st = iio_priv(indio_dev);
if (state)
st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}
static int adxl372_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct adxl372_state *st = iio_priv(indio_dev);
if (st->dready_trig != trig && st->peak_datardy_trig != trig)
return -EINVAL;
return 0;
}
static const struct iio_trigger_ops adxl372_trigger_ops = {
.validate_device = &iio_trigger_validate_own_device,
.set_trigger_state = adxl372_dready_trig_set_state,
};
static int adxl372_peak_dready_trig_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct adxl372_state *st = iio_priv(indio_dev);
if (state)
st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
st->peak_fifo_mode_en = state;
return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}
static const struct iio_trigger_ops adxl372_peak_data_trigger_ops = {
.validate_device = &iio_trigger_validate_own_device,
.set_trigger_state = adxl372_peak_dready_trig_set_state,
};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400");
static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
0444, adxl372_show_filter_freq_avail, NULL, 0);
static struct attribute *adxl372_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group adxl372_attrs_group = {
.attrs = adxl372_attributes,
};
static const struct iio_info adxl372_info = {
.validate_trigger = &adxl372_validate_trigger,
.attrs = &adxl372_attrs_group,
.read_raw = adxl372_read_raw,
.write_raw = adxl372_write_raw,
.read_event_config = adxl372_read_event_config,
.write_event_config = adxl372_write_event_config,
.read_event_value = adxl372_read_event_value,
.write_event_value = adxl372_write_event_value,
.debugfs_reg_access = &adxl372_reg_access,
.hwfifo_set_watermark = adxl372_set_watermark,
};
bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg)
{
return (reg == ADXL372_FIFO_DATA);
}
EXPORT_SYMBOL_NS_GPL(adxl372_readable_noinc_reg, IIO_ADXL372);
int adxl372_probe(struct device *dev, struct regmap *regmap,
int irq, const char *name)
{
struct iio_dev *indio_dev;
struct adxl372_state *st;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
st->dev = dev;
st->regmap = regmap;
st->irq = irq;
mutex_init(&st->threshold_m);
indio_dev->channels = adxl372_channels;
indio_dev->num_channels = ARRAY_SIZE(adxl372_channels);
indio_dev->available_scan_masks = adxl372_channel_masks;
indio_dev->name = name;
indio_dev->info = &adxl372_info;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
ret = adxl372_setup(st);
if (ret < 0) {
dev_err(dev, "ADXL372 setup failed\n");
return ret;
}
ret = devm_iio_triggered_buffer_setup_ext(dev,
indio_dev, NULL,
adxl372_trigger_handler,
IIO_BUFFER_DIRECTION_IN,
&adxl372_buffer_ops,
adxl372_fifo_attributes);
if (ret < 0)
return ret;
if (st->irq) {
st->dready_trig = devm_iio_trigger_alloc(dev,
"%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (st->dready_trig == NULL)
return -ENOMEM;
st->peak_datardy_trig = devm_iio_trigger_alloc(dev,
"%s-dev%d-peak",
indio_dev->name,
iio_device_id(indio_dev));
if (!st->peak_datardy_trig)
return -ENOMEM;
st->dready_trig->ops = &adxl372_trigger_ops;
st->peak_datardy_trig->ops = &adxl372_peak_data_trigger_ops;
iio_trigger_set_drvdata(st->dready_trig, indio_dev);
iio_trigger_set_drvdata(st->peak_datardy_trig, indio_dev);
ret = devm_iio_trigger_register(dev, st->dready_trig);
if (ret < 0)
return ret;
ret = devm_iio_trigger_register(dev, st->peak_datardy_trig);
if (ret < 0)
return ret;
indio_dev->trig = iio_trigger_get(st->dready_trig);
ret = devm_request_threaded_irq(dev, st->irq,
iio_trigger_generic_data_rdy_poll,
NULL,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
indio_dev->name, st->dready_trig);
if (ret < 0)
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_NS_GPL(adxl372_probe, IIO_ADXL372);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver");
MODULE_LICENSE("GPL");