linux/mm/slub.c
Yunfeng Ye 9a543f007b mm: emit the "free" trace report before freeing memory in kmem_cache_free()
After the memory is freed, it can be immediately allocated by other
CPUs, before the "free" trace report has been emitted.  This causes
inaccurate traces.

For example, if the following sequence of events occurs:

    CPU 0                 CPU 1

  (1) alloc xxxxxx
  (2) free  xxxxxx
                         (3) alloc xxxxxx
                         (4) free  xxxxxx

Then they will be inaccurately reported via tracing, so that they appear
to have happened in this order:

    CPU 0                 CPU 1

  (1) alloc xxxxxx
                         (2) alloc xxxxxx
  (3) free  xxxxxx
                         (4) free  xxxxxx

This makes it look like CPU 1 somehow managed to allocate memory that
CPU 0 still had allocated for itself.

In order to avoid this, emit the "free xxxxxx" tracing report just
before the actual call to free the memory, instead of just after it.

Link: https://lkml.kernel.org/r/374eb75d-7404-8721-4e1e-65b0e5b17279@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-20 10:35:54 -08:00

6266 lines
153 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SLUB: A slab allocator that limits cache line use instead of queuing
* objects in per cpu and per node lists.
*
* The allocator synchronizes using per slab locks or atomic operations
* and only uses a centralized lock to manage a pool of partial slabs.
*
* (C) 2007 SGI, Christoph Lameter
* (C) 2011 Linux Foundation, Christoph Lameter
*/
#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/swab.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include "slab.h"
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/kasan.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/debugobjects.h>
#include <linux/kallsyms.h>
#include <linux/kfence.h>
#include <linux/memory.h>
#include <linux/math64.h>
#include <linux/fault-inject.h>
#include <linux/stacktrace.h>
#include <linux/prefetch.h>
#include <linux/memcontrol.h>
#include <linux/random.h>
#include <kunit/test.h>
#include <linux/debugfs.h>
#include <trace/events/kmem.h>
#include "internal.h"
/*
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock (Spinlock)
* 3. kmem_cache->cpu_slab->lock (Local lock)
* 4. slab_lock(page) (Only on some arches or for debugging)
* 5. object_map_lock (Only for debugging)
*
* slab_mutex
*
* The role of the slab_mutex is to protect the list of all the slabs
* and to synchronize major metadata changes to slab cache structures.
* Also synchronizes memory hotplug callbacks.
*
* slab_lock
*
* The slab_lock is a wrapper around the page lock, thus it is a bit
* spinlock.
*
* The slab_lock is only used for debugging and on arches that do not
* have the ability to do a cmpxchg_double. It only protects:
* A. page->freelist -> List of object free in a page
* B. page->inuse -> Number of objects in use
* C. page->objects -> Number of objects in page
* D. page->frozen -> frozen state
*
* Frozen slabs
*
* If a slab is frozen then it is exempt from list management. It is not
* on any list except per cpu partial list. The processor that froze the
* slab is the one who can perform list operations on the page. Other
* processors may put objects onto the freelist but the processor that
* froze the slab is the only one that can retrieve the objects from the
* page's freelist.
*
* list_lock
*
* The list_lock protects the partial and full list on each node and
* the partial slab counter. If taken then no new slabs may be added or
* removed from the lists nor make the number of partial slabs be modified.
* (Note that the total number of slabs is an atomic value that may be
* modified without taking the list lock).
*
* The list_lock is a centralized lock and thus we avoid taking it as
* much as possible. As long as SLUB does not have to handle partial
* slabs, operations can continue without any centralized lock. F.e.
* allocating a long series of objects that fill up slabs does not require
* the list lock.
*
* cpu_slab->lock local lock
*
* This locks protect slowpath manipulation of all kmem_cache_cpu fields
* except the stat counters. This is a percpu structure manipulated only by
* the local cpu, so the lock protects against being preempted or interrupted
* by an irq. Fast path operations rely on lockless operations instead.
* On PREEMPT_RT, the local lock does not actually disable irqs (and thus
* prevent the lockless operations), so fastpath operations also need to take
* the lock and are no longer lockless.
*
* lockless fastpaths
*
* The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
* are fully lockless when satisfied from the percpu slab (and when
* cmpxchg_double is possible to use, otherwise slab_lock is taken).
* They also don't disable preemption or migration or irqs. They rely on
* the transaction id (tid) field to detect being preempted or moved to
* another cpu.
*
* irq, preemption, migration considerations
*
* Interrupts are disabled as part of list_lock or local_lock operations, or
* around the slab_lock operation, in order to make the slab allocator safe
* to use in the context of an irq.
*
* In addition, preemption (or migration on PREEMPT_RT) is disabled in the
* allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
* local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
* doesn't have to be revalidated in each section protected by the local lock.
*
* SLUB assigns one slab for allocation to each processor.
* Allocations only occur from these slabs called cpu slabs.
*
* Slabs with free elements are kept on a partial list and during regular
* operations no list for full slabs is used. If an object in a full slab is
* freed then the slab will show up again on the partial lists.
* We track full slabs for debugging purposes though because otherwise we
* cannot scan all objects.
*
* Slabs are freed when they become empty. Teardown and setup is
* minimal so we rely on the page allocators per cpu caches for
* fast frees and allocs.
*
* page->frozen The slab is frozen and exempt from list processing.
* This means that the slab is dedicated to a purpose
* such as satisfying allocations for a specific
* processor. Objects may be freed in the slab while
* it is frozen but slab_free will then skip the usual
* list operations. It is up to the processor holding
* the slab to integrate the slab into the slab lists
* when the slab is no longer needed.
*
* One use of this flag is to mark slabs that are
* used for allocations. Then such a slab becomes a cpu
* slab. The cpu slab may be equipped with an additional
* freelist that allows lockless access to
* free objects in addition to the regular freelist
* that requires the slab lock.
*
* SLAB_DEBUG_FLAGS Slab requires special handling due to debug
* options set. This moves slab handling out of
* the fast path and disables lockless freelists.
*/
/*
* We could simply use migrate_disable()/enable() but as long as it's a
* function call even on !PREEMPT_RT, use inline preempt_disable() there.
*/
#ifndef CONFIG_PREEMPT_RT
#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
#else
#define slub_get_cpu_ptr(var) \
({ \
migrate_disable(); \
this_cpu_ptr(var); \
})
#define slub_put_cpu_ptr(var) \
do { \
(void)(var); \
migrate_enable(); \
} while (0)
#endif
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
#endif /* CONFIG_SLUB_DEBUG */
static inline bool kmem_cache_debug(struct kmem_cache *s)
{
return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
}
void *fixup_red_left(struct kmem_cache *s, void *p)
{
if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
p += s->red_left_pad;
return p;
}
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
return !kmem_cache_debug(s);
#else
return false;
#endif
}
/*
* Issues still to be resolved:
*
* - Support PAGE_ALLOC_DEBUG. Should be easy to do.
*
* - Variable sizing of the per node arrays
*/
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG
/*
* Minimum number of partial slabs. These will be left on the partial
* lists even if they are empty. kmem_cache_shrink may reclaim them.
*/
#define MIN_PARTIAL 5
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
* sort the partial list by the number of objects in use.
*/
#define MAX_PARTIAL 10
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
SLAB_POISON | SLAB_STORE_USER)
/*
* These debug flags cannot use CMPXCHG because there might be consistency
* issues when checking or reading debug information
*/
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
SLAB_TRACE)
/*
* Debugging flags that require metadata to be stored in the slab. These get
* disabled when slub_debug=O is used and a cache's min order increases with
* metadata.
*/
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#define OO_SHIFT 16
#define OO_MASK ((1 << OO_SHIFT) - 1)
#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
/* Internal SLUB flags */
/* Poison object */
#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
/* Use cmpxchg_double */
#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
/*
* Tracking user of a slab.
*/
#define TRACK_ADDRS_COUNT 16
struct track {
unsigned long addr; /* Called from address */
#ifdef CONFIG_STACKTRACE
unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
#endif
int cpu; /* Was running on cpu */
int pid; /* Pid context */
unsigned long when; /* When did the operation occur */
};
enum track_item { TRACK_ALLOC, TRACK_FREE };
#ifdef CONFIG_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; }
#endif
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
static void debugfs_slab_add(struct kmem_cache *);
#else
static inline void debugfs_slab_add(struct kmem_cache *s) { }
#endif
static inline void stat(const struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
/*
* The rmw is racy on a preemptible kernel but this is acceptable, so
* avoid this_cpu_add()'s irq-disable overhead.
*/
raw_cpu_inc(s->cpu_slab->stat[si]);
#endif
}
/*
* Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
* Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
* differ during memory hotplug/hotremove operations.
* Protected by slab_mutex.
*/
static nodemask_t slab_nodes;
/********************************************************************
* Core slab cache functions
*******************************************************************/
/*
* Returns freelist pointer (ptr). With hardening, this is obfuscated
* with an XOR of the address where the pointer is held and a per-cache
* random number.
*/
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
/*
* When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
* Normally, this doesn't cause any issues, as both set_freepointer()
* and get_freepointer() are called with a pointer with the same tag.
* However, there are some issues with CONFIG_SLUB_DEBUG code. For
* example, when __free_slub() iterates over objects in a cache, it
* passes untagged pointers to check_object(). check_object() in turns
* calls get_freepointer() with an untagged pointer, which causes the
* freepointer to be restored incorrectly.
*/
return (void *)((unsigned long)ptr ^ s->random ^
swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
#else
return ptr;
#endif
}
/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
void *ptr_addr)
{
return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
(unsigned long)ptr_addr);
}
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
object = kasan_reset_tag(object);
return freelist_dereference(s, object + s->offset);
}
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
prefetchw(object + s->offset);
}
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
unsigned long freepointer_addr;
void *p;
if (!debug_pagealloc_enabled_static())
return get_freepointer(s, object);
object = kasan_reset_tag(object);
freepointer_addr = (unsigned long)object + s->offset;
copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
return freelist_ptr(s, p, freepointer_addr);
}
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
unsigned long freeptr_addr = (unsigned long)object + s->offset;
#ifdef CONFIG_SLAB_FREELIST_HARDENED
BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif
freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
}
/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr, __objects) \
for (__p = fixup_red_left(__s, __addr); \
__p < (__addr) + (__objects) * (__s)->size; \
__p += (__s)->size)
static inline unsigned int order_objects(unsigned int order, unsigned int size)
{
return ((unsigned int)PAGE_SIZE << order) / size;
}
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
unsigned int size)
{
struct kmem_cache_order_objects x = {
(order << OO_SHIFT) + order_objects(order, size)
};
return x;
}
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
{
return x.x >> OO_SHIFT;
}
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
{
return x.x & OO_MASK;
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
{
unsigned int nr_pages;
s->cpu_partial = nr_objects;
/*
* We take the number of objects but actually limit the number of
* pages on the per cpu partial list, in order to limit excessive
* growth of the list. For simplicity we assume that the pages will
* be half-full.
*/
nr_pages = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
s->cpu_partial_pages = nr_pages;
}
#else
static inline void
slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
{
}
#endif /* CONFIG_SLUB_CPU_PARTIAL */
/*
* Per slab locking using the pagelock
*/
static __always_inline void __slab_lock(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
bit_spin_lock(PG_locked, &page->flags);
}
static __always_inline void __slab_unlock(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
__bit_spin_unlock(PG_locked, &page->flags);
}
static __always_inline void slab_lock(struct page *page, unsigned long *flags)
{
if (IS_ENABLED(CONFIG_PREEMPT_RT))
local_irq_save(*flags);
__slab_lock(page);
}
static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
{
__slab_unlock(page);
if (IS_ENABLED(CONFIG_PREEMPT_RT))
local_irq_restore(*flags);
}
/*
* Interrupts must be disabled (for the fallback code to work right), typically
* by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
* so we disable interrupts as part of slab_[un]lock().
*/
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new,
const char *n)
{
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
lockdep_assert_irqs_disabled();
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
if (s->flags & __CMPXCHG_DOUBLE) {
if (cmpxchg_double(&page->freelist, &page->counters,
freelist_old, counters_old,
freelist_new, counters_new))
return true;
} else
#endif
{
/* init to 0 to prevent spurious warnings */
unsigned long flags = 0;
slab_lock(page, &flags);
if (page->freelist == freelist_old &&
page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
slab_unlock(page, &flags);
return true;
}
slab_unlock(page, &flags);
}
cpu_relax();
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
return false;
}
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
void *freelist_old, unsigned long counters_old,
void *freelist_new, unsigned long counters_new,
const char *n)
{
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
if (s->flags & __CMPXCHG_DOUBLE) {
if (cmpxchg_double(&page->freelist, &page->counters,
freelist_old, counters_old,
freelist_new, counters_new))
return true;
} else
#endif
{
unsigned long flags;
local_irq_save(flags);
__slab_lock(page);
if (page->freelist == freelist_old &&
page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
__slab_unlock(page);
local_irq_restore(flags);
return true;
}
__slab_unlock(page);
local_irq_restore(flags);
}
cpu_relax();
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
return false;
}
#ifdef CONFIG_SLUB_DEBUG
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_RAW_SPINLOCK(object_map_lock);
static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
struct page *page)
{
void *addr = page_address(page);
void *p;
bitmap_zero(obj_map, page->objects);
for (p = page->freelist; p; p = get_freepointer(s, p))
set_bit(__obj_to_index(s, addr, p), obj_map);
}
#if IS_ENABLED(CONFIG_KUNIT)
static bool slab_add_kunit_errors(void)
{
struct kunit_resource *resource;
if (likely(!current->kunit_test))
return false;
resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
if (!resource)
return false;
(*(int *)resource->data)++;
kunit_put_resource(resource);
return true;
}
#else
static inline bool slab_add_kunit_errors(void) { return false; }
#endif
/*
* Determine a map of object in use on a page.
*
* Node listlock must be held to guarantee that the page does
* not vanish from under us.
*/
static unsigned long *get_map(struct kmem_cache *s, struct page *page)
__acquires(&object_map_lock)
{
VM_BUG_ON(!irqs_disabled());
raw_spin_lock(&object_map_lock);
__fill_map(object_map, s, page);
return object_map;
}
static void put_map(unsigned long *map) __releases(&object_map_lock)
{
VM_BUG_ON(map != object_map);
raw_spin_unlock(&object_map_lock);
}
static inline unsigned int size_from_object(struct kmem_cache *s)
{
if (s->flags & SLAB_RED_ZONE)
return s->size - s->red_left_pad;
return s->size;
}
static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
if (s->flags & SLAB_RED_ZONE)
p -= s->red_left_pad;
return p;
}
/*
* Debug settings:
*/
#if defined(CONFIG_SLUB_DEBUG_ON)
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
#else
static slab_flags_t slub_debug;
#endif
static char *slub_debug_string;
static int disable_higher_order_debug;
/*
* slub is about to manipulate internal object metadata. This memory lies
* outside the range of the allocated object, so accessing it would normally
* be reported by kasan as a bounds error. metadata_access_enable() is used
* to tell kasan that these accesses are OK.
*/
static inline void metadata_access_enable(void)
{
kasan_disable_current();
}
static inline void metadata_access_disable(void)
{
kasan_enable_current();
}
/*
* Object debugging
*/
/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, void *object)
{
void *base;
if (!object)
return 1;
base = page_address(page);
object = kasan_reset_tag(object);
object = restore_red_left(s, object);
if (object < base || object >= base + page->objects * s->size ||
(object - base) % s->size) {
return 0;
}
return 1;
}
static void print_section(char *level, char *text, u8 *addr,
unsigned int length)
{
metadata_access_enable();
print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
16, 1, kasan_reset_tag((void *)addr), length, 1);
metadata_access_disable();
}
/*
* See comment in calculate_sizes().
*/
static inline bool freeptr_outside_object(struct kmem_cache *s)
{
return s->offset >= s->inuse;
}
/*
* Return offset of the end of info block which is inuse + free pointer if
* not overlapping with object.
*/
static inline unsigned int get_info_end(struct kmem_cache *s)
{
if (freeptr_outside_object(s))
return s->inuse + sizeof(void *);
else
return s->inuse;
}
static struct track *get_track(struct kmem_cache *s, void *object,
enum track_item alloc)
{
struct track *p;
p = object + get_info_end(s);
return kasan_reset_tag(p + alloc);
}
static void set_track(struct kmem_cache *s, void *object,
enum track_item alloc, unsigned long addr)
{
struct track *p = get_track(s, object, alloc);
if (addr) {
#ifdef CONFIG_STACKTRACE
unsigned int nr_entries;
metadata_access_enable();
nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
TRACK_ADDRS_COUNT, 3);
metadata_access_disable();
if (nr_entries < TRACK_ADDRS_COUNT)
p->addrs[nr_entries] = 0;
#endif
p->addr = addr;
p->cpu = smp_processor_id();
p->pid = current->pid;
p->when = jiffies;
} else {
memset(p, 0, sizeof(struct track));
}
}
static void init_tracking(struct kmem_cache *s, void *object)
{
if (!(s->flags & SLAB_STORE_USER))
return;
set_track(s, object, TRACK_FREE, 0UL);
set_track(s, object, TRACK_ALLOC, 0UL);
}
static void print_track(const char *s, struct track *t, unsigned long pr_time)
{
if (!t->addr)
return;
pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
#ifdef CONFIG_STACKTRACE
{
int i;
for (i = 0; i < TRACK_ADDRS_COUNT; i++)
if (t->addrs[i])
pr_err("\t%pS\n", (void *)t->addrs[i]);
else
break;
}
#endif
}
void print_tracking(struct kmem_cache *s, void *object)
{
unsigned long pr_time = jiffies;
if (!(s->flags & SLAB_STORE_USER))
return;
print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
}
static void print_page_info(struct page *page)
{
pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
page, page->objects, page->inuse, page->freelist,
&page->flags);
}
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("=============================================================================\n");
pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
pr_err("-----------------------------------------------------------------------------\n\n");
va_end(args);
}
__printf(2, 3)
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (slab_add_kunit_errors())
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("FIX %s: %pV\n", s->name, &vaf);
va_end(args);
}
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
void **freelist, void *nextfree)
{
if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
!check_valid_pointer(s, page, nextfree) && freelist) {
object_err(s, page, *freelist, "Freechain corrupt");
*freelist = NULL;
slab_fix(s, "Isolate corrupted freechain");
return true;
}
return false;
}
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
{
unsigned int off; /* Offset of last byte */
u8 *addr = page_address(page);
print_tracking(s, p);
print_page_info(page);
pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
p, p - addr, get_freepointer(s, p));
if (s->flags & SLAB_RED_ZONE)
print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
s->red_left_pad);
else if (p > addr + 16)
print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
print_section(KERN_ERR, "Object ", p,
min_t(unsigned int, s->object_size, PAGE_SIZE));
if (s->flags & SLAB_RED_ZONE)
print_section(KERN_ERR, "Redzone ", p + s->object_size,
s->inuse - s->object_size);
off = get_info_end(s);
if (s->flags & SLAB_STORE_USER)
off += 2 * sizeof(struct track);
off += kasan_metadata_size(s);
if (off != size_from_object(s))
/* Beginning of the filler is the free pointer */
print_section(KERN_ERR, "Padding ", p + off,
size_from_object(s) - off);
dump_stack();
}
void object_err(struct kmem_cache *s, struct page *page,
u8 *object, char *reason)
{
if (slab_add_kunit_errors())
return;
slab_bug(s, "%s", reason);
print_trailer(s, page, object);
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
const char *fmt, ...)
{
va_list args;
char buf[100];
if (slab_add_kunit_errors())
return;
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
slab_bug(s, "%s", buf);
print_page_info(page);
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
static void init_object(struct kmem_cache *s, void *object, u8 val)
{
u8 *p = kasan_reset_tag(object);
if (s->flags & SLAB_RED_ZONE)
memset(p - s->red_left_pad, val, s->red_left_pad);
if (s->flags & __OBJECT_POISON) {
memset(p, POISON_FREE, s->object_size - 1);
p[s->object_size - 1] = POISON_END;
}
if (s->flags & SLAB_RED_ZONE)
memset(p + s->object_size, val, s->inuse - s->object_size);
}
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
void *from, void *to)
{
slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
memset(from, data, to - from);
}
static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
u8 *object, char *what,
u8 *start, unsigned int value, unsigned int bytes)
{
u8 *fault;
u8 *end;
u8 *addr = page_address(page);
metadata_access_enable();
fault = memchr_inv(kasan_reset_tag(start), value, bytes);
metadata_access_disable();
if (!fault)
return 1;
end = start + bytes;
while (end > fault && end[-1] == value)
end--;
if (slab_add_kunit_errors())
goto skip_bug_print;
slab_bug(s, "%s overwritten", what);
pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
fault, end - 1, fault - addr,
fault[0], value);
print_trailer(s, page, object);
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
skip_bug_print:
restore_bytes(s, what, value, fault, end);
return 0;
}
/*
* Object layout:
*
* object address
* Bytes of the object to be managed.
* If the freepointer may overlay the object then the free
* pointer is at the middle of the object.
*
* Poisoning uses 0x6b (POISON_FREE) and the last byte is
* 0xa5 (POISON_END)
*
* object + s->object_size
* Padding to reach word boundary. This is also used for Redzoning.
* Padding is extended by another word if Redzoning is enabled and
* object_size == inuse.
*
* We fill with 0xbb (RED_INACTIVE) for inactive objects and with
* 0xcc (RED_ACTIVE) for objects in use.
*
* object + s->inuse
* Meta data starts here.
*
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
* C. Padding to reach required alignment boundary or at minimum
* one word if debugging is on to be able to detect writes
* before the word boundary.
*
* Padding is done using 0x5a (POISON_INUSE)
*
* object + s->size
* Nothing is used beyond s->size.
*
* If slabcaches are merged then the object_size and inuse boundaries are mostly
* ignored. And therefore no slab options that rely on these boundaries
* may be used with merged slabcaches.
*/
static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
unsigned long off = get_info_end(s); /* The end of info */
if (s->flags & SLAB_STORE_USER)
/* We also have user information there */
off += 2 * sizeof(struct track);
off += kasan_metadata_size(s);
if (size_from_object(s) == off)
return 1;
return check_bytes_and_report(s, page, p, "Object padding",
p + off, POISON_INUSE, size_from_object(s) - off);
}
/* Check the pad bytes at the end of a slab page */
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
u8 *start;
u8 *fault;
u8 *end;
u8 *pad;
int length;
int remainder;
if (!(s->flags & SLAB_POISON))
return 1;
start = page_address(page);
length = page_size(page);
end = start + length;
remainder = length % s->size;
if (!remainder)
return 1;
pad = end - remainder;
metadata_access_enable();
fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
metadata_access_disable();
if (!fault)
return 1;
while (end > fault && end[-1] == POISON_INUSE)
end--;
slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
fault, end - 1, fault - start);
print_section(KERN_ERR, "Padding ", pad, remainder);
restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
return 0;
}
static int check_object(struct kmem_cache *s, struct page *page,
void *object, u8 val)
{
u8 *p = object;
u8 *endobject = object + s->object_size;
if (s->flags & SLAB_RED_ZONE) {
if (!check_bytes_and_report(s, page, object, "Left Redzone",
object - s->red_left_pad, val, s->red_left_pad))
return 0;
if (!check_bytes_and_report(s, page, object, "Right Redzone",
endobject, val, s->inuse - s->object_size))
return 0;
} else {
if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
check_bytes_and_report(s, page, p, "Alignment padding",
endobject, POISON_INUSE,
s->inuse - s->object_size);
}
}
if (s->flags & SLAB_POISON) {
if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
(!check_bytes_and_report(s, page, p, "Poison", p,
POISON_FREE, s->object_size - 1) ||
!check_bytes_and_report(s, page, p, "End Poison",
p + s->object_size - 1, POISON_END, 1)))
return 0;
/*
* check_pad_bytes cleans up on its own.
*/
check_pad_bytes(s, page, p);
}
if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
/*
* Object and freepointer overlap. Cannot check
* freepointer while object is allocated.
*/
return 1;
/* Check free pointer validity */
if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
object_err(s, page, p, "Freepointer corrupt");
/*
* No choice but to zap it and thus lose the remainder
* of the free objects in this slab. May cause
* another error because the object count is now wrong.
*/
set_freepointer(s, p, NULL);
return 0;
}
return 1;
}
static int check_slab(struct kmem_cache *s, struct page *page)
{
int maxobj;
if (!PageSlab(page)) {
slab_err(s, page, "Not a valid slab page");
return 0;
}
maxobj = order_objects(compound_order(page), s->size);
if (page->objects > maxobj) {
slab_err(s, page, "objects %u > max %u",
page->objects, maxobj);
return 0;
}
if (page->inuse > page->objects) {
slab_err(s, page, "inuse %u > max %u",
page->inuse, page->objects);
return 0;
}
/* Slab_pad_check fixes things up after itself */
slab_pad_check(s, page);
return 1;
}
/*
* Determine if a certain object on a page is on the freelist. Must hold the
* slab lock to guarantee that the chains are in a consistent state.
*/
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
int nr = 0;
void *fp;
void *object = NULL;
int max_objects;
fp = page->freelist;
while (fp && nr <= page->objects) {
if (fp == search)
return 1;
if (!check_valid_pointer(s, page, fp)) {
if (object) {
object_err(s, page, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
} else {
slab_err(s, page, "Freepointer corrupt");
page->freelist = NULL;
page->inuse = page->objects;
slab_fix(s, "Freelist cleared");
return 0;
}
break;
}
object = fp;
fp = get_freepointer(s, object);
nr++;
}
max_objects = order_objects(compound_order(page), s->size);
if (max_objects > MAX_OBJS_PER_PAGE)
max_objects = MAX_OBJS_PER_PAGE;
if (page->objects != max_objects) {
slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
page->objects, max_objects);
page->objects = max_objects;
slab_fix(s, "Number of objects adjusted");
}
if (page->inuse != page->objects - nr) {
slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
page->inuse, page->objects - nr);
page->inuse = page->objects - nr;
slab_fix(s, "Object count adjusted");
}
return search == NULL;
}
static void trace(struct kmem_cache *s, struct page *page, void *object,
int alloc)
{
if (s->flags & SLAB_TRACE) {
pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
s->name,
alloc ? "alloc" : "free",
object, page->inuse,
page->freelist);
if (!alloc)
print_section(KERN_INFO, "Object ", (void *)object,
s->object_size);
dump_stack();
}
}
/*
* Tracking of fully allocated slabs for debugging purposes.
*/
static void add_full(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page)
{
if (!(s->flags & SLAB_STORE_USER))
return;
lockdep_assert_held(&n->list_lock);
list_add(&page->slab_list, &n->full);
}
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
{
if (!(s->flags & SLAB_STORE_USER))
return;
lockdep_assert_held(&n->list_lock);
list_del(&page->slab_list);
}
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
struct kmem_cache_node *n = get_node(s, node);
return atomic_long_read(&n->nr_slabs);
}
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
return atomic_long_read(&n->nr_slabs);
}
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
{
struct kmem_cache_node *n = get_node(s, node);
/*
* May be called early in order to allocate a slab for the
* kmem_cache_node structure. Solve the chicken-egg
* dilemma by deferring the increment of the count during
* bootstrap (see early_kmem_cache_node_alloc).
*/
if (likely(n)) {
atomic_long_inc(&n->nr_slabs);
atomic_long_add(objects, &n->total_objects);
}
}
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
{
struct kmem_cache_node *n = get_node(s, node);
atomic_long_dec(&n->nr_slabs);
atomic_long_sub(objects, &n->total_objects);
}
/* Object debug checks for alloc/free paths */
static void setup_object_debug(struct kmem_cache *s, struct page *page,
void *object)
{
if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
return;
init_object(s, object, SLUB_RED_INACTIVE);
init_tracking(s, object);
}
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
{
if (!kmem_cache_debug_flags(s, SLAB_POISON))
return;
metadata_access_enable();
memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
metadata_access_disable();
}
static inline int alloc_consistency_checks(struct kmem_cache *s,
struct page *page, void *object)
{
if (!check_slab(s, page))
return 0;
if (!check_valid_pointer(s, page, object)) {
object_err(s, page, object, "Freelist Pointer check fails");
return 0;
}
if (!check_object(s, page, object, SLUB_RED_INACTIVE))
return 0;
return 1;
}
static noinline int alloc_debug_processing(struct kmem_cache *s,
struct page *page,
void *object, unsigned long addr)
{
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!alloc_consistency_checks(s, page, object))
goto bad;
}
/* Success perform special debug activities for allocs */
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_ALLOC, addr);
trace(s, page, object, 1);
init_object(s, object, SLUB_RED_ACTIVE);
return 1;
bad:
if (PageSlab(page)) {
/*
* If this is a slab page then lets do the best we can
* to avoid issues in the future. Marking all objects
* as used avoids touching the remaining objects.
*/
slab_fix(s, "Marking all objects used");
page->inuse = page->objects;
page->freelist = NULL;
}
return 0;
}
static inline int free_consistency_checks(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr)
{
if (!check_valid_pointer(s, page, object)) {
slab_err(s, page, "Invalid object pointer 0x%p", object);
return 0;
}
if (on_freelist(s, page, object)) {
object_err(s, page, object, "Object already free");
return 0;
}
if (!check_object(s, page, object, SLUB_RED_ACTIVE))
return 0;
if (unlikely(s != page->slab_cache)) {
if (!PageSlab(page)) {
slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
object);
} else if (!page->slab_cache) {
pr_err("SLUB <none>: no slab for object 0x%p.\n",
object);
dump_stack();
} else
object_err(s, page, object,
"page slab pointer corrupt.");
return 0;
}
return 1;
}
/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
struct kmem_cache *s, struct page *page,
void *head, void *tail, int bulk_cnt,
unsigned long addr)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
void *object = head;
int cnt = 0;
unsigned long flags, flags2;
int ret = 0;
spin_lock_irqsave(&n->list_lock, flags);
slab_lock(page, &flags2);
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!check_slab(s, page))
goto out;
}
next_object:
cnt++;
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!free_consistency_checks(s, page, object, addr))
goto out;
}
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0);
/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
init_object(s, object, SLUB_RED_INACTIVE);
/* Reached end of constructed freelist yet? */
if (object != tail) {
object = get_freepointer(s, object);
goto next_object;
}
ret = 1;
out:
if (cnt != bulk_cnt)
slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
bulk_cnt, cnt);
slab_unlock(page, &flags2);
spin_unlock_irqrestore(&n->list_lock, flags);
if (!ret)
slab_fix(s, "Object at 0x%p not freed", object);
return ret;
}
/*
* Parse a block of slub_debug options. Blocks are delimited by ';'
*
* @str: start of block
* @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
* @slabs: return start of list of slabs, or NULL when there's no list
* @init: assume this is initial parsing and not per-kmem-create parsing
*
* returns the start of next block if there's any, or NULL
*/
static char *
parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
{
bool higher_order_disable = false;
/* Skip any completely empty blocks */
while (*str && *str == ';')
str++;
if (*str == ',') {
/*
* No options but restriction on slabs. This means full
* debugging for slabs matching a pattern.
*/
*flags = DEBUG_DEFAULT_FLAGS;
goto check_slabs;
}
*flags = 0;
/* Determine which debug features should be switched on */
for (; *str && *str != ',' && *str != ';'; str++) {
switch (tolower(*str)) {
case '-':
*flags = 0;
break;
case 'f':
*flags |= SLAB_CONSISTENCY_CHECKS;
break;
case 'z':
*flags |= SLAB_RED_ZONE;
break;
case 'p':
*flags |= SLAB_POISON;
break;
case 'u':
*flags |= SLAB_STORE_USER;
break;
case 't':
*flags |= SLAB_TRACE;
break;
case 'a':
*flags |= SLAB_FAILSLAB;
break;
case 'o':
/*
* Avoid enabling debugging on caches if its minimum
* order would increase as a result.
*/
higher_order_disable = true;
break;
default:
if (init)
pr_err("slub_debug option '%c' unknown. skipped\n", *str);
}
}
check_slabs:
if (*str == ',')
*slabs = ++str;
else
*slabs = NULL;
/* Skip over the slab list */
while (*str && *str != ';')
str++;
/* Skip any completely empty blocks */
while (*str && *str == ';')
str++;
if (init && higher_order_disable)
disable_higher_order_debug = 1;
if (*str)
return str;
else
return NULL;
}
static int __init setup_slub_debug(char *str)
{
slab_flags_t flags;
slab_flags_t global_flags;
char *saved_str;
char *slab_list;
bool global_slub_debug_changed = false;
bool slab_list_specified = false;
global_flags = DEBUG_DEFAULT_FLAGS;
if (*str++ != '=' || !*str)
/*
* No options specified. Switch on full debugging.
*/
goto out;
saved_str = str;
while (str) {
str = parse_slub_debug_flags(str, &flags, &slab_list, true);
if (!slab_list) {
global_flags = flags;
global_slub_debug_changed = true;
} else {
slab_list_specified = true;
}
}
/*
* For backwards compatibility, a single list of flags with list of
* slabs means debugging is only changed for those slabs, so the global
* slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
* on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
* long as there is no option specifying flags without a slab list.
*/
if (slab_list_specified) {
if (!global_slub_debug_changed)
global_flags = slub_debug;
slub_debug_string = saved_str;
}
out:
slub_debug = global_flags;
if (slub_debug != 0 || slub_debug_string)
static_branch_enable(&slub_debug_enabled);
else
static_branch_disable(&slub_debug_enabled);
if ((static_branch_unlikely(&init_on_alloc) ||
static_branch_unlikely(&init_on_free)) &&
(slub_debug & SLAB_POISON))
pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
return 1;
}
__setup("slub_debug", setup_slub_debug);
/*
* kmem_cache_flags - apply debugging options to the cache
* @object_size: the size of an object without meta data
* @flags: flags to set
* @name: name of the cache
*
* Debug option(s) are applied to @flags. In addition to the debug
* option(s), if a slab name (or multiple) is specified i.e.
* slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
* then only the select slabs will receive the debug option(s).
*/
slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name)
{
char *iter;
size_t len;
char *next_block;
slab_flags_t block_flags;
slab_flags_t slub_debug_local = slub_debug;
/*
* If the slab cache is for debugging (e.g. kmemleak) then
* don't store user (stack trace) information by default,
* but let the user enable it via the command line below.
*/
if (flags & SLAB_NOLEAKTRACE)
slub_debug_local &= ~SLAB_STORE_USER;
len = strlen(name);
next_block = slub_debug_string;
/* Go through all blocks of debug options, see if any matches our slab's name */
while (next_block) {
next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
if (!iter)
continue;
/* Found a block that has a slab list, search it */
while (*iter) {
char *end, *glob;
size_t cmplen;
end = strchrnul(iter, ',');
if (next_block && next_block < end)
end = next_block - 1;
glob = strnchr(iter, end - iter, '*');
if (glob)
cmplen = glob - iter;
else
cmplen = max_t(size_t, len, (end - iter));
if (!strncmp(name, iter, cmplen)) {
flags |= block_flags;
return flags;
}
if (!*end || *end == ';')
break;
iter = end + 1;
}
}
return flags | slub_debug_local;
}
#else /* !CONFIG_SLUB_DEBUG */
static inline void setup_object_debug(struct kmem_cache *s,
struct page *page, void *object) {}
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
static inline int alloc_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr) { return 0; }
static inline int free_debug_processing(
struct kmem_cache *s, struct page *page,
void *head, void *tail, int bulk_cnt,
unsigned long addr) { return 0; }
static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
void *object, u8 val) { return 1; }
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct page *page) {}
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct page *page) {}
slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name)
{
return flags;
}
#define slub_debug 0
#define disable_higher_order_debug 0
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{ return 0; }
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{ return 0; }
static inline void inc_slabs_node(struct kmem_cache *s, int node,
int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {}
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
void **freelist, void *nextfree)
{
return false;
}
#endif /* CONFIG_SLUB_DEBUG */
/*
* Hooks for other subsystems that check memory allocations. In a typical
* production configuration these hooks all should produce no code at all.
*/
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
ptr = kasan_kmalloc_large(ptr, size, flags);
/* As ptr might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc(ptr, size, 1, flags);
return ptr;
}
static __always_inline void kfree_hook(void *x)
{
kmemleak_free(x);
kasan_kfree_large(x);
}
static __always_inline bool slab_free_hook(struct kmem_cache *s,
void *x, bool init)
{
kmemleak_free_recursive(x, s->flags);
debug_check_no_locks_freed(x, s->object_size);
if (!(s->flags & SLAB_DEBUG_OBJECTS))
debug_check_no_obj_freed(x, s->object_size);
/* Use KCSAN to help debug racy use-after-free. */
if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
__kcsan_check_access(x, s->object_size,
KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
/*
* As memory initialization might be integrated into KASAN,
* kasan_slab_free and initialization memset's must be
* kept together to avoid discrepancies in behavior.
*
* The initialization memset's clear the object and the metadata,
* but don't touch the SLAB redzone.
*/
if (init) {
int rsize;
if (!kasan_has_integrated_init())
memset(kasan_reset_tag(x), 0, s->object_size);
rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
memset((char *)kasan_reset_tag(x) + s->inuse, 0,
s->size - s->inuse - rsize);
}
/* KASAN might put x into memory quarantine, delaying its reuse. */
return kasan_slab_free(s, x, init);
}
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
void **head, void **tail,
int *cnt)
{
void *object;
void *next = *head;
void *old_tail = *tail ? *tail : *head;
if (is_kfence_address(next)) {
slab_free_hook(s, next, false);
return true;
}
/* Head and tail of the reconstructed freelist */
*head = NULL;
*tail = NULL;
do {
object = next;
next = get_freepointer(s, object);
/* If object's reuse doesn't have to be delayed */
if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
/* Move object to the new freelist */
set_freepointer(s, object, *head);
*head = object;
if (!*tail)
*tail = object;
} else {
/*
* Adjust the reconstructed freelist depth
* accordingly if object's reuse is delayed.
*/
--(*cnt);
}
} while (object != old_tail);
if (*head == *tail)
*tail = NULL;
return *head != NULL;
}
static void *setup_object(struct kmem_cache *s, struct page *page,
void *object)
{
setup_object_debug(s, page, object);
object = kasan_init_slab_obj(s, object);
if (unlikely(s->ctor)) {
kasan_unpoison_object_data(s, object);
s->ctor(object);
kasan_poison_object_data(s, object);
}
return object;
}
/*
* Slab allocation and freeing
*/
static inline struct page *alloc_slab_page(struct kmem_cache *s,
gfp_t flags, int node, struct kmem_cache_order_objects oo)
{
struct page *page;
unsigned int order = oo_order(oo);
if (node == NUMA_NO_NODE)
page = alloc_pages(flags, order);
else
page = __alloc_pages_node(node, flags, order);
return page;
}
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
unsigned int count = oo_objects(s->oo);
int err;
/* Bailout if already initialised */
if (s->random_seq)
return 0;
err = cache_random_seq_create(s, count, GFP_KERNEL);
if (err) {
pr_err("SLUB: Unable to initialize free list for %s\n",
s->name);
return err;
}
/* Transform to an offset on the set of pages */
if (s->random_seq) {
unsigned int i;
for (i = 0; i < count; i++)
s->random_seq[i] *= s->size;
}
return 0;
}
/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
struct kmem_cache *s;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list)
init_cache_random_seq(s);
mutex_unlock(&slab_mutex);
}
/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
unsigned long *pos, void *start,
unsigned long page_limit,
unsigned long freelist_count)
{
unsigned int idx;
/*
* If the target page allocation failed, the number of objects on the
* page might be smaller than the usual size defined by the cache.
*/
do {
idx = s->random_seq[*pos];
*pos += 1;
if (*pos >= freelist_count)
*pos = 0;
} while (unlikely(idx >= page_limit));
return (char *)start + idx;
}
/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
void *start;
void *cur;
void *next;
unsigned long idx, pos, page_limit, freelist_count;
if (page->objects < 2 || !s->random_seq)
return false;
freelist_count = oo_objects(s->oo);
pos = get_random_int() % freelist_count;
page_limit = page->objects * s->size;
start = fixup_red_left(s, page_address(page));
/* First entry is used as the base of the freelist */
cur = next_freelist_entry(s, page, &pos, start, page_limit,
freelist_count);
cur = setup_object(s, page, cur);
page->freelist = cur;
for (idx = 1; idx < page->objects; idx++) {
next = next_freelist_entry(s, page, &pos, start, page_limit,
freelist_count);
next = setup_object(s, page, next);
set_freepointer(s, cur, next);
cur = next;
}
set_freepointer(s, cur, NULL);
return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
struct page *page;
struct kmem_cache_order_objects oo = s->oo;
gfp_t alloc_gfp;
void *start, *p, *next;
int idx;
bool shuffle;
flags &= gfp_allowed_mask;
flags |= s->allocflags;
/*
* Let the initial higher-order allocation fail under memory pressure
* so we fall-back to the minimum order allocation.
*/
alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
page = alloc_slab_page(s, alloc_gfp, node, oo);
if (unlikely(!page)) {
oo = s->min;
alloc_gfp = flags;
/*
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
page = alloc_slab_page(s, alloc_gfp, node, oo);
if (unlikely(!page))
goto out;
stat(s, ORDER_FALLBACK);
}
page->objects = oo_objects(oo);
account_slab_page(page, oo_order(oo), s, flags);
page->slab_cache = s;
__SetPageSlab(page);
if (page_is_pfmemalloc(page))
SetPageSlabPfmemalloc(page);
kasan_poison_slab(page);
start = page_address(page);
setup_page_debug(s, page, start);
shuffle = shuffle_freelist(s, page);
if (!shuffle) {
start = fixup_red_left(s, start);
start = setup_object(s, page, start);
page->freelist = start;
for (idx = 0, p = start; idx < page->objects - 1; idx++) {
next = p + s->size;
next = setup_object(s, page, next);
set_freepointer(s, p, next);
p = next;
}
set_freepointer(s, p, NULL);
}
page->inuse = page->objects;
page->frozen = 1;
out:
if (!page)
return NULL;
inc_slabs_node(s, page_to_nid(page), page->objects);
return page;
}
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
if (unlikely(flags & GFP_SLAB_BUG_MASK))
flags = kmalloc_fix_flags(flags);
WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
return allocate_slab(s,
flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}
static void __free_slab(struct kmem_cache *s, struct page *page)
{
int order = compound_order(page);
int pages = 1 << order;
if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
void *p;
slab_pad_check(s, page);
for_each_object(p, s, page_address(page),
page->objects)
check_object(s, page, p, SLUB_RED_INACTIVE);
}
__ClearPageSlabPfmemalloc(page);
__ClearPageSlab(page);
/* In union with page->mapping where page allocator expects NULL */
page->slab_cache = NULL;
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += pages;
unaccount_slab_page(page, order, s);
__free_pages(page, order);
}
static void rcu_free_slab(struct rcu_head *h)
{
struct page *page = container_of(h, struct page, rcu_head);
__free_slab(page->slab_cache, page);
}
static void free_slab(struct kmem_cache *s, struct page *page)
{
if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
call_rcu(&page->rcu_head, rcu_free_slab);
} else
__free_slab(s, page);
}
static void discard_slab(struct kmem_cache *s, struct page *page)
{
dec_slabs_node(s, page_to_nid(page), page->objects);
free_slab(s, page);
}
/*
* Management of partially allocated slabs.
*/
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
{
n->nr_partial++;
if (tail == DEACTIVATE_TO_TAIL)
list_add_tail(&page->slab_list, &n->partial);
else
list_add(&page->slab_list, &n->partial);
}
static inline void add_partial(struct kmem_cache_node *n,
struct page *page, int tail)
{
lockdep_assert_held(&n->list_lock);
__add_partial(n, page, tail);
}
static inline void remove_partial(struct kmem_cache_node *n,
struct page *page)
{
lockdep_assert_held(&n->list_lock);
list_del(&page->slab_list);
n->nr_partial--;
}
/*
* Remove slab from the partial list, freeze it and
* return the pointer to the freelist.
*
* Returns a list of objects or NULL if it fails.
*/
static inline void *acquire_slab(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page,
int mode)
{
void *freelist;
unsigned long counters;
struct page new;
lockdep_assert_held(&n->list_lock);
/*
* Zap the freelist and set the frozen bit.
* The old freelist is the list of objects for the
* per cpu allocation list.
*/
freelist = page->freelist;
counters = page->counters;
new.counters = counters;
if (mode) {
new.inuse = page->objects;
new.freelist = NULL;
} else {
new.freelist = freelist;
}
VM_BUG_ON(new.frozen);
new.frozen = 1;
if (!__cmpxchg_double_slab(s, page,
freelist, counters,
new.freelist, new.counters,
"acquire_slab"))
return NULL;
remove_partial(n, page);
WARN_ON(!freelist);
return freelist;
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
#else
static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
int drain) { }
#endif
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
/*
* Try to allocate a partial slab from a specific node.
*/
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
struct page **ret_page, gfp_t gfpflags)
{
struct page *page, *page2;
void *object = NULL;
unsigned long flags;
unsigned int partial_pages = 0;
/*
* Racy check. If we mistakenly see no partial slabs then we
* just allocate an empty slab. If we mistakenly try to get a
* partial slab and there is none available then get_partial()
* will return NULL.
*/
if (!n || !n->nr_partial)
return NULL;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
void *t;
if (!pfmemalloc_match(page, gfpflags))
continue;
t = acquire_slab(s, n, page, object == NULL);
if (!t)
break;
if (!object) {
*ret_page = page;
stat(s, ALLOC_FROM_PARTIAL);
object = t;
} else {
put_cpu_partial(s, page, 0);
stat(s, CPU_PARTIAL_NODE);
partial_pages++;
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
if (!kmem_cache_has_cpu_partial(s)
|| partial_pages > s->cpu_partial_pages / 2)
break;
#else
break;
#endif
}
spin_unlock_irqrestore(&n->list_lock, flags);
return object;
}
/*
* Get a page from somewhere. Search in increasing NUMA distances.
*/
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
struct page **ret_page)
{
#ifdef CONFIG_NUMA
struct zonelist *zonelist;
struct zoneref *z;
struct zone *zone;
enum zone_type highest_zoneidx = gfp_zone(flags);
void *object;
unsigned int cpuset_mems_cookie;
/*
* The defrag ratio allows a configuration of the tradeoffs between
* inter node defragmentation and node local allocations. A lower
* defrag_ratio increases the tendency to do local allocations
* instead of attempting to obtain partial slabs from other nodes.
*
* If the defrag_ratio is set to 0 then kmalloc() always
* returns node local objects. If the ratio is higher then kmalloc()
* may return off node objects because partial slabs are obtained
* from other nodes and filled up.
*
* If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
* (which makes defrag_ratio = 1000) then every (well almost)
* allocation will first attempt to defrag slab caches on other nodes.
* This means scanning over all nodes to look for partial slabs which
* may be expensive if we do it every time we are trying to find a slab
* with available objects.
*/
if (!s->remote_node_defrag_ratio ||
get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL;
do {
cpuset_mems_cookie = read_mems_allowed_begin();
zonelist = node_zonelist(mempolicy_slab_node(), flags);
for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
struct kmem_cache_node *n;
n = get_node(s, zone_to_nid(zone));
if (n && cpuset_zone_allowed(zone, flags) &&
n->nr_partial > s->min_partial) {
object = get_partial_node(s, n, ret_page, flags);
if (object) {
/*
* Don't check read_mems_allowed_retry()
* here - if mems_allowed was updated in
* parallel, that was a harmless race
* between allocation and the cpuset
* update
*/
return object;
}
}
}
} while (read_mems_allowed_retry(cpuset_mems_cookie));
#endif /* CONFIG_NUMA */
return NULL;
}
/*
* Get a partial page, lock it and return it.
*/
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
struct page **ret_page)
{
void *object;
int searchnode = node;
if (node == NUMA_NO_NODE)
searchnode = numa_mem_id();
object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
if (object || node != NUMA_NO_NODE)
return object;
return get_any_partial(s, flags, ret_page);
}
#ifdef CONFIG_PREEMPTION
/*
* Calculate the next globally unique transaction for disambiguation
* during cmpxchg. The transactions start with the cpu number and are then
* incremented by CONFIG_NR_CPUS.
*/
#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
* No preemption supported therefore also no need to check for
* different cpus.
*/
#define TID_STEP 1
#endif
static inline unsigned long next_tid(unsigned long tid)
{
return tid + TID_STEP;
}
#ifdef SLUB_DEBUG_CMPXCHG
static inline unsigned int tid_to_cpu(unsigned long tid)
{
return tid % TID_STEP;
}
static inline unsigned long tid_to_event(unsigned long tid)
{
return tid / TID_STEP;
}
#endif
static inline unsigned int init_tid(int cpu)
{
return cpu;
}
static inline void note_cmpxchg_failure(const char *n,
const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
pr_info("%s %s: cmpxchg redo ", n, s->name);
#ifdef CONFIG_PREEMPTION
if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
pr_warn("due to cpu change %d -> %d\n",
tid_to_cpu(tid), tid_to_cpu(actual_tid));
else
#endif
if (tid_to_event(tid) != tid_to_event(actual_tid))
pr_warn("due to cpu running other code. Event %ld->%ld\n",
tid_to_event(tid), tid_to_event(actual_tid));
else
pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
actual_tid, tid, next_tid(tid));
#endif
stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
}
static void init_kmem_cache_cpus(struct kmem_cache *s)
{
int cpu;
struct kmem_cache_cpu *c;
for_each_possible_cpu(cpu) {
c = per_cpu_ptr(s->cpu_slab, cpu);
local_lock_init(&c->lock);
c->tid = init_tid(cpu);
}
}
/*
* Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
* unfreezes the slabs and puts it on the proper list.
* Assumes the slab has been already safely taken away from kmem_cache_cpu
* by the caller.
*/
static void deactivate_slab(struct kmem_cache *s, struct page *page,
void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
int lock = 0, free_delta = 0;
enum slab_modes l = M_NONE, m = M_NONE;
void *nextfree, *freelist_iter, *freelist_tail;
int tail = DEACTIVATE_TO_HEAD;
unsigned long flags = 0;
struct page new;
struct page old;
if (page->freelist) {
stat(s, DEACTIVATE_REMOTE_FREES);
tail = DEACTIVATE_TO_TAIL;
}
/*
* Stage one: Count the objects on cpu's freelist as free_delta and
* remember the last object in freelist_tail for later splicing.
*/
freelist_tail = NULL;
freelist_iter = freelist;
while (freelist_iter) {
nextfree = get_freepointer(s, freelist_iter);
/*
* If 'nextfree' is invalid, it is possible that the object at
* 'freelist_iter' is already corrupted. So isolate all objects
* starting at 'freelist_iter' by skipping them.
*/
if (freelist_corrupted(s, page, &freelist_iter, nextfree))
break;
freelist_tail = freelist_iter;
free_delta++;
freelist_iter = nextfree;
}
/*
* Stage two: Unfreeze the page while splicing the per-cpu
* freelist to the head of page's freelist.
*
* Ensure that the page is unfrozen while the list presence
* reflects the actual number of objects during unfreeze.
*
* We setup the list membership and then perform a cmpxchg
* with the count. If there is a mismatch then the page
* is not unfrozen but the page is on the wrong list.
*
* Then we restart the process which may have to remove
* the page from the list that we just put it on again
* because the number of objects in the slab may have
* changed.
*/
redo:
old.freelist = READ_ONCE(page->freelist);
old.counters = READ_ONCE(page->counters);
VM_BUG_ON(!old.frozen);
/* Determine target state of the slab */
new.counters = old.counters;
if (freelist_tail) {
new.inuse -= free_delta;
set_freepointer(s, freelist_tail, old.freelist);
new.freelist = freelist;
} else
new.freelist = old.freelist;
new.frozen = 0;
if (!new.inuse && n->nr_partial >= s->min_partial)
m = M_FREE;
else if (new.freelist) {
m = M_PARTIAL;
if (!lock) {
lock = 1;
/*
* Taking the spinlock removes the possibility
* that acquire_slab() will see a slab page that
* is frozen
*/
spin_lock_irqsave(&n->list_lock, flags);
}
} else {
m = M_FULL;
if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
lock = 1;
/*
* This also ensures that the scanning of full
* slabs from diagnostic functions will not see
* any frozen slabs.
*/
spin_lock_irqsave(&n->list_lock, flags);
}
}
if (l != m) {
if (l == M_PARTIAL)
remove_partial(n, page);
else if (l == M_FULL)
remove_full(s, n, page);
if (m == M_PARTIAL)
add_partial(n, page, tail);
else if (m == M_FULL)
add_full(s, n, page);
}
l = m;
if (!cmpxchg_double_slab(s, page,
old.freelist, old.counters,
new.freelist, new.counters,
"unfreezing slab"))
goto redo;
if (lock)
spin_unlock_irqrestore(&n->list_lock, flags);
if (m == M_PARTIAL)
stat(s, tail);
else if (m == M_FULL)
stat(s, DEACTIVATE_FULL);
else if (m == M_FREE) {
stat(s, DEACTIVATE_EMPTY);
discard_slab(s, page);
stat(s, FREE_SLAB);
}
}
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
{
struct kmem_cache_node *n = NULL, *n2 = NULL;
struct page *page, *discard_page = NULL;
unsigned long flags = 0;
while (partial_page) {
struct page new;
struct page old;
page = partial_page;
partial_page = page->next;
n2 = get_node(s, page_to_nid(page));
if (n != n2) {
if (n)
spin_unlock_irqrestore(&n->list_lock, flags);
n = n2;
spin_lock_irqsave(&n->list_lock, flags);
}
do {
old.freelist = page->freelist;
old.counters = page->counters;
VM_BUG_ON(!old.frozen);
new.counters = old.counters;
new.freelist = old.freelist;
new.frozen = 0;
} while (!__cmpxchg_double_slab(s, page,
old.freelist, old.counters,
new.freelist, new.counters,
"unfreezing slab"));
if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
page->next = discard_page;
discard_page = page;
} else {
add_partial(n, page, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
}
if (n)
spin_unlock_irqrestore(&n->list_lock, flags);
while (discard_page) {
page = discard_page;
discard_page = discard_page->next;
stat(s, DEACTIVATE_EMPTY);
discard_slab(s, page);
stat(s, FREE_SLAB);
}
}
/*
* Unfreeze all the cpu partial slabs.
*/
static void unfreeze_partials(struct kmem_cache *s)
{
struct page *partial_page;
unsigned long flags;
local_lock_irqsave(&s->cpu_slab->lock, flags);
partial_page = this_cpu_read(s->cpu_slab->partial);
this_cpu_write(s->cpu_slab->partial, NULL);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
if (partial_page)
__unfreeze_partials(s, partial_page);
}
static void unfreeze_partials_cpu(struct kmem_cache *s,
struct kmem_cache_cpu *c)
{
struct page *partial_page;
partial_page = slub_percpu_partial(c);
c->partial = NULL;
if (partial_page)
__unfreeze_partials(s, partial_page);
}
/*
* Put a page that was just frozen (in __slab_free|get_partial_node) into a
* partial page slot if available.
*
* If we did not find a slot then simply move all the partials to the
* per node partial list.
*/
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
{
struct page *oldpage;
struct page *page_to_unfreeze = NULL;
unsigned long flags;
int pages = 0;
local_lock_irqsave(&s->cpu_slab->lock, flags);
oldpage = this_cpu_read(s->cpu_slab->partial);
if (oldpage) {
if (drain && oldpage->pages >= s->cpu_partial_pages) {
/*
* Partial array is full. Move the existing set to the
* per node partial list. Postpone the actual unfreezing
* outside of the critical section.
*/
page_to_unfreeze = oldpage;
oldpage = NULL;
} else {
pages = oldpage->pages;
}
}
pages++;
page->pages = pages;
page->next = oldpage;
this_cpu_write(s->cpu_slab->partial, page);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
if (page_to_unfreeze) {
__unfreeze_partials(s, page_to_unfreeze);
stat(s, CPU_PARTIAL_DRAIN);
}
}
#else /* CONFIG_SLUB_CPU_PARTIAL */
static inline void unfreeze_partials(struct kmem_cache *s) { }
static inline void unfreeze_partials_cpu(struct kmem_cache *s,
struct kmem_cache_cpu *c) { }
#endif /* CONFIG_SLUB_CPU_PARTIAL */
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
unsigned long flags;
struct page *page;
void *freelist;
local_lock_irqsave(&s->cpu_slab->lock, flags);
page = c->page;
freelist = c->freelist;
c->page = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
if (page) {
deactivate_slab(s, page, freelist);
stat(s, CPUSLAB_FLUSH);
}
}
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
void *freelist = c->freelist;
struct page *page = c->page;
c->page = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
if (page) {
deactivate_slab(s, page, freelist);
stat(s, CPUSLAB_FLUSH);
}
unfreeze_partials_cpu(s, c);
}
struct slub_flush_work {
struct work_struct work;
struct kmem_cache *s;
bool skip;
};
/*
* Flush cpu slab.
*
* Called from CPU work handler with migration disabled.
*/
static void flush_cpu_slab(struct work_struct *w)
{
struct kmem_cache *s;
struct kmem_cache_cpu *c;
struct slub_flush_work *sfw;
sfw = container_of(w, struct slub_flush_work, work);
s = sfw->s;
c = this_cpu_ptr(s->cpu_slab);
if (c->page)
flush_slab(s, c);
unfreeze_partials(s);
}
static bool has_cpu_slab(int cpu, struct kmem_cache *s)
{
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
return c->page || slub_percpu_partial(c);
}
static DEFINE_MUTEX(flush_lock);
static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
static void flush_all_cpus_locked(struct kmem_cache *s)
{
struct slub_flush_work *sfw;
unsigned int cpu;
lockdep_assert_cpus_held();
mutex_lock(&flush_lock);
for_each_online_cpu(cpu) {
sfw = &per_cpu(slub_flush, cpu);
if (!has_cpu_slab(cpu, s)) {
sfw->skip = true;
continue;
}
INIT_WORK(&sfw->work, flush_cpu_slab);
sfw->skip = false;
sfw->s = s;
schedule_work_on(cpu, &sfw->work);
}
for_each_online_cpu(cpu) {
sfw = &per_cpu(slub_flush, cpu);
if (sfw->skip)
continue;
flush_work(&sfw->work);
}
mutex_unlock(&flush_lock);
}
static void flush_all(struct kmem_cache *s)
{
cpus_read_lock();
flush_all_cpus_locked(s);
cpus_read_unlock();
}
/*
* Use the cpu notifier to insure that the cpu slabs are flushed when
* necessary.
*/
static int slub_cpu_dead(unsigned int cpu)
{
struct kmem_cache *s;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list)
__flush_cpu_slab(s, cpu);
mutex_unlock(&slab_mutex);
return 0;
}
/*
* Check if the objects in a per cpu structure fit numa
* locality expectations.
*/
static inline int node_match(struct page *page, int node)
{
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE && page_to_nid(page) != node)
return 0;
#endif
return 1;
}
#ifdef CONFIG_SLUB_DEBUG
static int count_free(struct page *page)
{
return page->objects - page->inuse;
}
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */
#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
static unsigned long count_partial(struct kmem_cache_node *n,
int (*get_count)(struct page *))
{
unsigned long flags;
unsigned long x = 0;
struct page *page;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, slab_list)
x += get_count(page);
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
#ifdef CONFIG_SLUB_DEBUG
static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
int node;
struct kmem_cache_node *n;
if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
return;
pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
nid, gfpflags, &gfpflags);
pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
s->name, s->object_size, s->size, oo_order(s->oo),
oo_order(s->min));
if (oo_order(s->min) > get_order(s->object_size))
pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
s->name);
for_each_kmem_cache_node(s, node, n) {
unsigned long nr_slabs;
unsigned long nr_objs;
unsigned long nr_free;
nr_free = count_partial(n, count_free);
nr_slabs = node_nr_slabs(n);
nr_objs = node_nr_objs(n);
pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
node, nr_slabs, nr_objs, nr_free);
}
#endif
}
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
if (unlikely(PageSlabPfmemalloc(page)))
return gfp_pfmemalloc_allowed(gfpflags);
return true;
}
/*
* A variant of pfmemalloc_match() that tests page flags without asserting
* PageSlab. Intended for opportunistic checks before taking a lock and
* rechecking that nobody else freed the page under us.
*/
static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
{
if (unlikely(__PageSlabPfmemalloc(page)))
return gfp_pfmemalloc_allowed(gfpflags);
return true;
}
/*
* Check the page->freelist of a page and either transfer the freelist to the
* per cpu freelist or deactivate the page.
*
* The page is still frozen if the return value is not NULL.
*
* If this function returns NULL then the page has been unfrozen.
*/
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
struct page new;
unsigned long counters;
void *freelist;
lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
do {
freelist = page->freelist;
counters = page->counters;
new.counters = counters;
VM_BUG_ON(!new.frozen);
new.inuse = page->objects;
new.frozen = freelist != NULL;
} while (!__cmpxchg_double_slab(s, page,
freelist, counters,
NULL, new.counters,
"get_freelist"));
return freelist;
}
/*
* Slow path. The lockless freelist is empty or we need to perform
* debugging duties.
*
* Processing is still very fast if new objects have been freed to the
* regular freelist. In that case we simply take over the regular freelist
* as the lockless freelist and zap the regular freelist.
*
* If that is not working then we fall back to the partial lists. We take the
* first element of the freelist as the object to allocate now and move the
* rest of the freelist to the lockless freelist.
*
* And if we were unable to get a new slab from the partial slab lists then
* we need to allocate a new slab. This is the slowest path since it involves
* a call to the page allocator and the setup of a new slab.
*
* Version of __slab_alloc to use when we know that preemption is
* already disabled (which is the case for bulk allocation).
*/
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c)
{
void *freelist;
struct page *page;
unsigned long flags;
stat(s, ALLOC_SLOWPATH);
reread_page:
page = READ_ONCE(c->page);
if (!page) {
/*
* if the node is not online or has no normal memory, just
* ignore the node constraint
*/
if (unlikely(node != NUMA_NO_NODE &&
!node_isset(node, slab_nodes)))
node = NUMA_NO_NODE;
goto new_slab;
}
redo:
if (unlikely(!node_match(page, node))) {
/*
* same as above but node_match() being false already
* implies node != NUMA_NO_NODE
*/
if (!node_isset(node, slab_nodes)) {
node = NUMA_NO_NODE;
goto redo;
} else {
stat(s, ALLOC_NODE_MISMATCH);
goto deactivate_slab;
}
}
/*
* By rights, we should be searching for a slab page that was
* PFMEMALLOC but right now, we are losing the pfmemalloc
* information when the page leaves the per-cpu allocator
*/
if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
goto deactivate_slab;
/* must check again c->page in case we got preempted and it changed */
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (unlikely(page != c->page)) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
goto reread_page;
}
freelist = c->freelist;
if (freelist)
goto load_freelist;
freelist = get_freelist(s, page);
if (!freelist) {
c->page = NULL;
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
}
stat(s, ALLOC_REFILL);
load_freelist:
lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
/*
* freelist is pointing to the list of objects to be used.
* page is pointing to the page from which the objects are obtained.
* That page must be frozen for per cpu allocations to work.
*/
VM_BUG_ON(!c->page->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
return freelist;
deactivate_slab:
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (page != c->page) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
goto reread_page;
}
freelist = c->freelist;
c->page = NULL;
c->freelist = NULL;
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
deactivate_slab(s, page, freelist);
new_slab:
if (slub_percpu_partial(c)) {
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (unlikely(c->page)) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
goto reread_page;
}
if (unlikely(!slub_percpu_partial(c))) {
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
/* we were preempted and partial list got empty */
goto new_objects;
}
page = c->page = slub_percpu_partial(c);
slub_set_percpu_partial(c, page);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
stat(s, CPU_PARTIAL_ALLOC);
goto redo;
}
new_objects:
freelist = get_partial(s, gfpflags, node, &page);
if (freelist)
goto check_new_page;
slub_put_cpu_ptr(s->cpu_slab);
page = new_slab(s, gfpflags, node);
c = slub_get_cpu_ptr(s->cpu_slab);
if (unlikely(!page)) {
slab_out_of_memory(s, gfpflags, node);
return NULL;
}
/*
* No other reference to the page yet so we can
* muck around with it freely without cmpxchg
*/
freelist = page->freelist;
page->freelist = NULL;
stat(s, ALLOC_SLAB);
check_new_page:
if (kmem_cache_debug(s)) {
if (!alloc_debug_processing(s, page, freelist, addr)) {
/* Slab failed checks. Next slab needed */
goto new_slab;
} else {
/*
* For debug case, we don't load freelist so that all
* allocations go through alloc_debug_processing()
*/
goto return_single;
}
}
if (unlikely(!pfmemalloc_match(page, gfpflags)))
/*
* For !pfmemalloc_match() case we don't load freelist so that
* we don't make further mismatched allocations easier.
*/
goto return_single;
retry_load_page:
local_lock_irqsave(&s->cpu_slab->lock, flags);
if (unlikely(c->page)) {
void *flush_freelist = c->freelist;
struct page *flush_page = c->page;
c->page = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
local_unlock_irqrestore(&s->cpu_slab->lock, flags);
deactivate_slab(s, flush_page, flush_freelist);
stat(s, CPUSLAB_FLUSH);
goto retry_load_page;
}
c->page = page;
goto load_freelist;
return_single:
deactivate_slab(s, page, get_freepointer(s, freelist));
return freelist;
}
/*
* A wrapper for ___slab_alloc() for contexts where preemption is not yet
* disabled. Compensates for possible cpu changes by refetching the per cpu area
* pointer.
*/
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c)
{
void *p;
#ifdef CONFIG_PREEMPT_COUNT
/*
* We may have been preempted and rescheduled on a different
* cpu before disabling preemption. Need to reload cpu area
* pointer.
*/
c = slub_get_cpu_ptr(s->cpu_slab);
#endif
p = ___slab_alloc(s, gfpflags, node, addr, c);
#ifdef CONFIG_PREEMPT_COUNT
slub_put_cpu_ptr(s->cpu_slab);
#endif
return p;
}
/*
* If the object has been wiped upon free, make sure it's fully initialized by
* zeroing out freelist pointer.
*/
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
void *obj)
{
if (unlikely(slab_want_init_on_free(s)) && obj)
memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
0, sizeof(void *));
}
/*
* Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
* have the fastpath folded into their functions. So no function call
* overhead for requests that can be satisfied on the fastpath.
*
* The fastpath works by first checking if the lockless freelist can be used.
* If not then __slab_alloc is called for slow processing.
*
* Otherwise we can simply pick the next object from the lockless free list.
*/
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
void *object;
struct kmem_cache_cpu *c;
struct page *page;
unsigned long tid;
struct obj_cgroup *objcg = NULL;
bool init = false;
s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
if (!s)
return NULL;
object = kfence_alloc(s, orig_size, gfpflags);
if (unlikely(object))
goto out;
redo:
/*
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
* enabled. We may switch back and forth between cpus while
* reading from one cpu area. That does not matter as long
* as we end up on the original cpu again when doing the cmpxchg.
*
* We must guarantee that tid and kmem_cache_cpu are retrieved on the
* same cpu. We read first the kmem_cache_cpu pointer and use it to read
* the tid. If we are preempted and switched to another cpu between the
* two reads, it's OK as the two are still associated with the same cpu
* and cmpxchg later will validate the cpu.
*/
c = raw_cpu_ptr(s->cpu_slab);
tid = READ_ONCE(c->tid);
/*
* Irqless object alloc/free algorithm used here depends on sequence
* of fetching cpu_slab's data. tid should be fetched before anything
* on c to guarantee that object and page associated with previous tid
* won't be used with current tid. If we fetch tid first, object and
* page could be one associated with next tid and our alloc/free
* request will be failed. In this case, we will retry. So, no problem.
*/
barrier();
/*
* The transaction ids are globally unique per cpu and per operation on
* a per cpu queue. Thus they can be guarantee that the cmpxchg_double
* occurs on the right processor and that there was no operation on the
* linked list in between.
*/
object = c->freelist;
page = c->page;
/*
* We cannot use the lockless fastpath on PREEMPT_RT because if a
* slowpath has taken the local_lock_irqsave(), it is not protected
* against a fast path operation in an irq handler. So we need to take
* the slow path which uses local_lock. It is still relatively fast if
* there is a suitable cpu freelist.
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
unlikely(!object || !page || !node_match(page, node))) {
object = __slab_alloc(s, gfpflags, node, addr, c);
} else {
void *next_object = get_freepointer_safe(s, object);
/*
* The cmpxchg will only match if there was no additional
* operation and if we are on the right processor.
*
* The cmpxchg does the following atomically (without lock
* semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
* Since this is without lock semantics the protection is only
* against code executing on this cpu *not* from access by
* other cpus.
*/
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
object, tid,
next_object, next_tid(tid)))) {
note_cmpxchg_failure("slab_alloc", s, tid);
goto redo;
}
prefetch_freepointer(s, next_object);
stat(s, ALLOC_FASTPATH);
}
maybe_wipe_obj_freeptr(s, object);
init = slab_want_init_on_alloc(gfpflags, s);
out:
slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
return object;
}
static __always_inline void *slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, unsigned long addr, size_t orig_size)
{
return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
}
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
s->size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_TRACING
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
#endif
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
trace_kmem_cache_alloc_node(_RET_IP_, ret,
s->object_size, s->size, gfpflags, node);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#ifdef CONFIG_TRACING
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
trace_kmalloc_node(_RET_IP_, ret,
size, s->size, gfpflags, node);
ret = kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
#endif
#endif /* CONFIG_NUMA */
/*
* Slow path handling. This may still be called frequently since objects
* have a longer lifetime than the cpu slabs in most processing loads.
*
* So we still attempt to reduce cache line usage. Just take the slab
* lock and free the item. If there is no additional partial page
* handling required then we can return immediately.
*/
static void __slab_free(struct kmem_cache *s, struct page *page,
void *head, void *tail, int cnt,
unsigned long addr)
{
void *prior;
int was_frozen;
struct page new;
unsigned long counters;
struct kmem_cache_node *n = NULL;
unsigned long flags;
stat(s, FREE_SLOWPATH);
if (kfence_free(head))
return;
if (kmem_cache_debug(s) &&
!free_debug_processing(s, page, head, tail, cnt, addr))
return;
do {
if (unlikely(n)) {
spin_unlock_irqrestore(&n->list_lock, flags);
n = NULL;
}
prior = page->freelist;
counters = page->counters;
set_freepointer(s, tail, prior);
new.counters = counters;
was_frozen = new.frozen;
new.inuse -= cnt;
if ((!new.inuse || !prior) && !was_frozen) {
if (kmem_cache_has_cpu_partial(s) && !prior) {
/*
* Slab was on no list before and will be
* partially empty
* We can defer the list move and instead
* freeze it.
*/
new.frozen = 1;
} else { /* Needs to be taken off a list */
n = get_node(s, page_to_nid(page));
/*
* Speculatively acquire the list_lock.
* If the cmpxchg does not succeed then we may
* drop the list_lock without any processing.
*
* Otherwise the list_lock will synchronize with
* other processors updating the list of slabs.
*/
spin_lock_irqsave(&n->list_lock, flags);
}
}
} while (!cmpxchg_double_slab(s, page,
prior, counters,
head, new.counters,
"__slab_free"));
if (likely(!n)) {
if (likely(was_frozen)) {
/*
* The list lock was not taken therefore no list
* activity can be necessary.
*/
stat(s, FREE_FROZEN);
} else if (new.frozen) {
/*
* If we just froze the page then put it onto the
* per cpu partial list.
*/
put_cpu_partial(s, page, 1);
stat(s, CPU_PARTIAL_FREE);
}
return;
}
if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
goto slab_empty;
/*
* Objects left in the slab. If it was not on the partial list before
* then add it.
*/
if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
remove_full(s, n, page);
add_partial(n, page, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
spin_unlock_irqrestore(&n->list_lock, flags);
return;
slab_empty:
if (prior) {
/*
* Slab on the partial list.
*/
remove_partial(n, page);
stat(s, FREE_REMOVE_PARTIAL);
} else {
/* Slab must be on the full list */
remove_full(s, n, page);
}
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, FREE_SLAB);
discard_slab(s, page);
}
/*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that
* can perform fastpath freeing without additional function calls.
*
* The fastpath is only possible if we are freeing to the current cpu slab
* of this processor. This typically the case if we have just allocated
* the item before.
*
* If fastpath is not possible then fall back to __slab_free where we deal
* with all sorts of special processing.
*
* Bulk free of a freelist with several objects (all pointing to the
* same page) possible by specifying head and tail ptr, plus objects
* count (cnt). Bulk free indicated by tail pointer being set.
*/
static __always_inline void do_slab_free(struct kmem_cache *s,
struct page *page, void *head, void *tail,
int cnt, unsigned long addr)
{
void *tail_obj = tail ? : head;
struct kmem_cache_cpu *c;
unsigned long tid;
/* memcg_slab_free_hook() is already called for bulk free. */
if (!tail)
memcg_slab_free_hook(s, &head, 1);
redo:
/*
* Determine the currently cpus per cpu slab.
* The cpu may change afterward. However that does not matter since
* data is retrieved via this pointer. If we are on the same cpu
* during the cmpxchg then the free will succeed.
*/
c = raw_cpu_ptr(s->cpu_slab);
tid = READ_ONCE(c->tid);
/* Same with comment on barrier() in slab_alloc_node() */
barrier();
if (likely(page == c->page)) {
#ifndef CONFIG_PREEMPT_RT
void **freelist = READ_ONCE(c->freelist);
set_freepointer(s, tail_obj, freelist);
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
freelist, tid,
head, next_tid(tid)))) {
note_cmpxchg_failure("slab_free", s, tid);
goto redo;
}
#else /* CONFIG_PREEMPT_RT */
/*
* We cannot use the lockless fastpath on PREEMPT_RT because if
* a slowpath has taken the local_lock_irqsave(), it is not
* protected against a fast path operation in an irq handler. So
* we need to take the local_lock. We shouldn't simply defer to
* __slab_free() as that wouldn't use the cpu freelist at all.
*/
void **freelist;
local_lock(&s->cpu_slab->lock);
c = this_cpu_ptr(s->cpu_slab);
if (unlikely(page != c->page)) {
local_unlock(&s->cpu_slab->lock);
goto redo;
}
tid = c->tid;
freelist = c->freelist;
set_freepointer(s, tail_obj, freelist);
c->freelist = head;
c->tid = next_tid(tid);
local_unlock(&s->cpu_slab->lock);
#endif
stat(s, FREE_FASTPATH);
} else
__slab_free(s, page, head, tail_obj, cnt, addr);
}
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
void *head, void *tail, int cnt,
unsigned long addr)
{
/*
* With KASAN enabled slab_free_freelist_hook modifies the freelist
* to remove objects, whose reuse must be delayed.
*/
if (slab_free_freelist_hook(s, &head, &tail, &cnt))
do_slab_free(s, page, head, tail, cnt, addr);
}
#ifdef CONFIG_KASAN_GENERIC
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif
void kmem_cache_free(struct kmem_cache *s, void *x)
{
s = cache_from_obj(s, x);
if (!s)
return;
trace_kmem_cache_free(_RET_IP_, x, s->name);
slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
}
EXPORT_SYMBOL(kmem_cache_free);
struct detached_freelist {
struct page *page;
void *tail;
void *freelist;
int cnt;
struct kmem_cache *s;
};
static inline void free_nonslab_page(struct page *page, void *object)
{
unsigned int order = compound_order(page);
if (WARN_ON_ONCE(!PageCompound(page)))
pr_warn_once("object pointer: 0x%p\n", object);
kfree_hook(object);
mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
__free_pages(page, order);
}
/*
* This function progressively scans the array with free objects (with
* a limited look ahead) and extract objects belonging to the same
* page. It builds a detached freelist directly within the given
* page/objects. This can happen without any need for
* synchronization, because the objects are owned by running process.
* The freelist is build up as a single linked list in the objects.
* The idea is, that this detached freelist can then be bulk
* transferred to the real freelist(s), but only requiring a single
* synchronization primitive. Look ahead in the array is limited due
* to performance reasons.
*/
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
void **p, struct detached_freelist *df)
{
size_t first_skipped_index = 0;
int lookahead = 3;
void *object;
struct page *page;
/* Always re-init detached_freelist */
df->page = NULL;
do {
object = p[--size];
/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
} while (!object && size);
if (!object)
return 0;
page = virt_to_head_page(object);
if (!s) {
/* Handle kalloc'ed objects */
if (unlikely(!PageSlab(page))) {
free_nonslab_page(page, object);
p[size] = NULL; /* mark object processed */
return size;
}
/* Derive kmem_cache from object */
df->s = page->slab_cache;
} else {
df->s = cache_from_obj(s, object); /* Support for memcg */
}
if (is_kfence_address(object)) {
slab_free_hook(df->s, object, false);
__kfence_free(object);
p[size] = NULL; /* mark object processed */
return size;
}
/* Start new detached freelist */
df->page = page;
set_freepointer(df->s, object, NULL);
df->tail = object;
df->freelist = object;
p[size] = NULL; /* mark object processed */
df->cnt = 1;
while (size) {
object = p[--size];
if (!object)
continue; /* Skip processed objects */
/* df->page is always set at this point */
if (df->page == virt_to_head_page(object)) {
/* Opportunity build freelist */
set_freepointer(df->s, object, df->freelist);
df->freelist = object;
df->cnt++;
p[size] = NULL; /* mark object processed */
continue;
}
/* Limit look ahead search */
if (!--lookahead)
break;
if (!first_skipped_index)
first_skipped_index = size + 1;
}
return first_skipped_index;
}
/* Note that interrupts must be enabled when calling this function. */
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
if (WARN_ON(!size))
return;
memcg_slab_free_hook(s, p, size);
do {
struct detached_freelist df;
size = build_detached_freelist(s, size, p, &df);
if (!df.page)
continue;
slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
} while (likely(size));
}
EXPORT_SYMBOL(kmem_cache_free_bulk);
/* Note that interrupts must be enabled when calling this function. */
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
void **p)
{
struct kmem_cache_cpu *c;
int i;
struct obj_cgroup *objcg = NULL;
/* memcg and kmem_cache debug support */
s = slab_pre_alloc_hook(s, &objcg, size, flags);
if (unlikely(!s))
return false;
/*
* Drain objects in the per cpu slab, while disabling local
* IRQs, which protects against PREEMPT and interrupts
* handlers invoking normal fastpath.
*/
c = slub_get_cpu_ptr(s->cpu_slab);
local_lock_irq(&s->cpu_slab->lock);
for (i = 0; i < size; i++) {
void *object = kfence_alloc(s, s->object_size, flags);
if (unlikely(object)) {
p[i] = object;
continue;
}
object = c->freelist;
if (unlikely(!object)) {
/*
* We may have removed an object from c->freelist using
* the fastpath in the previous iteration; in that case,
* c->tid has not been bumped yet.
* Since ___slab_alloc() may reenable interrupts while
* allocating memory, we should bump c->tid now.
*/
c->tid = next_tid(c->tid);
local_unlock_irq(&s->cpu_slab->lock);
/*
* Invoking slow path likely have side-effect
* of re-populating per CPU c->freelist
*/
p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
_RET_IP_, c);
if (unlikely(!p[i]))
goto error;
c = this_cpu_ptr(s->cpu_slab);
maybe_wipe_obj_freeptr(s, p[i]);
local_lock_irq(&s->cpu_slab->lock);
continue; /* goto for-loop */
}
c->freelist = get_freepointer(s, object);
p[i] = object;
maybe_wipe_obj_freeptr(s, p[i]);
}
c->tid = next_tid(c->tid);
local_unlock_irq(&s->cpu_slab->lock);
slub_put_cpu_ptr(s->cpu_slab);
/*
* memcg and kmem_cache debug support and memory initialization.
* Done outside of the IRQ disabled fastpath loop.
*/
slab_post_alloc_hook(s, objcg, flags, size, p,
slab_want_init_on_alloc(flags, s));
return i;
error:
slub_put_cpu_ptr(s->cpu_slab);
slab_post_alloc_hook(s, objcg, flags, i, p, false);
__kmem_cache_free_bulk(s, i, p);
return 0;
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);
/*
* Object placement in a slab is made very easy because we always start at
* offset 0. If we tune the size of the object to the alignment then we can
* get the required alignment by putting one properly sized object after
* another.
*
* Notice that the allocation order determines the sizes of the per cpu
* caches. Each processor has always one slab available for allocations.
* Increasing the allocation order reduces the number of times that slabs
* must be moved on and off the partial lists and is therefore a factor in
* locking overhead.
*/
/*
* Minimum / Maximum order of slab pages. This influences locking overhead
* and slab fragmentation. A higher order reduces the number of partial slabs
* and increases the number of allocations possible without having to
* take the list_lock.
*/
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
/*
* Calculate the order of allocation given an slab object size.
*
* The order of allocation has significant impact on performance and other
* system components. Generally order 0 allocations should be preferred since
* order 0 does not cause fragmentation in the page allocator. Larger objects
* be problematic to put into order 0 slabs because there may be too much
* unused space left. We go to a higher order if more than 1/16th of the slab
* would be wasted.
*
* In order to reach satisfactory performance we must ensure that a minimum
* number of objects is in one slab. Otherwise we may generate too much
* activity on the partial lists which requires taking the list_lock. This is
* less a concern for large slabs though which are rarely used.
*
* slub_max_order specifies the order where we begin to stop considering the
* number of objects in a slab as critical. If we reach slub_max_order then
* we try to keep the page order as low as possible. So we accept more waste
* of space in favor of a small page order.
*
* Higher order allocations also allow the placement of more objects in a
* slab and thereby reduce object handling overhead. If the user has
* requested a higher minimum order then we start with that one instead of
* the smallest order which will fit the object.
*/
static inline unsigned int slab_order(unsigned int size,
unsigned int min_objects, unsigned int max_order,
unsigned int fract_leftover)
{
unsigned int min_order = slub_min_order;
unsigned int order;
if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
return get_order(size * MAX_OBJS_PER_PAGE) - 1;
for (order = max(min_order, (unsigned int)get_order(min_objects * size));
order <= max_order; order++) {
unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
unsigned int rem;
rem = slab_size % size;
if (rem <= slab_size / fract_leftover)
break;
}
return order;
}
static inline int calculate_order(unsigned int size)
{
unsigned int order;
unsigned int min_objects;
unsigned int max_objects;
unsigned int nr_cpus;
/*
* Attempt to find best configuration for a slab. This
* works by first attempting to generate a layout with
* the best configuration and backing off gradually.
*
* First we increase the acceptable waste in a slab. Then
* we reduce the minimum objects required in a slab.
*/
min_objects = slub_min_objects;
if (!min_objects) {
/*
* Some architectures will only update present cpus when
* onlining them, so don't trust the number if it's just 1. But
* we also don't want to use nr_cpu_ids always, as on some other
* architectures, there can be many possible cpus, but never
* onlined. Here we compromise between trying to avoid too high
* order on systems that appear larger than they are, and too
* low order on systems that appear smaller than they are.
*/
nr_cpus = num_present_cpus();
if (nr_cpus <= 1)
nr_cpus = nr_cpu_ids;
min_objects = 4 * (fls(nr_cpus) + 1);
}
max_objects = order_objects(slub_max_order, size);
min_objects = min(min_objects, max_objects);
while (min_objects > 1) {
unsigned int fraction;
fraction = 16;
while (fraction >= 4) {
order = slab_order(size, min_objects,
slub_max_order, fraction);
if (order <= slub_max_order)
return order;
fraction /= 2;
}
min_objects--;
}
/*
* We were unable to place multiple objects in a slab. Now
* lets see if we can place a single object there.
*/
order = slab_order(size, 1, slub_max_order, 1);
if (order <= slub_max_order)
return order;
/*
* Doh this slab cannot be placed using slub_max_order.
*/
order = slab_order(size, 1, MAX_ORDER, 1);
if (order < MAX_ORDER)
return order;
return -ENOSYS;
}
static void
init_kmem_cache_node(struct kmem_cache_node *n)
{
n->nr_partial = 0;
spin_lock_init(&n->list_lock);
INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG
atomic_long_set(&n->nr_slabs, 0);
atomic_long_set(&n->total_objects, 0);
INIT_LIST_HEAD(&n->full);
#endif
}
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
/*
* Must align to double word boundary for the double cmpxchg
* instructions to work; see __pcpu_double_call_return_bool().
*/
s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2 * sizeof(void *));
if (!s->cpu_slab)
return 0;
init_kmem_cache_cpus(s);
return 1;
}
static struct kmem_cache *kmem_cache_node;
/*
* No kmalloc_node yet so do it by hand. We know that this is the first
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
* Note that this function only works on the kmem_cache_node
* when allocating for the kmem_cache_node. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static void early_kmem_cache_node_alloc(int node)
{
struct page *page;
struct kmem_cache_node *n;
BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
BUG_ON(!page);
if (page_to_nid(page) != node) {
pr_err("SLUB: Unable to allocate memory from node %d\n", node);
pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
}
n = page->freelist;
BUG_ON(!n);
#ifdef CONFIG_SLUB_DEBUG
init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
init_tracking(kmem_cache_node, n);
#endif
n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
page->freelist = get_freepointer(kmem_cache_node, n);
page->inuse = 1;
page->frozen = 0;
kmem_cache_node->node[node] = n;
init_kmem_cache_node(n);
inc_slabs_node(kmem_cache_node, node, page->objects);
/*
* No locks need to be taken here as it has just been
* initialized and there is no concurrent access.
*/
__add_partial(n, page, DEACTIVATE_TO_HEAD);
}
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
s->node[node] = NULL;
kmem_cache_free(kmem_cache_node, n);
}
}
void __kmem_cache_release(struct kmem_cache *s)
{
cache_random_seq_destroy(s);
free_percpu(s->cpu_slab);
free_kmem_cache_nodes(s);
}
static int init_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
for_each_node_mask(node, slab_nodes) {
struct kmem_cache_node *n;
if (slab_state == DOWN) {
early_kmem_cache_node_alloc(node);
continue;
}
n = kmem_cache_alloc_node(kmem_cache_node,
GFP_KERNEL, node);
if (!n) {
free_kmem_cache_nodes(s);
return 0;
}
init_kmem_cache_node(n);
s->node[node] = n;
}
return 1;
}
static void set_min_partial(struct kmem_cache *s, unsigned long min)
{
if (min < MIN_PARTIAL)
min = MIN_PARTIAL;
else if (min > MAX_PARTIAL)
min = MAX_PARTIAL;
s->min_partial = min;
}
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
unsigned int nr_objects;
/*
* cpu_partial determined the maximum number of objects kept in the
* per cpu partial lists of a processor.
*
* Per cpu partial lists mainly contain slabs that just have one
* object freed. If they are used for allocation then they can be
* filled up again with minimal effort. The slab will never hit the
* per node partial lists and therefore no locking will be required.
*
* For backwards compatibility reasons, this is determined as number
* of objects, even though we now limit maximum number of pages, see
* slub_set_cpu_partial()
*/
if (!kmem_cache_has_cpu_partial(s))
nr_objects = 0;
else if (s->size >= PAGE_SIZE)
nr_objects = 6;
else if (s->size >= 1024)
nr_objects = 24;
else if (s->size >= 256)
nr_objects = 52;
else
nr_objects = 120;
slub_set_cpu_partial(s, nr_objects);
#endif
}
/*
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
*/
static int calculate_sizes(struct kmem_cache *s, int forced_order)
{
slab_flags_t flags = s->flags;
unsigned int size = s->object_size;
unsigned int order;
/*
* Round up object size to the next word boundary. We can only
* place the free pointer at word boundaries and this determines
* the possible location of the free pointer.
*/
size = ALIGN(size, sizeof(void *));
#ifdef CONFIG_SLUB_DEBUG
/*
* Determine if we can poison the object itself. If the user of
* the slab may touch the object after free or before allocation
* then we should never poison the object itself.
*/
if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
!s->ctor)
s->flags |= __OBJECT_POISON;
else
s->flags &= ~__OBJECT_POISON;
/*
* If we are Redzoning then check if there is some space between the
* end of the object and the free pointer. If not then add an
* additional word to have some bytes to store Redzone information.
*/
if ((flags & SLAB_RED_ZONE) && size == s->object_size)
size += sizeof(void *);
#endif
/*
* With that we have determined the number of bytes in actual use
* by the object and redzoning.
*/
s->inuse = size;
if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
s->ctor) {
/*
* Relocate free pointer after the object if it is not
* permitted to overwrite the first word of the object on
* kmem_cache_free.
*
* This is the case if we do RCU, have a constructor or
* destructor, are poisoning the objects, or are
* redzoning an object smaller than sizeof(void *).
*
* The assumption that s->offset >= s->inuse means free
* pointer is outside of the object is used in the
* freeptr_outside_object() function. If that is no
* longer true, the function needs to be modified.
*/
s->offset = size;
size += sizeof(void *);
} else {
/*
* Store freelist pointer near middle of object to keep
* it away from the edges of the object to avoid small
* sized over/underflows from neighboring allocations.
*/
s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
}
#ifdef CONFIG_SLUB_DEBUG
if (flags & SLAB_STORE_USER)
/*
* Need to store information about allocs and frees after
* the object.
*/
size += 2 * sizeof(struct track);
#endif
kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
if (flags & SLAB_RED_ZONE) {
/*
* Add some empty padding so that we can catch
* overwrites from earlier objects rather than let
* tracking information or the free pointer be
* corrupted if a user writes before the start
* of the object.
*/
size += sizeof(void *);
s->red_left_pad = sizeof(void *);
s->red_left_pad = ALIGN(s->red_left_pad, s->align);
size += s->red_left_pad;
}
#endif
/*
* SLUB stores one object immediately after another beginning from
* offset 0. In order to align the objects we have to simply size
* each object to conform to the alignment.
*/
size = ALIGN(size, s->align);
s->size = size;
s->reciprocal_size = reciprocal_value(size);
if (forced_order >= 0)
order = forced_order;
else
order = calculate_order(size);
if ((int)order < 0)
return 0;
s->allocflags = 0;
if (order)
s->allocflags |= __GFP_COMP;
if (s->flags & SLAB_CACHE_DMA)
s->allocflags |= GFP_DMA;
if (s->flags & SLAB_CACHE_DMA32)
s->allocflags |= GFP_DMA32;
if (s->flags & SLAB_RECLAIM_ACCOUNT)
s->allocflags |= __GFP_RECLAIMABLE;
/*
* Determine the number of objects per slab
*/
s->oo = oo_make(order, size);
s->min = oo_make(get_order(size), size);
if (oo_objects(s->oo) > oo_objects(s->max))
s->max = s->oo;
return !!oo_objects(s->oo);
}
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
{
s->flags = kmem_cache_flags(s->size, flags, s->name);
#ifdef CONFIG_SLAB_FREELIST_HARDENED
s->random = get_random_long();
#endif
if (!calculate_sizes(s, -1))
goto error;
if (disable_higher_order_debug) {
/*
* Disable debugging flags that store metadata if the min slab
* order increased.
*/
if (get_order(s->size) > get_order(s->object_size)) {
s->flags &= ~DEBUG_METADATA_FLAGS;
s->offset = 0;
if (!calculate_sizes(s, -1))
goto error;
}
}
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
/* Enable fast mode */
s->flags |= __CMPXCHG_DOUBLE;
#endif
/*
* The larger the object size is, the more pages we want on the partial
* list to avoid pounding the page allocator excessively.
*/
set_min_partial(s, ilog2(s->size) / 2);
set_cpu_partial(s);
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
#endif
/* Initialize the pre-computed randomized freelist if slab is up */
if (slab_state >= UP) {
if (init_cache_random_seq(s))
goto error;
}
if (!init_kmem_cache_nodes(s))
goto error;
if (alloc_kmem_cache_cpus(s))
return 0;
error:
__kmem_cache_release(s);
return -EINVAL;
}
static void list_slab_objects(struct kmem_cache *s, struct page *page,
const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
void *addr = page_address(page);
unsigned long flags;
unsigned long *map;
void *p;
slab_err(s, page, text, s->name);
slab_lock(page, &flags);
map = get_map(s, page);
for_each_object(p, s, addr, page->objects) {
if (!test_bit(__obj_to_index(s, addr, p), map)) {
pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
print_tracking(s, p);
}
}
put_map(map);
slab_unlock(page, &flags);
#endif
}
/*
* Attempt to free all partial slabs on a node.
* This is called from __kmem_cache_shutdown(). We must take list_lock
* because sysfs file might still access partial list after the shutdowning.
*/
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
{
LIST_HEAD(discard);
struct page *page, *h;
BUG_ON(irqs_disabled());
spin_lock_irq(&n->list_lock);
list_for_each_entry_safe(page, h, &n->partial, slab_list) {
if (!page->inuse) {
remove_partial(n, page);
list_add(&page->slab_list, &discard);
} else {
list_slab_objects(s, page,
"Objects remaining in %s on __kmem_cache_shutdown()");
}
}
spin_unlock_irq(&n->list_lock);
list_for_each_entry_safe(page, h, &discard, slab_list)
discard_slab(s, page);
}
bool __kmem_cache_empty(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n)
if (n->nr_partial || slabs_node(s, node))
return false;
return true;
}
/*
* Release all resources used by a slab cache.
*/
int __kmem_cache_shutdown(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
flush_all_cpus_locked(s);
/* Attempt to free all objects */
for_each_kmem_cache_node(s, node, n) {
free_partial(s, n);
if (n->nr_partial || slabs_node(s, node))
return 1;
}
return 0;
}
#ifdef CONFIG_PRINTK
void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
{
void *base;
int __maybe_unused i;
unsigned int objnr;
void *objp;
void *objp0;
struct kmem_cache *s = page->slab_cache;
struct track __maybe_unused *trackp;
kpp->kp_ptr = object;
kpp->kp_page = page;
kpp->kp_slab_cache = s;
base = page_address(page);
objp0 = kasan_reset_tag(object);
#ifdef CONFIG_SLUB_DEBUG
objp = restore_red_left(s, objp0);
#else
objp = objp0;
#endif
objnr = obj_to_index(s, page, objp);
kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
objp = base + s->size * objnr;
kpp->kp_objp = objp;
if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
!(s->flags & SLAB_STORE_USER))
return;
#ifdef CONFIG_SLUB_DEBUG
objp = fixup_red_left(s, objp);
trackp = get_track(s, objp, TRACK_ALLOC);
kpp->kp_ret = (void *)trackp->addr;
#ifdef CONFIG_STACKTRACE
for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
kpp->kp_stack[i] = (void *)trackp->addrs[i];
if (!kpp->kp_stack[i])
break;
}
trackp = get_track(s, objp, TRACK_FREE);
for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
if (!kpp->kp_free_stack[i])
break;
}
#endif
#endif
}
#endif
/********************************************************************
* Kmalloc subsystem
*******************************************************************/
static int __init setup_slub_min_order(char *str)
{
get_option(&str, (int *)&slub_min_order);
return 1;
}
__setup("slub_min_order=", setup_slub_min_order);
static int __init setup_slub_max_order(char *str)
{
get_option(&str, (int *)&slub_max_order);
slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
return 1;
}
__setup("slub_max_order=", setup_slub_max_order);
static int __init setup_slub_min_objects(char *str)
{
get_option(&str, (int *)&slub_min_objects);
return 1;
}
__setup("slub_min_objects=", setup_slub_min_objects);
void *__kmalloc(size_t size, gfp_t flags)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
return kmalloc_large(size, flags);
s = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
ret = slab_alloc(s, flags, _RET_IP_, size);
trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
ret = kasan_kmalloc(s, ret, size, flags);
return ret;
}
EXPORT_SYMBOL(__kmalloc);
#ifdef CONFIG_NUMA
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
struct page *page;
void *ptr = NULL;
unsigned int order = get_order(size);
flags |= __GFP_COMP;
page = alloc_pages_node(node, flags, order);
if (page) {
ptr = page_address(page);
mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
PAGE_SIZE << order);
}
return kmalloc_large_node_hook(ptr, size, flags);
}
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = kmalloc_large_node(size, flags, node);
trace_kmalloc_node(_RET_IP_, ret,
size, PAGE_SIZE << get_order(size),
flags, node);
return ret;
}
s = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
ret = kasan_kmalloc(s, ret, size, flags);
return ret;
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_NUMA */
#ifdef CONFIG_HARDENED_USERCOPY
/*
* Rejects incorrectly sized objects and objects that are to be copied
* to/from userspace but do not fall entirely within the containing slab
* cache's usercopy region.
*
* Returns NULL if check passes, otherwise const char * to name of cache
* to indicate an error.
*/
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
bool to_user)
{
struct kmem_cache *s;
unsigned int offset;
bool is_kfence = is_kfence_address(ptr);
ptr = kasan_reset_tag(ptr);
/* Find object and usable object size. */
s = page->slab_cache;
/* Reject impossible pointers. */
if (ptr < page_address(page))
usercopy_abort("SLUB object not in SLUB page?!", NULL,
to_user, 0, n);
/* Find offset within object. */
if (is_kfence)
offset = ptr - kfence_object_start(ptr);
else
offset = (ptr - page_address(page)) % s->size;
/* Adjust for redzone and reject if within the redzone. */
if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
if (offset < s->red_left_pad)
usercopy_abort("SLUB object in left red zone",
s->name, to_user, offset, n);
offset -= s->red_left_pad;
}
/* Allow address range falling entirely within usercopy region. */
if (offset >= s->useroffset &&
offset - s->useroffset <= s->usersize &&
n <= s->useroffset - offset + s->usersize)
return;
usercopy_abort("SLUB object", s->name, to_user, offset, n);
}
#endif /* CONFIG_HARDENED_USERCOPY */
size_t __ksize(const void *object)
{
struct page *page;
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
page = virt_to_head_page(object);
if (unlikely(!PageSlab(page))) {
WARN_ON(!PageCompound(page));
return page_size(page);
}
return slab_ksize(page->slab_cache);
}
EXPORT_SYMBOL(__ksize);
void kfree(const void *x)
{
struct page *page;
void *object = (void *)x;
trace_kfree(_RET_IP_, x);
if (unlikely(ZERO_OR_NULL_PTR(x)))
return;
page = virt_to_head_page(x);
if (unlikely(!PageSlab(page))) {
free_nonslab_page(page, object);
return;
}
slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
}
EXPORT_SYMBOL(kfree);
#define SHRINK_PROMOTE_MAX 32
/*
* kmem_cache_shrink discards empty slabs and promotes the slabs filled
* up most to the head of the partial lists. New allocations will then
* fill those up and thus they can be removed from the partial lists.
*
* The slabs with the least items are placed last. This results in them
* being allocated from last increasing the chance that the last objects
* are freed in them.
*/
static int __kmem_cache_do_shrink(struct kmem_cache *s)
{
int node;
int i;
struct kmem_cache_node *n;
struct page *page;
struct page *t;
struct list_head discard;
struct list_head promote[SHRINK_PROMOTE_MAX];
unsigned long flags;
int ret = 0;
for_each_kmem_cache_node(s, node, n) {
INIT_LIST_HEAD(&discard);
for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
INIT_LIST_HEAD(promote + i);
spin_lock_irqsave(&n->list_lock, flags);
/*
* Build lists of slabs to discard or promote.
*
* Note that concurrent frees may occur while we hold the
* list_lock. page->inuse here is the upper limit.
*/
list_for_each_entry_safe(page, t, &n->partial, slab_list) {
int free = page->objects - page->inuse;
/* Do not reread page->inuse */
barrier();
/* We do not keep full slabs on the list */
BUG_ON(free <= 0);
if (free == page->objects) {
list_move(&page->slab_list, &discard);
n->nr_partial--;
} else if (free <= SHRINK_PROMOTE_MAX)
list_move(&page->slab_list, promote + free - 1);
}
/*
* Promote the slabs filled up most to the head of the
* partial list.
*/
for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
list_splice(promote + i, &n->partial);
spin_unlock_irqrestore(&n->list_lock, flags);
/* Release empty slabs */
list_for_each_entry_safe(page, t, &discard, slab_list)
discard_slab(s, page);
if (slabs_node(s, node))
ret = 1;
}
return ret;
}
int __kmem_cache_shrink(struct kmem_cache *s)
{
flush_all(s);
return __kmem_cache_do_shrink(s);
}
static int slab_mem_going_offline_callback(void *arg)
{
struct kmem_cache *s;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
flush_all_cpus_locked(s);
__kmem_cache_do_shrink(s);
}
mutex_unlock(&slab_mutex);
return 0;
}
static void slab_mem_offline_callback(void *arg)
{
struct memory_notify *marg = arg;
int offline_node;
offline_node = marg->status_change_nid_normal;
/*
* If the node still has available memory. we need kmem_cache_node
* for it yet.
*/
if (offline_node < 0)
return;
mutex_lock(&slab_mutex);
node_clear(offline_node, slab_nodes);
/*
* We no longer free kmem_cache_node structures here, as it would be
* racy with all get_node() users, and infeasible to protect them with
* slab_mutex.
*/
mutex_unlock(&slab_mutex);
}
static int slab_mem_going_online_callback(void *arg)
{
struct kmem_cache_node *n;
struct kmem_cache *s;
struct memory_notify *marg = arg;
int nid = marg->status_change_nid_normal;
int ret = 0;
/*
* If the node's memory is already available, then kmem_cache_node is
* already created. Nothing to do.
*/
if (nid < 0)
return 0;
/*
* We are bringing a node online. No memory is available yet. We must
* allocate a kmem_cache_node structure in order to bring the node
* online.
*/
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
/*
* The structure may already exist if the node was previously
* onlined and offlined.
*/
if (get_node(s, nid))
continue;
/*
* XXX: kmem_cache_alloc_node will fallback to other nodes
* since memory is not yet available from the node that
* is brought up.
*/
n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
if (!n) {
ret = -ENOMEM;
goto out;
}
init_kmem_cache_node(n);
s->node[nid] = n;
}
/*
* Any cache created after this point will also have kmem_cache_node
* initialized for the new node.
*/
node_set(nid, slab_nodes);
out:
mutex_unlock(&slab_mutex);
return ret;
}
static int slab_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
int ret = 0;
switch (action) {
case MEM_GOING_ONLINE:
ret = slab_mem_going_online_callback(arg);
break;
case MEM_GOING_OFFLINE:
ret = slab_mem_going_offline_callback(arg);
break;
case MEM_OFFLINE:
case MEM_CANCEL_ONLINE:
slab_mem_offline_callback(arg);
break;
case MEM_ONLINE:
case MEM_CANCEL_OFFLINE:
break;
}
if (ret)
ret = notifier_from_errno(ret);
else
ret = NOTIFY_OK;
return ret;
}
static struct notifier_block slab_memory_callback_nb = {
.notifier_call = slab_memory_callback,
.priority = SLAB_CALLBACK_PRI,
};
/********************************************************************
* Basic setup of slabs
*******************************************************************/
/*
* Used for early kmem_cache structures that were allocated using
* the page allocator. Allocate them properly then fix up the pointers
* that may be pointing to the wrong kmem_cache structure.
*/
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
{
int node;
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
struct kmem_cache_node *n;
memcpy(s, static_cache, kmem_cache->object_size);
/*
* This runs very early, and only the boot processor is supposed to be
* up. Even if it weren't true, IRQs are not up so we couldn't fire
* IPIs around.
*/
__flush_cpu_slab(s, smp_processor_id());
for_each_kmem_cache_node(s, node, n) {
struct page *p;
list_for_each_entry(p, &n->partial, slab_list)
p->slab_cache = s;
#ifdef CONFIG_SLUB_DEBUG
list_for_each_entry(p, &n->full, slab_list)
p->slab_cache = s;
#endif
}
list_add(&s->list, &slab_caches);
return s;
}
void __init kmem_cache_init(void)
{
static __initdata struct kmem_cache boot_kmem_cache,
boot_kmem_cache_node;
int node;
if (debug_guardpage_minorder())
slub_max_order = 0;
/* Print slub debugging pointers without hashing */
if (__slub_debug_enabled())
no_hash_pointers_enable(NULL);
kmem_cache_node = &boot_kmem_cache_node;
kmem_cache = &boot_kmem_cache;
/*
* Initialize the nodemask for which we will allocate per node
* structures. Here we don't need taking slab_mutex yet.
*/
for_each_node_state(node, N_NORMAL_MEMORY)
node_set(node, slab_nodes);
create_boot_cache(kmem_cache_node, "kmem_cache_node",
sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
register_hotmemory_notifier(&slab_memory_callback_nb);
/* Able to allocate the per node structures */
slab_state = PARTIAL;
create_boot_cache(kmem_cache, "kmem_cache",
offsetof(struct kmem_cache, node) +
nr_node_ids * sizeof(struct kmem_cache_node *),
SLAB_HWCACHE_ALIGN, 0, 0);
kmem_cache = bootstrap(&boot_kmem_cache);
kmem_cache_node = bootstrap(&boot_kmem_cache_node);
/* Now we can use the kmem_cache to allocate kmalloc slabs */
setup_kmalloc_cache_index_table();
create_kmalloc_caches(0);
/* Setup random freelists for each cache */
init_freelist_randomization();
cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
slub_cpu_dead);
pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
cache_line_size(),
slub_min_order, slub_max_order, slub_min_objects,
nr_cpu_ids, nr_node_ids);
}
void __init kmem_cache_init_late(void)
{
}
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{
struct kmem_cache *s;
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
s->refcount++;
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
s->object_size = max(s->object_size, size);
s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
if (sysfs_slab_alias(s, name)) {
s->refcount--;
s = NULL;
}
}
return s;
}
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
{
int err;
err = kmem_cache_open(s, flags);
if (err)
return err;
/* Mutex is not taken during early boot */
if (slab_state <= UP)
return 0;
err = sysfs_slab_add(s);
if (err) {
__kmem_cache_release(s);
return err;
}
if (s->flags & SLAB_STORE_USER)
debugfs_slab_add(s);
return 0;
}
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
return kmalloc_large(size, gfpflags);
s = kmalloc_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
ret = slab_alloc(s, gfpflags, caller, size);
/* Honor the call site pointer we received. */
trace_kmalloc(caller, ret, size, s->size, gfpflags);
return ret;
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
int node, unsigned long caller)
{
struct kmem_cache *s;
void *ret;
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = kmalloc_large_node(size, gfpflags, node);
trace_kmalloc_node(caller, ret,
size, PAGE_SIZE << get_order(size),
gfpflags, node);
return ret;
}
s = kmalloc_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
ret = slab_alloc_node(s, gfpflags, node, caller, size);
/* Honor the call site pointer we received. */
trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
return ret;
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif
#ifdef CONFIG_SYSFS
static int count_inuse(struct page *page)
{
return page->inuse;
}
static int count_total(struct page *page)
{
return page->objects;
}
#endif
#ifdef CONFIG_SLUB_DEBUG
static void validate_slab(struct kmem_cache *s, struct page *page,
unsigned long *obj_map)
{
void *p;
void *addr = page_address(page);
unsigned long flags;
slab_lock(page, &flags);
if (!check_slab(s, page) || !on_freelist(s, page, NULL))
goto unlock;
/* Now we know that a valid freelist exists */
__fill_map(obj_map, s, page);
for_each_object(p, s, addr, page->objects) {
u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
if (!check_object(s, page, p, val))
break;
}
unlock:
slab_unlock(page, &flags);
}
static int validate_slab_node(struct kmem_cache *s,
struct kmem_cache_node *n, unsigned long *obj_map)
{
unsigned long count = 0;
struct page *page;
unsigned long flags;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, slab_list) {
validate_slab(s, page, obj_map);
count++;
}
if (count != n->nr_partial) {
pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
s->name, count, n->nr_partial);
slab_add_kunit_errors();
}
if (!(s->flags & SLAB_STORE_USER))
goto out;
list_for_each_entry(page, &n->full, slab_list) {
validate_slab(s, page, obj_map);
count++;
}
if (count != atomic_long_read(&n->nr_slabs)) {
pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
s->name, count, atomic_long_read(&n->nr_slabs));
slab_add_kunit_errors();
}
out:
spin_unlock_irqrestore(&n->list_lock, flags);
return count;
}
long validate_slab_cache(struct kmem_cache *s)
{
int node;
unsigned long count = 0;
struct kmem_cache_node *n;
unsigned long *obj_map;
obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
if (!obj_map)
return -ENOMEM;
flush_all(s);
for_each_kmem_cache_node(s, node, n)
count += validate_slab_node(s, n, obj_map);
bitmap_free(obj_map);
return count;
}
EXPORT_SYMBOL(validate_slab_cache);
#ifdef CONFIG_DEBUG_FS
/*
* Generate lists of code addresses where slabcache objects are allocated
* and freed.
*/
struct location {
unsigned long count;
unsigned long addr;
long long sum_time;
long min_time;
long max_time;
long min_pid;
long max_pid;
DECLARE_BITMAP(cpus, NR_CPUS);
nodemask_t nodes;
};
struct loc_track {
unsigned long max;
unsigned long count;
struct location *loc;
};
static struct dentry *slab_debugfs_root;
static void free_loc_track(struct loc_track *t)
{
if (t->max)
free_pages((unsigned long)t->loc,
get_order(sizeof(struct location) * t->max));
}
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
{
struct location *l;
int order;
order = get_order(sizeof(struct location) * max);
l = (void *)__get_free_pages(flags, order);
if (!l)
return 0;
if (t->count) {
memcpy(l, t->loc, sizeof(struct location) * t->count);
free_loc_track(t);
}
t->max = max;
t->loc = l;
return 1;
}
static int add_location(struct loc_track *t, struct kmem_cache *s,
const struct track *track)
{
long start, end, pos;
struct location *l;
unsigned long caddr;
unsigned long age = jiffies - track->when;
start = -1;
end = t->count;
for ( ; ; ) {
pos = start + (end - start + 1) / 2;
/*
* There is nothing at "end". If we end up there
* we need to add something to before end.
*/
if (pos == end)
break;
caddr = t->loc[pos].addr;
if (track->addr == caddr) {
l = &t->loc[pos];
l->count++;
if (track->when) {
l->sum_time += age;
if (age < l->min_time)
l->min_time = age;
if (age > l->max_time)
l->max_time = age;
if (track->pid < l->min_pid)
l->min_pid = track->pid;
if (track->pid > l->max_pid)
l->max_pid = track->pid;
cpumask_set_cpu(track->cpu,
to_cpumask(l->cpus));
}
node_set(page_to_nid(virt_to_page(track)), l->nodes);
return 1;
}
if (track->addr < caddr)
end = pos;
else
start = pos;
}
/*
* Not found. Insert new tracking element.
*/
if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
return 0;
l = t->loc + pos;
if (pos < t->count)
memmove(l + 1, l,
(t->count - pos) * sizeof(struct location));
t->count++;
l->count = 1;
l->addr = track->addr;
l->sum_time = age;
l->min_time = age;
l->max_time = age;
l->min_pid = track->pid;
l->max_pid = track->pid;
cpumask_clear(to_cpumask(l->cpus));
cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
nodes_clear(l->nodes);
node_set(page_to_nid(virt_to_page(track)), l->nodes);
return 1;
}
static void process_slab(struct loc_track *t, struct kmem_cache *s,
struct page *page, enum track_item alloc,
unsigned long *obj_map)
{
void *addr = page_address(page);
void *p;
__fill_map(obj_map, s, page);
for_each_object(p, s, addr, page->objects)
if (!test_bit(__obj_to_index(s, addr, p), obj_map))
add_location(t, s, get_track(s, p, alloc));
}
#endif /* CONFIG_DEBUG_FS */
#endif /* CONFIG_SLUB_DEBUG */
#ifdef CONFIG_SYSFS
enum slab_stat_type {
SL_ALL, /* All slabs */
SL_PARTIAL, /* Only partially allocated slabs */
SL_CPU, /* Only slabs used for cpu caches */
SL_OBJECTS, /* Determine allocated objects not slabs */
SL_TOTAL /* Determine object capacity not slabs */
};
#define SO_ALL (1 << SL_ALL)
#define SO_PARTIAL (1 << SL_PARTIAL)
#define SO_CPU (1 << SL_CPU)
#define SO_OBJECTS (1 << SL_OBJECTS)
#define SO_TOTAL (1 << SL_TOTAL)
static ssize_t show_slab_objects(struct kmem_cache *s,
char *buf, unsigned long flags)
{
unsigned long total = 0;
int node;
int x;
unsigned long *nodes;
int len = 0;
nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
if (!nodes)
return -ENOMEM;
if (flags & SO_CPU) {
int cpu;
for_each_possible_cpu(cpu) {
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
cpu);
int node;
struct page *page;
page = READ_ONCE(c->page);
if (!page)
continue;
node = page_to_nid(page);
if (flags & SO_TOTAL)
x = page->objects;
else if (flags & SO_OBJECTS)
x = page->inuse;
else
x = 1;
total += x;
nodes[node] += x;
page = slub_percpu_partial_read_once(c);
if (page) {
node = page_to_nid(page);
if (flags & SO_TOTAL)
WARN_ON_ONCE(1);
else if (flags & SO_OBJECTS)
WARN_ON_ONCE(1);
else
x = page->pages;
total += x;
nodes[node] += x;
}
}
}
/*
* It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
* already held which will conflict with an existing lock order:
*
* mem_hotplug_lock->slab_mutex->kernfs_mutex
*
* We don't really need mem_hotplug_lock (to hold off
* slab_mem_going_offline_callback) here because slab's memory hot
* unplug code doesn't destroy the kmem_cache->node[] data.
*/
#ifdef CONFIG_SLUB_DEBUG
if (flags & SO_ALL) {
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
if (flags & SO_TOTAL)
x = atomic_long_read(&n->total_objects);
else if (flags & SO_OBJECTS)
x = atomic_long_read(&n->total_objects) -
count_partial(n, count_free);
else
x = atomic_long_read(&n->nr_slabs);
total += x;
nodes[node] += x;
}
} else
#endif
if (flags & SO_PARTIAL) {
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
if (flags & SO_TOTAL)
x = count_partial(n, count_total);
else if (flags & SO_OBJECTS)
x = count_partial(n, count_inuse);
else
x = n->nr_partial;
total += x;
nodes[node] += x;
}
}
len += sysfs_emit_at(buf, len, "%lu", total);
#ifdef CONFIG_NUMA
for (node = 0; node < nr_node_ids; node++) {
if (nodes[node])
len += sysfs_emit_at(buf, len, " N%d=%lu",
node, nodes[node]);
}
#endif
len += sysfs_emit_at(buf, len, "\n");
kfree(nodes);
return len;
}
#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
struct slab_attribute {
struct attribute attr;
ssize_t (*show)(struct kmem_cache *s, char *buf);
ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};
#define SLAB_ATTR_RO(_name) \
static struct slab_attribute _name##_attr = \
__ATTR(_name, 0400, _name##_show, NULL)
#define SLAB_ATTR(_name) \
static struct slab_attribute _name##_attr = \
__ATTR(_name, 0600, _name##_show, _name##_store)
static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->size);
}
SLAB_ATTR_RO(slab_size);
static ssize_t align_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->align);
}
SLAB_ATTR_RO(align);
static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->object_size);
}
SLAB_ATTR_RO(object_size);
static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
}
SLAB_ATTR_RO(objs_per_slab);
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", oo_order(s->oo));
}
SLAB_ATTR_RO(order);
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%lu\n", s->min_partial);
}
static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
size_t length)
{
unsigned long min;
int err;
err = kstrtoul(buf, 10, &min);
if (err)
return err;
set_min_partial(s, min);
return length;
}
SLAB_ATTR(min_partial);
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
unsigned int nr_partial = 0;
#ifdef CONFIG_SLUB_CPU_PARTIAL
nr_partial = s->cpu_partial;
#endif
return sysfs_emit(buf, "%u\n", nr_partial);
}
static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
size_t length)
{
unsigned int objects;
int err;
err = kstrtouint(buf, 10, &objects);
if (err)
return err;
if (objects && !kmem_cache_has_cpu_partial(s))
return -EINVAL;
slub_set_cpu_partial(s, objects);
flush_all(s);
return length;
}
SLAB_ATTR(cpu_partial);
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
if (!s->ctor)
return 0;
return sysfs_emit(buf, "%pS\n", s->ctor);
}
SLAB_ATTR_RO(ctor);
static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
}
SLAB_ATTR_RO(aliases);
static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);
static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
int objects = 0;
int pages = 0;
int cpu;
int len = 0;
for_each_online_cpu(cpu) {
struct page *page;
page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
if (page)
pages += page->pages;
}
/* Approximate half-full pages , see slub_set_cpu_partial() */
objects = (pages * oo_objects(s->oo)) / 2;
len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
#ifdef CONFIG_SMP
for_each_online_cpu(cpu) {
struct page *page;
page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
if (page) {
pages = READ_ONCE(page->pages);
objects = (pages * oo_objects(s->oo)) / 2;
len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
cpu, objects, pages);
}
}
#endif
len += sysfs_emit_at(buf, len, "\n");
return len;
}
SLAB_ATTR_RO(slabs_cpu_partial);
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}
SLAB_ATTR_RO(reclaim_account);
static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);
#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->usersize);
}
SLAB_ATTR_RO(usersize);
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);
#ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
}
SLAB_ATTR_RO(sanity_checks);
static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}
SLAB_ATTR_RO(trace);
static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}
SLAB_ATTR_RO(red_zone);
static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
}
SLAB_ATTR_RO(poison);
static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}
SLAB_ATTR_RO(store_user);
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
return 0;
}
static ssize_t validate_store(struct kmem_cache *s,
const char *buf, size_t length)
{
int ret = -EINVAL;
if (buf[0] == '1') {
ret = validate_slab_cache(s);
if (ret >= 0)
ret = length;
}
return ret;
}
SLAB_ATTR(validate);
#endif /* CONFIG_SLUB_DEBUG */
#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}
SLAB_ATTR_RO(failslab);
#endif
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
return 0;
}
static ssize_t shrink_store(struct kmem_cache *s,
const char *buf, size_t length)
{
if (buf[0] == '1')
kmem_cache_shrink(s);
else
return -EINVAL;
return length;
}
SLAB_ATTR(shrink);
#ifdef CONFIG_NUMA
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
{
return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
}
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
const char *buf, size_t length)
{
unsigned int ratio;
int err;
err = kstrtouint(buf, 10, &ratio);
if (err)
return err;
if (ratio > 100)
return -ERANGE;
s->remote_node_defrag_ratio = ratio * 10;
return length;
}
SLAB_ATTR(remote_node_defrag_ratio);
#endif
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
unsigned long sum = 0;
int cpu;
int len = 0;
int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
if (!data)
return -ENOMEM;
for_each_online_cpu(cpu) {
unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
data[cpu] = x;
sum += x;
}
len += sysfs_emit_at(buf, len, "%lu", sum);
#ifdef CONFIG_SMP
for_each_online_cpu(cpu) {
if (data[cpu])
len += sysfs_emit_at(buf, len, " C%d=%u",
cpu, data[cpu]);
}
#endif
kfree(data);
len += sysfs_emit_at(buf, len, "\n");
return len;
}
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
int cpu;
for_each_online_cpu(cpu)
per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
}
#define STAT_ATTR(si, text) \
static ssize_t text##_show(struct kmem_cache *s, char *buf) \
{ \
return show_stat(s, buf, si); \
} \
static ssize_t text##_store(struct kmem_cache *s, \
const char *buf, size_t length) \
{ \
if (buf[0] != '0') \
return -EINVAL; \
clear_stat(s, si); \
return length; \
} \
SLAB_ATTR(text); \
STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
STAT_ATTR(ORDER_FALLBACK, order_fallback);
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
#endif /* CONFIG_SLUB_STATS */
static struct attribute *slab_attrs[] = {
&slab_size_attr.attr,
&object_size_attr.attr,
&objs_per_slab_attr.attr,
&order_attr.attr,
&min_partial_attr.attr,
&cpu_partial_attr.attr,
&objects_attr.attr,
&objects_partial_attr.attr,
&partial_attr.attr,
&cpu_slabs_attr.attr,
&ctor_attr.attr,
&aliases_attr.attr,
&align_attr.attr,
&hwcache_align_attr.attr,
&reclaim_account_attr.attr,
&destroy_by_rcu_attr.attr,
&shrink_attr.attr,
&slabs_cpu_partial_attr.attr,
#ifdef CONFIG_SLUB_DEBUG
&total_objects_attr.attr,
&slabs_attr.attr,
&sanity_checks_attr.attr,
&trace_attr.attr,
&red_zone_attr.attr,
&poison_attr.attr,
&store_user_attr.attr,
&validate_attr.attr,
#endif
#ifdef CONFIG_ZONE_DMA
&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
&remote_node_defrag_ratio_attr.attr,
#endif
#ifdef CONFIG_SLUB_STATS
&alloc_fastpath_attr.attr,
&alloc_slowpath_attr.attr,
&free_fastpath_attr.attr,
&free_slowpath_attr.attr,
&free_frozen_attr.attr,
&free_add_partial_attr.attr,
&free_remove_partial_attr.attr,
&alloc_from_partial_attr.attr,
&alloc_slab_attr.attr,
&alloc_refill_attr.attr,
&alloc_node_mismatch_attr.attr,
&free_slab_attr.attr,
&cpuslab_flush_attr.attr,
&deactivate_full_attr.attr,
&deactivate_empty_attr.attr,
&deactivate_to_head_attr.attr,
&deactivate_to_tail_attr.attr,
&deactivate_remote_frees_attr.attr,
&deactivate_bypass_attr.attr,
&order_fallback_attr.attr,
&cmpxchg_double_fail_attr.attr,
&cmpxchg_double_cpu_fail_attr.attr,
&cpu_partial_alloc_attr.attr,
&cpu_partial_free_attr.attr,
&cpu_partial_node_attr.attr,
&cpu_partial_drain_attr.attr,
#endif
#ifdef CONFIG_FAILSLAB
&failslab_attr.attr,
#endif
&usersize_attr.attr,
NULL
};
static const struct attribute_group slab_attr_group = {
.attrs = slab_attrs,
};
static ssize_t slab_attr_show(struct kobject *kobj,
struct attribute *attr,
char *buf)
{
struct slab_attribute *attribute;
struct kmem_cache *s;
int err;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
if (!attribute->show)
return -EIO;
err = attribute->show(s, buf);
return err;
}
static ssize_t slab_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t len)
{
struct slab_attribute *attribute;
struct kmem_cache *s;
int err;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
if (!attribute->store)
return -EIO;
err = attribute->store(s, buf, len);
return err;
}
static void kmem_cache_release(struct kobject *k)
{
slab_kmem_cache_release(to_slab(k));
}
static const struct sysfs_ops slab_sysfs_ops = {
.show = slab_attr_show,
.store = slab_attr_store,
};
static struct kobj_type slab_ktype = {
.sysfs_ops = &slab_sysfs_ops,
.release = kmem_cache_release,
};
static struct kset *slab_kset;
static inline struct kset *cache_kset(struct kmem_cache *s)
{
return slab_kset;
}
#define ID_STR_LENGTH 64
/* Create a unique string id for a slab cache:
*
* Format :[flags-]size
*/
static char *create_unique_id(struct kmem_cache *s)
{
char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
char *p = name;
BUG_ON(!name);
*p++ = ':';
/*
* First flags affecting slabcache operations. We will only
* get here for aliasable slabs so we do not need to support
* too many flags. The flags here must cover all flags that
* are matched during merging to guarantee that the id is
* unique.
*/
if (s->flags & SLAB_CACHE_DMA)
*p++ = 'd';
if (s->flags & SLAB_CACHE_DMA32)
*p++ = 'D';
if (s->flags & SLAB_RECLAIM_ACCOUNT)
*p++ = 'a';
if (s->flags & SLAB_CONSISTENCY_CHECKS)
*p++ = 'F';
if (s->flags & SLAB_ACCOUNT)
*p++ = 'A';
if (p != name + 1)
*p++ = '-';
p += sprintf(p, "%07u", s->size);
BUG_ON(p > name + ID_STR_LENGTH - 1);
return name;
}
static int sysfs_slab_add(struct kmem_cache *s)
{
int err;
const char *name;
struct kset *kset = cache_kset(s);
int unmergeable = slab_unmergeable(s);
if (!kset) {
kobject_init(&s->kobj, &slab_ktype);
return 0;
}
if (!unmergeable && disable_higher_order_debug &&
(slub_debug & DEBUG_METADATA_FLAGS))
unmergeable = 1;
if (unmergeable) {
/*
* Slabcache can never be merged so we can use the name proper.
* This is typically the case for debug situations. In that
* case we can catch duplicate names easily.
*/
sysfs_remove_link(&slab_kset->kobj, s->name);
name = s->name;
} else {
/*
* Create a unique name for the slab as a target
* for the symlinks.
*/
name = create_unique_id(s);
}
s->kobj.kset = kset;
err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
if (err)
goto out;
err = sysfs_create_group(&s->kobj, &slab_attr_group);
if (err)
goto out_del_kobj;
if (!unmergeable) {
/* Setup first alias */
sysfs_slab_alias(s, s->name);
}
out:
if (!unmergeable)
kfree(name);
return err;
out_del_kobj:
kobject_del(&s->kobj);
goto out;
}
void sysfs_slab_unlink(struct kmem_cache *s)
{
if (slab_state >= FULL)
kobject_del(&s->kobj);
}
void sysfs_slab_release(struct kmem_cache *s)
{
if (slab_state >= FULL)
kobject_put(&s->kobj);
}
/*
* Need to buffer aliases during bootup until sysfs becomes
* available lest we lose that information.
*/
struct saved_alias {
struct kmem_cache *s;
const char *name;
struct saved_alias *next;
};
static struct saved_alias *alias_list;
static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
struct saved_alias *al;
if (slab_state == FULL) {
/*
* If we have a leftover link then remove it.
*/
sysfs_remove_link(&slab_kset->kobj, name);
return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
}
al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
if (!al)
return -ENOMEM;
al->s = s;
al->name = name;
al->next = alias_list;
alias_list = al;
return 0;
}
static int __init slab_sysfs_init(void)
{
struct kmem_cache *s;
int err;
mutex_lock(&slab_mutex);
slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
if (!slab_kset) {
mutex_unlock(&slab_mutex);
pr_err("Cannot register slab subsystem.\n");
return -ENOSYS;
}
slab_state = FULL;
list_for_each_entry(s, &slab_caches, list) {
err = sysfs_slab_add(s);
if (err)
pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
s->name);
}
while (alias_list) {
struct saved_alias *al = alias_list;
alias_list = alias_list->next;
err = sysfs_slab_alias(al->s, al->name);
if (err)
pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
al->name);
kfree(al);
}
mutex_unlock(&slab_mutex);
return 0;
}
__initcall(slab_sysfs_init);
#endif /* CONFIG_SYSFS */
#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
static int slab_debugfs_show(struct seq_file *seq, void *v)
{
struct location *l;
unsigned int idx = *(unsigned int *)v;
struct loc_track *t = seq->private;
if (idx < t->count) {
l = &t->loc[idx];
seq_printf(seq, "%7ld ", l->count);
if (l->addr)
seq_printf(seq, "%pS", (void *)l->addr);
else
seq_puts(seq, "<not-available>");
if (l->sum_time != l->min_time) {
seq_printf(seq, " age=%ld/%llu/%ld",
l->min_time, div_u64(l->sum_time, l->count),
l->max_time);
} else
seq_printf(seq, " age=%ld", l->min_time);
if (l->min_pid != l->max_pid)
seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
else
seq_printf(seq, " pid=%ld",
l->min_pid);
if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
seq_printf(seq, " cpus=%*pbl",
cpumask_pr_args(to_cpumask(l->cpus)));
if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
seq_printf(seq, " nodes=%*pbl",
nodemask_pr_args(&l->nodes));
seq_puts(seq, "\n");
}
if (!idx && !t->count)
seq_puts(seq, "No data\n");
return 0;
}
static void slab_debugfs_stop(struct seq_file *seq, void *v)
{
}
static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
{
struct loc_track *t = seq->private;
v = ppos;
++*ppos;
if (*ppos <= t->count)
return v;
return NULL;
}
static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
{
return ppos;
}
static const struct seq_operations slab_debugfs_sops = {
.start = slab_debugfs_start,
.next = slab_debugfs_next,
.stop = slab_debugfs_stop,
.show = slab_debugfs_show,
};
static int slab_debug_trace_open(struct inode *inode, struct file *filep)
{
struct kmem_cache_node *n;
enum track_item alloc;
int node;
struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
sizeof(struct loc_track));
struct kmem_cache *s = file_inode(filep)->i_private;
unsigned long *obj_map;
if (!t)
return -ENOMEM;
obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
if (!obj_map) {
seq_release_private(inode, filep);
return -ENOMEM;
}
if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
alloc = TRACK_ALLOC;
else
alloc = TRACK_FREE;
if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
bitmap_free(obj_map);
seq_release_private(inode, filep);
return -ENOMEM;
}
for_each_kmem_cache_node(s, node, n) {
unsigned long flags;
struct page *page;
if (!atomic_long_read(&n->nr_slabs))
continue;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, slab_list)
process_slab(t, s, page, alloc, obj_map);
list_for_each_entry(page, &n->full, slab_list)
process_slab(t, s, page, alloc, obj_map);
spin_unlock_irqrestore(&n->list_lock, flags);
}
bitmap_free(obj_map);
return 0;
}
static int slab_debug_trace_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct loc_track *t = seq->private;
free_loc_track(t);
return seq_release_private(inode, file);
}
static const struct file_operations slab_debugfs_fops = {
.open = slab_debug_trace_open,
.read = seq_read,
.llseek = seq_lseek,
.release = slab_debug_trace_release,
};
static void debugfs_slab_add(struct kmem_cache *s)
{
struct dentry *slab_cache_dir;
if (unlikely(!slab_debugfs_root))
return;
slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
debugfs_create_file("alloc_traces", 0400,
slab_cache_dir, s, &slab_debugfs_fops);
debugfs_create_file("free_traces", 0400,
slab_cache_dir, s, &slab_debugfs_fops);
}
void debugfs_slab_release(struct kmem_cache *s)
{
debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
}
static int __init slab_debugfs_init(void)
{
struct kmem_cache *s;
slab_debugfs_root = debugfs_create_dir("slab", NULL);
list_for_each_entry(s, &slab_caches, list)
if (s->flags & SLAB_STORE_USER)
debugfs_slab_add(s);
return 0;
}
__initcall(slab_debugfs_init);
#endif
/*
* The /proc/slabinfo ABI
*/
#ifdef CONFIG_SLUB_DEBUG
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
{
unsigned long nr_slabs = 0;
unsigned long nr_objs = 0;
unsigned long nr_free = 0;
int node;
struct kmem_cache_node *n;
for_each_kmem_cache_node(s, node, n) {
nr_slabs += node_nr_slabs(n);
nr_objs += node_nr_objs(n);
nr_free += count_partial(n, count_free);
}
sinfo->active_objs = nr_objs - nr_free;
sinfo->num_objs = nr_objs;
sinfo->active_slabs = nr_slabs;
sinfo->num_slabs = nr_slabs;
sinfo->objects_per_slab = oo_objects(s->oo);
sinfo->cache_order = oo_order(s->oo);
}
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
{
}
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
return -EIO;
}
#endif /* CONFIG_SLUB_DEBUG */