linux/lib/iov_iter.c
David Howells db0aa2e956
mm: Define struct folio_queue and ITER_FOLIOQ to handle a sequence of folios
Define a data structure, struct folio_queue, to represent a sequence of
folios and a kernel-internal I/O iterator type, ITER_FOLIOQ, to allow a
list of folio_queue structures to be used to provide a buffer to
iov_iter-taking functions, such as sendmsg and recvmsg.

The folio_queue structure looks like:

	struct folio_queue {
		struct folio_batch	vec;
		u8			orders[PAGEVEC_SIZE];
		struct folio_queue	*next;
		struct folio_queue	*prev;
		unsigned long		marks;
		unsigned long		marks2;
	};

It does not use a list_head so that next and/or prev can be set to NULL at
the ends of the list, allowing iov_iter-handling routines to determine that
they *are* the ends without needing to store a head pointer in the iov_iter
struct.

A folio_batch struct is used to hold the folio pointers which allows the
batch to be passed to batch handling functions.  Two mark bits are
available per slot.  The intention is to use at least one of them to mark
folios that need putting, but that might not be ultimately necessary.
Accessor functions are used to access the slots to do the masking and an
additional accessor function is used to indicate the size of the array.

The order of each folio is also stored in the structure to avoid the need
for iov_iter_advance() and iov_iter_revert() to have to query each folio to
find its size.

With careful barriering, this can be used as an extending buffer with new
folios inserted and new folio_queue structs added without the need for a
lock.  Further, provided we always keep at least one struct in the buffer,
we can also remove consumed folios and consumed structs from the head end
as we without the need for locks.

[Questions/thoughts]

 (1) To manage this, I need a head pointer, a tail pointer, a tail slot
     number (assuming insertion happens at the tail end and the next
     pointers point from head to tail).  Should I put these into a struct
     of their own, say "folio_queue_head" or "rolling_buffer"?

     I will end up with two of these in netfs_io_request eventually, one
     keeping track of the pagecache I'm dealing with for buffered I/O and
     the other to hold a bounce buffer when we need one.

 (2) Should I make the slots {folio,off,len} or bio_vec?

 (3) This is intended to replace ITER_XARRAY eventually.  Using an xarray
     in I/O iteration requires the taking of the RCU read lock, doing
     copying under the RCU read lock, walking the xarray (which may change
     under us), handling retries and dealing with special values.

     The advantage of ITER_XARRAY is that when we're dealing with the
     pagecache directly, we don't need any allocation - but if we're doing
     encrypted comms, there's a good chance we'd be using a bounce buffer
     anyway.

     This will require afs, erofs, cifs, orangefs and fscache to be
     converted to not use this.  afs still uses it for dirs and symlinks;
     some of erofs usages should be easy to change, but there's one which
     won't be so easy; ceph's use via fscache can be fixed by porting ceph
     to netfslib; cifs is using xarray as a bounce buffer - that can be
     moved to use sheaves instead; and orangefs has a similar problem to
     erofs - maybe orangefs could use netfslib?

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Matthew Wilcox <willy@infradead.org>
cc: Jeff Layton <jlayton@kernel.org>
cc: Steve French <sfrench@samba.org>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Gao Xiang <xiang@kernel.org>
cc: Mike Marshall <hubcap@omnibond.com>
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
cc: linux-afs@lists.infradead.org
cc: linux-cifs@vger.kernel.org
cc: ceph-devel@vger.kernel.org
cc: linux-erofs@lists.ozlabs.org
cc: devel@lists.orangefs.org
Link: https://lore.kernel.org/r/20240814203850.2240469-13-dhowells@redhat.com/ # v2
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-09-12 12:20:21 +02:00

1900 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/export.h>
#include <linux/bvec.h>
#include <linux/fault-inject-usercopy.h>
#include <linux/uio.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/splice.h>
#include <linux/compat.h>
#include <linux/scatterlist.h>
#include <linux/instrumented.h>
#include <linux/iov_iter.h>
static __always_inline
size_t copy_to_user_iter(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
if (should_fail_usercopy())
return len;
if (access_ok(iter_to, len)) {
from += progress;
instrument_copy_to_user(iter_to, from, len);
len = raw_copy_to_user(iter_to, from, len);
}
return len;
}
static __always_inline
size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
ssize_t res;
if (should_fail_usercopy())
return len;
from += progress;
res = copy_to_user_nofault(iter_to, from, len);
return res < 0 ? len : res;
}
static __always_inline
size_t copy_from_user_iter(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
size_t res = len;
if (should_fail_usercopy())
return len;
if (access_ok(iter_from, len)) {
to += progress;
instrument_copy_from_user_before(to, iter_from, len);
res = raw_copy_from_user(to, iter_from, len);
instrument_copy_from_user_after(to, iter_from, len, res);
}
return res;
}
static __always_inline
size_t memcpy_to_iter(void *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
memcpy(iter_to, from + progress, len);
return 0;
}
static __always_inline
size_t memcpy_from_iter(void *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
memcpy(to + progress, iter_from, len);
return 0;
}
/*
* fault_in_iov_iter_readable - fault in iov iterator for reading
* @i: iterator
* @size: maximum length
*
* Fault in one or more iovecs of the given iov_iter, to a maximum length of
* @size. For each iovec, fault in each page that constitutes the iovec.
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*
* Always returns 0 for non-userspace iterators.
*/
size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
{
if (iter_is_ubuf(i)) {
size_t n = min(size, iov_iter_count(i));
n -= fault_in_readable(i->ubuf + i->iov_offset, n);
return size - n;
} else if (iter_is_iovec(i)) {
size_t count = min(size, iov_iter_count(i));
const struct iovec *p;
size_t skip;
size -= count;
for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
size_t len = min(count, p->iov_len - skip);
size_t ret;
if (unlikely(!len))
continue;
ret = fault_in_readable(p->iov_base + skip, len);
count -= len - ret;
if (ret)
break;
}
return count + size;
}
return 0;
}
EXPORT_SYMBOL(fault_in_iov_iter_readable);
/*
* fault_in_iov_iter_writeable - fault in iov iterator for writing
* @i: iterator
* @size: maximum length
*
* Faults in the iterator using get_user_pages(), i.e., without triggering
* hardware page faults. This is primarily useful when we already know that
* some or all of the pages in @i aren't in memory.
*
* Returns the number of bytes not faulted in, like copy_to_user() and
* copy_from_user().
*
* Always returns 0 for non-user-space iterators.
*/
size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
{
if (iter_is_ubuf(i)) {
size_t n = min(size, iov_iter_count(i));
n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
return size - n;
} else if (iter_is_iovec(i)) {
size_t count = min(size, iov_iter_count(i));
const struct iovec *p;
size_t skip;
size -= count;
for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
size_t len = min(count, p->iov_len - skip);
size_t ret;
if (unlikely(!len))
continue;
ret = fault_in_safe_writeable(p->iov_base + skip, len);
count -= len - ret;
if (ret)
break;
}
return count + size;
}
return 0;
}
EXPORT_SYMBOL(fault_in_iov_iter_writeable);
void iov_iter_init(struct iov_iter *i, unsigned int direction,
const struct iovec *iov, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter) {
.iter_type = ITER_IOVEC,
.nofault = false,
.data_source = direction,
.__iov = iov,
.nr_segs = nr_segs,
.iov_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_init);
size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(i->data_source))
return 0;
if (user_backed_iter(i))
might_fault();
return iterate_and_advance(i, bytes, (void *)addr,
copy_to_user_iter, memcpy_to_iter);
}
EXPORT_SYMBOL(_copy_to_iter);
#ifdef CONFIG_ARCH_HAS_COPY_MC
static __always_inline
size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
if (access_ok(iter_to, len)) {
from += progress;
instrument_copy_to_user(iter_to, from, len);
len = copy_mc_to_user(iter_to, from, len);
}
return len;
}
static __always_inline
size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
return copy_mc_to_kernel(iter_to, from + progress, len);
}
/**
* _copy_mc_to_iter - copy to iter with source memory error exception handling
* @addr: source kernel address
* @bytes: total transfer length
* @i: destination iterator
*
* The pmem driver deploys this for the dax operation
* (dax_copy_to_iter()) for dax reads (bypass page-cache and the
* block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
* successfully copied.
*
* The main differences between this and typical _copy_to_iter().
*
* * Typical tail/residue handling after a fault retries the copy
* byte-by-byte until the fault happens again. Re-triggering machine
* checks is potentially fatal so the implementation uses source
* alignment and poison alignment assumptions to avoid re-triggering
* hardware exceptions.
*
* * ITER_KVEC and ITER_BVEC can return short copies. Compare to
* copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
*
* Return: number of bytes copied (may be %0)
*/
size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(i->data_source))
return 0;
if (user_backed_iter(i))
might_fault();
return iterate_and_advance(i, bytes, (void *)addr,
copy_to_user_iter_mc, memcpy_to_iter_mc);
}
EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
#endif /* CONFIG_ARCH_HAS_COPY_MC */
static __always_inline
size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
{
return iterate_and_advance(i, bytes, addr,
copy_from_user_iter, memcpy_from_iter);
}
size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
if (user_backed_iter(i))
might_fault();
return __copy_from_iter(addr, bytes, i);
}
EXPORT_SYMBOL(_copy_from_iter);
static __always_inline
size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
}
size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
return iterate_and_advance(i, bytes, addr,
copy_from_user_iter_nocache,
memcpy_from_iter);
}
EXPORT_SYMBOL(_copy_from_iter_nocache);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
static __always_inline
size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
return __copy_from_user_flushcache(to + progress, iter_from, len);
}
static __always_inline
size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
memcpy_flushcache(to + progress, iter_from, len);
return 0;
}
/**
* _copy_from_iter_flushcache - write destination through cpu cache
* @addr: destination kernel address
* @bytes: total transfer length
* @i: source iterator
*
* The pmem driver arranges for filesystem-dax to use this facility via
* dax_copy_from_iter() for ensuring that writes to persistent memory
* are flushed through the CPU cache. It is differentiated from
* _copy_from_iter_nocache() in that guarantees all data is flushed for
* all iterator types. The _copy_from_iter_nocache() only attempts to
* bypass the cache for the ITER_IOVEC case, and on some archs may use
* instructions that strand dirty-data in the cache.
*
* Return: number of bytes copied (may be %0)
*/
size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
return iterate_and_advance(i, bytes, addr,
copy_from_user_iter_flushcache,
memcpy_from_iter_flushcache);
}
EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
#endif
static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
{
struct page *head;
size_t v = n + offset;
/*
* The general case needs to access the page order in order
* to compute the page size.
* However, we mostly deal with order-0 pages and thus can
* avoid a possible cache line miss for requests that fit all
* page orders.
*/
if (n <= v && v <= PAGE_SIZE)
return true;
head = compound_head(page);
v += (page - head) << PAGE_SHIFT;
if (WARN_ON(n > v || v > page_size(head)))
return false;
return true;
}
size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
size_t res = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
if (WARN_ON_ONCE(i->data_source))
return 0;
page += offset / PAGE_SIZE; // first subpage
offset %= PAGE_SIZE;
while (1) {
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
n = _copy_to_iter(kaddr + offset, n, i);
kunmap_local(kaddr);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
}
return res;
}
EXPORT_SYMBOL(copy_page_to_iter);
size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
struct iov_iter *i)
{
size_t res = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
if (WARN_ON_ONCE(i->data_source))
return 0;
page += offset / PAGE_SIZE; // first subpage
offset %= PAGE_SIZE;
while (1) {
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
n = iterate_and_advance(i, n, kaddr + offset,
copy_to_user_iter_nofault,
memcpy_to_iter);
kunmap_local(kaddr);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
}
return res;
}
EXPORT_SYMBOL(copy_page_to_iter_nofault);
size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
size_t res = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
page += offset / PAGE_SIZE; // first subpage
offset %= PAGE_SIZE;
while (1) {
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
n = _copy_from_iter(kaddr + offset, n, i);
kunmap_local(kaddr);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
}
return res;
}
EXPORT_SYMBOL(copy_page_from_iter);
static __always_inline
size_t zero_to_user_iter(void __user *iter_to, size_t progress,
size_t len, void *priv, void *priv2)
{
return clear_user(iter_to, len);
}
static __always_inline
size_t zero_to_iter(void *iter_to, size_t progress,
size_t len, void *priv, void *priv2)
{
memset(iter_to, 0, len);
return 0;
}
size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
{
return iterate_and_advance(i, bytes, NULL,
zero_to_user_iter, zero_to_iter);
}
EXPORT_SYMBOL(iov_iter_zero);
size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
size_t bytes, struct iov_iter *i)
{
size_t n, copied = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
if (WARN_ON_ONCE(!i->data_source))
return 0;
do {
char *p;
n = bytes - copied;
if (PageHighMem(page)) {
page += offset / PAGE_SIZE;
offset %= PAGE_SIZE;
n = min_t(size_t, n, PAGE_SIZE - offset);
}
p = kmap_atomic(page) + offset;
n = __copy_from_iter(p, n, i);
kunmap_atomic(p);
copied += n;
offset += n;
} while (PageHighMem(page) && copied != bytes && n > 0);
return copied;
}
EXPORT_SYMBOL(copy_page_from_iter_atomic);
static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
{
const struct bio_vec *bvec, *end;
if (!i->count)
return;
i->count -= size;
size += i->iov_offset;
for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
if (likely(size < bvec->bv_len))
break;
size -= bvec->bv_len;
}
i->iov_offset = size;
i->nr_segs -= bvec - i->bvec;
i->bvec = bvec;
}
static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
{
const struct iovec *iov, *end;
if (!i->count)
return;
i->count -= size;
size += i->iov_offset; // from beginning of current segment
for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
if (likely(size < iov->iov_len))
break;
size -= iov->iov_len;
}
i->iov_offset = size;
i->nr_segs -= iov - iter_iov(i);
i->__iov = iov;
}
static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
{
const struct folio_queue *folioq = i->folioq;
unsigned int slot = i->folioq_slot;
if (!i->count)
return;
i->count -= size;
if (slot >= folioq_nr_slots(folioq)) {
folioq = folioq->next;
slot = 0;
}
size += i->iov_offset; /* From beginning of current segment. */
do {
size_t fsize = folioq_folio_size(folioq, slot);
if (likely(size < fsize))
break;
size -= fsize;
slot++;
if (slot >= folioq_nr_slots(folioq) && folioq->next) {
folioq = folioq->next;
slot = 0;
}
} while (size);
i->iov_offset = size;
i->folioq_slot = slot;
i->folioq = folioq;
}
void iov_iter_advance(struct iov_iter *i, size_t size)
{
if (unlikely(i->count < size))
size = i->count;
if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
i->iov_offset += size;
i->count -= size;
} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
/* iovec and kvec have identical layouts */
iov_iter_iovec_advance(i, size);
} else if (iov_iter_is_bvec(i)) {
iov_iter_bvec_advance(i, size);
} else if (iov_iter_is_folioq(i)) {
iov_iter_folioq_advance(i, size);
} else if (iov_iter_is_discard(i)) {
i->count -= size;
}
}
EXPORT_SYMBOL(iov_iter_advance);
static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
{
const struct folio_queue *folioq = i->folioq;
unsigned int slot = i->folioq_slot;
for (;;) {
size_t fsize;
if (slot == 0) {
folioq = folioq->prev;
slot = folioq_nr_slots(folioq);
}
slot--;
fsize = folioq_folio_size(folioq, slot);
if (unroll <= fsize) {
i->iov_offset = fsize - unroll;
break;
}
unroll -= fsize;
}
i->folioq_slot = slot;
i->folioq = folioq;
}
void iov_iter_revert(struct iov_iter *i, size_t unroll)
{
if (!unroll)
return;
if (WARN_ON(unroll > MAX_RW_COUNT))
return;
i->count += unroll;
if (unlikely(iov_iter_is_discard(i)))
return;
if (unroll <= i->iov_offset) {
i->iov_offset -= unroll;
return;
}
unroll -= i->iov_offset;
if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
BUG(); /* We should never go beyond the start of the specified
* range since we might then be straying into pages that
* aren't pinned.
*/
} else if (iov_iter_is_bvec(i)) {
const struct bio_vec *bvec = i->bvec;
while (1) {
size_t n = (--bvec)->bv_len;
i->nr_segs++;
if (unroll <= n) {
i->bvec = bvec;
i->iov_offset = n - unroll;
return;
}
unroll -= n;
}
} else if (iov_iter_is_folioq(i)) {
i->iov_offset = 0;
iov_iter_folioq_revert(i, unroll);
} else { /* same logics for iovec and kvec */
const struct iovec *iov = iter_iov(i);
while (1) {
size_t n = (--iov)->iov_len;
i->nr_segs++;
if (unroll <= n) {
i->__iov = iov;
i->iov_offset = n - unroll;
return;
}
unroll -= n;
}
}
}
EXPORT_SYMBOL(iov_iter_revert);
/*
* Return the count of just the current iov_iter segment.
*/
size_t iov_iter_single_seg_count(const struct iov_iter *i)
{
if (i->nr_segs > 1) {
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
if (iov_iter_is_bvec(i))
return min(i->count, i->bvec->bv_len - i->iov_offset);
}
if (unlikely(iov_iter_is_folioq(i)))
return !i->count ? 0 :
umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
return i->count;
}
EXPORT_SYMBOL(iov_iter_single_seg_count);
void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
const struct kvec *kvec, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter){
.iter_type = ITER_KVEC,
.data_source = direction,
.kvec = kvec,
.nr_segs = nr_segs,
.iov_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_kvec);
void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
const struct bio_vec *bvec, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter){
.iter_type = ITER_BVEC,
.data_source = direction,
.bvec = bvec,
.nr_segs = nr_segs,
.iov_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_bvec);
/**
* iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
* @i: The iterator to initialise.
* @direction: The direction of the transfer.
* @folioq: The starting point in the folio queue.
* @first_slot: The first slot in the folio queue to use
* @offset: The offset into the folio in the first slot to start at
* @count: The size of the I/O buffer in bytes.
*
* Set up an I/O iterator to either draw data out of the pages attached to an
* inode or to inject data into those pages. The pages *must* be prevented
* from evaporation, either by taking a ref on them or locking them by the
* caller.
*/
void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
const struct folio_queue *folioq, unsigned int first_slot,
unsigned int offset, size_t count)
{
BUG_ON(direction & ~1);
*i = (struct iov_iter) {
.iter_type = ITER_FOLIOQ,
.data_source = direction,
.folioq = folioq,
.folioq_slot = first_slot,
.count = count,
.iov_offset = offset,
};
}
EXPORT_SYMBOL(iov_iter_folio_queue);
/**
* iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
* @i: The iterator to initialise.
* @direction: The direction of the transfer.
* @xarray: The xarray to access.
* @start: The start file position.
* @count: The size of the I/O buffer in bytes.
*
* Set up an I/O iterator to either draw data out of the pages attached to an
* inode or to inject data into those pages. The pages *must* be prevented
* from evaporation, either by taking a ref on them or locking them by the
* caller.
*/
void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
struct xarray *xarray, loff_t start, size_t count)
{
BUG_ON(direction & ~1);
*i = (struct iov_iter) {
.iter_type = ITER_XARRAY,
.data_source = direction,
.xarray = xarray,
.xarray_start = start,
.count = count,
.iov_offset = 0
};
}
EXPORT_SYMBOL(iov_iter_xarray);
/**
* iov_iter_discard - Initialise an I/O iterator that discards data
* @i: The iterator to initialise.
* @direction: The direction of the transfer.
* @count: The size of the I/O buffer in bytes.
*
* Set up an I/O iterator that just discards everything that's written to it.
* It's only available as a READ iterator.
*/
void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
{
BUG_ON(direction != READ);
*i = (struct iov_iter){
.iter_type = ITER_DISCARD,
.data_source = false,
.count = count,
.iov_offset = 0
};
}
EXPORT_SYMBOL(iov_iter_discard);
static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
unsigned len_mask)
{
const struct iovec *iov = iter_iov(i);
size_t size = i->count;
size_t skip = i->iov_offset;
do {
size_t len = iov->iov_len - skip;
if (len > size)
len = size;
if (len & len_mask)
return false;
if ((unsigned long)(iov->iov_base + skip) & addr_mask)
return false;
iov++;
size -= len;
skip = 0;
} while (size);
return true;
}
static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
unsigned len_mask)
{
const struct bio_vec *bvec = i->bvec;
unsigned skip = i->iov_offset;
size_t size = i->count;
do {
size_t len = bvec->bv_len;
if (len > size)
len = size;
if (len & len_mask)
return false;
if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
return false;
bvec++;
size -= len;
skip = 0;
} while (size);
return true;
}
/**
* iov_iter_is_aligned() - Check if the addresses and lengths of each segments
* are aligned to the parameters.
*
* @i: &struct iov_iter to restore
* @addr_mask: bit mask to check against the iov element's addresses
* @len_mask: bit mask to check against the iov element's lengths
*
* Return: false if any addresses or lengths intersect with the provided masks
*/
bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
unsigned len_mask)
{
if (likely(iter_is_ubuf(i))) {
if (i->count & len_mask)
return false;
if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
return false;
return true;
}
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return iov_iter_aligned_iovec(i, addr_mask, len_mask);
if (iov_iter_is_bvec(i))
return iov_iter_aligned_bvec(i, addr_mask, len_mask);
/* With both xarray and folioq types, we're dealing with whole folios. */
if (iov_iter_is_xarray(i)) {
if (i->count & len_mask)
return false;
if ((i->xarray_start + i->iov_offset) & addr_mask)
return false;
}
if (iov_iter_is_folioq(i)) {
if (i->count & len_mask)
return false;
if (i->iov_offset & addr_mask)
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
{
const struct iovec *iov = iter_iov(i);
unsigned long res = 0;
size_t size = i->count;
size_t skip = i->iov_offset;
do {
size_t len = iov->iov_len - skip;
if (len) {
res |= (unsigned long)iov->iov_base + skip;
if (len > size)
len = size;
res |= len;
size -= len;
}
iov++;
skip = 0;
} while (size);
return res;
}
static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
{
const struct bio_vec *bvec = i->bvec;
unsigned res = 0;
size_t size = i->count;
unsigned skip = i->iov_offset;
do {
size_t len = bvec->bv_len - skip;
res |= (unsigned long)bvec->bv_offset + skip;
if (len > size)
len = size;
res |= len;
bvec++;
size -= len;
skip = 0;
} while (size);
return res;
}
unsigned long iov_iter_alignment(const struct iov_iter *i)
{
if (likely(iter_is_ubuf(i))) {
size_t size = i->count;
if (size)
return ((unsigned long)i->ubuf + i->iov_offset) | size;
return 0;
}
/* iovec and kvec have identical layouts */
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return iov_iter_alignment_iovec(i);
if (iov_iter_is_bvec(i))
return iov_iter_alignment_bvec(i);
/* With both xarray and folioq types, we're dealing with whole folios. */
if (iov_iter_is_folioq(i))
return i->iov_offset | i->count;
if (iov_iter_is_xarray(i))
return (i->xarray_start + i->iov_offset) | i->count;
return 0;
}
EXPORT_SYMBOL(iov_iter_alignment);
unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
{
unsigned long res = 0;
unsigned long v = 0;
size_t size = i->count;
unsigned k;
if (iter_is_ubuf(i))
return 0;
if (WARN_ON(!iter_is_iovec(i)))
return ~0U;
for (k = 0; k < i->nr_segs; k++) {
const struct iovec *iov = iter_iov(i) + k;
if (iov->iov_len) {
unsigned long base = (unsigned long)iov->iov_base;
if (v) // if not the first one
res |= base | v; // this start | previous end
v = base + iov->iov_len;
if (size <= iov->iov_len)
break;
size -= iov->iov_len;
}
}
return res;
}
EXPORT_SYMBOL(iov_iter_gap_alignment);
static int want_pages_array(struct page ***res, size_t size,
size_t start, unsigned int maxpages)
{
unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
if (count > maxpages)
count = maxpages;
WARN_ON(!count); // caller should've prevented that
if (!*res) {
*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
if (!*res)
return 0;
}
return count;
}
static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
struct page ***ppages, size_t maxsize,
unsigned maxpages, size_t *_start_offset)
{
const struct folio_queue *folioq = iter->folioq;
struct page **pages;
unsigned int slot = iter->folioq_slot;
size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
if (slot >= folioq_nr_slots(folioq)) {
folioq = folioq->next;
slot = 0;
if (WARN_ON(iov_offset != 0))
return -EIO;
}
maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
if (!maxpages)
return -ENOMEM;
*_start_offset = iov_offset & ~PAGE_MASK;
pages = *ppages;
for (;;) {
struct folio *folio = folioq_folio(folioq, slot);
size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
size_t part = PAGE_SIZE - offset % PAGE_SIZE;
part = umin(part, umin(maxsize - extracted, fsize - offset));
count -= part;
iov_offset += part;
extracted += part;
*pages = folio_page(folio, offset / PAGE_SIZE);
get_page(*pages);
pages++;
maxpages--;
if (maxpages == 0 || extracted >= maxsize)
break;
if (offset >= fsize) {
iov_offset = 0;
slot++;
if (slot == folioq_nr_slots(folioq) && folioq->next) {
folioq = folioq->next;
slot = 0;
}
}
}
iter->count = count;
iter->iov_offset = iov_offset;
iter->folioq = folioq;
iter->folioq_slot = slot;
return extracted;
}
static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
pgoff_t index, unsigned int nr_pages)
{
XA_STATE(xas, xa, index);
struct page *page;
unsigned int ret = 0;
rcu_read_lock();
for (page = xas_load(&xas); page; page = xas_next(&xas)) {
if (xas_retry(&xas, page))
continue;
/* Has the page moved or been split? */
if (unlikely(page != xas_reload(&xas))) {
xas_reset(&xas);
continue;
}
pages[ret] = find_subpage(page, xas.xa_index);
get_page(pages[ret]);
if (++ret == nr_pages)
break;
}
rcu_read_unlock();
return ret;
}
static ssize_t iter_xarray_get_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned maxpages, size_t *_start_offset)
{
unsigned nr, offset, count;
pgoff_t index;
loff_t pos;
pos = i->xarray_start + i->iov_offset;
index = pos >> PAGE_SHIFT;
offset = pos & ~PAGE_MASK;
*_start_offset = offset;
count = want_pages_array(pages, maxsize, offset, maxpages);
if (!count)
return -ENOMEM;
nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
if (nr == 0)
return 0;
maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
i->iov_offset += maxsize;
i->count -= maxsize;
return maxsize;
}
/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
{
size_t skip;
long k;
if (iter_is_ubuf(i))
return (unsigned long)i->ubuf + i->iov_offset;
for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
const struct iovec *iov = iter_iov(i) + k;
size_t len = iov->iov_len - skip;
if (unlikely(!len))
continue;
if (*size > len)
*size = len;
return (unsigned long)iov->iov_base + skip;
}
BUG(); // if it had been empty, we wouldn't get called
}
/* must be done on non-empty ITER_BVEC one */
static struct page *first_bvec_segment(const struct iov_iter *i,
size_t *size, size_t *start)
{
struct page *page;
size_t skip = i->iov_offset, len;
len = i->bvec->bv_len - skip;
if (*size > len)
*size = len;
skip += i->bvec->bv_offset;
page = i->bvec->bv_page + skip / PAGE_SIZE;
*start = skip % PAGE_SIZE;
return page;
}
static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages, size_t *start)
{
unsigned int n, gup_flags = 0;
if (maxsize > i->count)
maxsize = i->count;
if (!maxsize)
return 0;
if (maxsize > MAX_RW_COUNT)
maxsize = MAX_RW_COUNT;
if (likely(user_backed_iter(i))) {
unsigned long addr;
int res;
if (iov_iter_rw(i) != WRITE)
gup_flags |= FOLL_WRITE;
if (i->nofault)
gup_flags |= FOLL_NOFAULT;
addr = first_iovec_segment(i, &maxsize);
*start = addr % PAGE_SIZE;
addr &= PAGE_MASK;
n = want_pages_array(pages, maxsize, *start, maxpages);
if (!n)
return -ENOMEM;
res = get_user_pages_fast(addr, n, gup_flags, *pages);
if (unlikely(res <= 0))
return res;
maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
iov_iter_advance(i, maxsize);
return maxsize;
}
if (iov_iter_is_bvec(i)) {
struct page **p;
struct page *page;
page = first_bvec_segment(i, &maxsize, start);
n = want_pages_array(pages, maxsize, *start, maxpages);
if (!n)
return -ENOMEM;
p = *pages;
for (int k = 0; k < n; k++)
get_page(p[k] = page + k);
maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
i->count -= maxsize;
i->iov_offset += maxsize;
if (i->iov_offset == i->bvec->bv_len) {
i->iov_offset = 0;
i->bvec++;
i->nr_segs--;
}
return maxsize;
}
if (iov_iter_is_folioq(i))
return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
if (iov_iter_is_xarray(i))
return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
return -EFAULT;
}
ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
size_t maxsize, unsigned maxpages, size_t *start)
{
if (!maxpages)
return 0;
BUG_ON(!pages);
return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
}
EXPORT_SYMBOL(iov_iter_get_pages2);
ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
struct page ***pages, size_t maxsize, size_t *start)
{
ssize_t len;
*pages = NULL;
len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
if (len <= 0) {
kvfree(*pages);
*pages = NULL;
}
return len;
}
EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
static int iov_npages(const struct iov_iter *i, int maxpages)
{
size_t skip = i->iov_offset, size = i->count;
const struct iovec *p;
int npages = 0;
for (p = iter_iov(i); size; skip = 0, p++) {
unsigned offs = offset_in_page(p->iov_base + skip);
size_t len = min(p->iov_len - skip, size);
if (len) {
size -= len;
npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
if (unlikely(npages > maxpages))
return maxpages;
}
}
return npages;
}
static int bvec_npages(const struct iov_iter *i, int maxpages)
{
size_t skip = i->iov_offset, size = i->count;
const struct bio_vec *p;
int npages = 0;
for (p = i->bvec; size; skip = 0, p++) {
unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
size_t len = min(p->bv_len - skip, size);
size -= len;
npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
if (unlikely(npages > maxpages))
return maxpages;
}
return npages;
}
int iov_iter_npages(const struct iov_iter *i, int maxpages)
{
if (unlikely(!i->count))
return 0;
if (likely(iter_is_ubuf(i))) {
unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
return min(npages, maxpages);
}
/* iovec and kvec have identical layouts */
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return iov_npages(i, maxpages);
if (iov_iter_is_bvec(i))
return bvec_npages(i, maxpages);
if (iov_iter_is_folioq(i)) {
unsigned offset = i->iov_offset % PAGE_SIZE;
int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
return min(npages, maxpages);
}
if (iov_iter_is_xarray(i)) {
unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
return min(npages, maxpages);
}
return 0;
}
EXPORT_SYMBOL(iov_iter_npages);
const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
{
*new = *old;
if (iov_iter_is_bvec(new))
return new->bvec = kmemdup(new->bvec,
new->nr_segs * sizeof(struct bio_vec),
flags);
else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
/* iovec and kvec have identical layout */
return new->__iov = kmemdup(new->__iov,
new->nr_segs * sizeof(struct iovec),
flags);
return NULL;
}
EXPORT_SYMBOL(dup_iter);
static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
const struct iovec __user *uvec, u32 nr_segs)
{
const struct compat_iovec __user *uiov =
(const struct compat_iovec __user *)uvec;
int ret = -EFAULT;
u32 i;
if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
return -EFAULT;
for (i = 0; i < nr_segs; i++) {
compat_uptr_t buf;
compat_ssize_t len;
unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
/* check for compat_size_t not fitting in compat_ssize_t .. */
if (len < 0) {
ret = -EINVAL;
goto uaccess_end;
}
iov[i].iov_base = compat_ptr(buf);
iov[i].iov_len = len;
}
ret = 0;
uaccess_end:
user_access_end();
return ret;
}
static __noclone int copy_iovec_from_user(struct iovec *iov,
const struct iovec __user *uiov, unsigned long nr_segs)
{
int ret = -EFAULT;
if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
return -EFAULT;
do {
void __user *buf;
ssize_t len;
unsafe_get_user(len, &uiov->iov_len, uaccess_end);
unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
/* check for size_t not fitting in ssize_t .. */
if (unlikely(len < 0)) {
ret = -EINVAL;
goto uaccess_end;
}
iov->iov_base = buf;
iov->iov_len = len;
uiov++; iov++;
} while (--nr_segs);
ret = 0;
uaccess_end:
user_access_end();
return ret;
}
struct iovec *iovec_from_user(const struct iovec __user *uvec,
unsigned long nr_segs, unsigned long fast_segs,
struct iovec *fast_iov, bool compat)
{
struct iovec *iov = fast_iov;
int ret;
/*
* SuS says "The readv() function *may* fail if the iovcnt argument was
* less than or equal to 0, or greater than {IOV_MAX}. Linux has
* traditionally returned zero for zero segments, so...
*/
if (nr_segs == 0)
return iov;
if (nr_segs > UIO_MAXIOV)
return ERR_PTR(-EINVAL);
if (nr_segs > fast_segs) {
iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
if (!iov)
return ERR_PTR(-ENOMEM);
}
if (unlikely(compat))
ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
else
ret = copy_iovec_from_user(iov, uvec, nr_segs);
if (ret) {
if (iov != fast_iov)
kfree(iov);
return ERR_PTR(ret);
}
return iov;
}
/*
* Single segment iovec supplied by the user, import it as ITER_UBUF.
*/
static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
struct iovec **iovp, struct iov_iter *i,
bool compat)
{
struct iovec *iov = *iovp;
ssize_t ret;
if (compat)
ret = copy_compat_iovec_from_user(iov, uvec, 1);
else
ret = copy_iovec_from_user(iov, uvec, 1);
if (unlikely(ret))
return ret;
ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
if (unlikely(ret))
return ret;
*iovp = NULL;
return i->count;
}
ssize_t __import_iovec(int type, const struct iovec __user *uvec,
unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
struct iov_iter *i, bool compat)
{
ssize_t total_len = 0;
unsigned long seg;
struct iovec *iov;
if (nr_segs == 1)
return __import_iovec_ubuf(type, uvec, iovp, i, compat);
iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
if (IS_ERR(iov)) {
*iovp = NULL;
return PTR_ERR(iov);
}
/*
* According to the Single Unix Specification we should return EINVAL if
* an element length is < 0 when cast to ssize_t or if the total length
* would overflow the ssize_t return value of the system call.
*
* Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
* overflow case.
*/
for (seg = 0; seg < nr_segs; seg++) {
ssize_t len = (ssize_t)iov[seg].iov_len;
if (!access_ok(iov[seg].iov_base, len)) {
if (iov != *iovp)
kfree(iov);
*iovp = NULL;
return -EFAULT;
}
if (len > MAX_RW_COUNT - total_len) {
len = MAX_RW_COUNT - total_len;
iov[seg].iov_len = len;
}
total_len += len;
}
iov_iter_init(i, type, iov, nr_segs, total_len);
if (iov == *iovp)
*iovp = NULL;
else
*iovp = iov;
return total_len;
}
/**
* import_iovec() - Copy an array of &struct iovec from userspace
* into the kernel, check that it is valid, and initialize a new
* &struct iov_iter iterator to access it.
*
* @type: One of %READ or %WRITE.
* @uvec: Pointer to the userspace array.
* @nr_segs: Number of elements in userspace array.
* @fast_segs: Number of elements in @iov.
* @iovp: (input and output parameter) Pointer to pointer to (usually small
* on-stack) kernel array.
* @i: Pointer to iterator that will be initialized on success.
*
* If the array pointed to by *@iov is large enough to hold all @nr_segs,
* then this function places %NULL in *@iov on return. Otherwise, a new
* array will be allocated and the result placed in *@iov. This means that
* the caller may call kfree() on *@iov regardless of whether the small
* on-stack array was used or not (and regardless of whether this function
* returns an error or not).
*
* Return: Negative error code on error, bytes imported on success
*/
ssize_t import_iovec(int type, const struct iovec __user *uvec,
unsigned nr_segs, unsigned fast_segs,
struct iovec **iovp, struct iov_iter *i)
{
return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
in_compat_syscall());
}
EXPORT_SYMBOL(import_iovec);
int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
{
if (len > MAX_RW_COUNT)
len = MAX_RW_COUNT;
if (unlikely(!access_ok(buf, len)))
return -EFAULT;
iov_iter_ubuf(i, rw, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(import_ubuf);
/**
* iov_iter_restore() - Restore a &struct iov_iter to the same state as when
* iov_iter_save_state() was called.
*
* @i: &struct iov_iter to restore
* @state: state to restore from
*
* Used after iov_iter_save_state() to bring restore @i, if operations may
* have advanced it.
*
* Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
*/
void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
{
if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
!iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
return;
i->iov_offset = state->iov_offset;
i->count = state->count;
if (iter_is_ubuf(i))
return;
/*
* For the *vec iters, nr_segs + iov is constant - if we increment
* the vec, then we also decrement the nr_segs count. Hence we don't
* need to track both of these, just one is enough and we can deduct
* the other from that. ITER_KVEC and ITER_IOVEC are the same struct
* size, so we can just increment the iov pointer as they are unionzed.
* ITER_BVEC _may_ be the same size on some archs, but on others it is
* not. Be safe and handle it separately.
*/
BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
if (iov_iter_is_bvec(i))
i->bvec -= state->nr_segs - i->nr_segs;
else
i->__iov -= state->nr_segs - i->nr_segs;
i->nr_segs = state->nr_segs;
}
/*
* Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does
* not get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
const struct folio_queue *folioq = i->folioq;
struct page **p;
unsigned int nr = 0;
size_t extracted = 0, offset, slot = i->folioq_slot;
if (slot >= folioq_nr_slots(folioq)) {
folioq = folioq->next;
slot = 0;
if (WARN_ON(i->iov_offset != 0))
return -EIO;
}
offset = i->iov_offset & ~PAGE_MASK;
*offset0 = offset;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
for (;;) {
struct folio *folio = folioq_folio(folioq, slot);
size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
size_t part = PAGE_SIZE - offset % PAGE_SIZE;
if (offset < fsize) {
part = umin(part, umin(maxsize - extracted, fsize - offset));
i->count -= part;
i->iov_offset += part;
extracted += part;
p[nr++] = folio_page(folio, offset / PAGE_SIZE);
}
if (nr >= maxpages || extracted >= maxsize)
break;
if (i->iov_offset >= fsize) {
i->iov_offset = 0;
slot++;
if (slot == folioq_nr_slots(folioq) && folioq->next) {
folioq = folioq->next;
slot = 0;
}
}
}
i->folioq = folioq;
i->folioq_slot = slot;
return extracted;
}
/*
* Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
* get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
struct page *page, **p;
unsigned int nr = 0, offset;
loff_t pos = i->xarray_start + i->iov_offset;
pgoff_t index = pos >> PAGE_SHIFT;
XA_STATE(xas, i->xarray, index);
offset = pos & ~PAGE_MASK;
*offset0 = offset;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
rcu_read_lock();
for (page = xas_load(&xas); page; page = xas_next(&xas)) {
if (xas_retry(&xas, page))
continue;
/* Has the page moved or been split? */
if (unlikely(page != xas_reload(&xas))) {
xas_reset(&xas);
continue;
}
p[nr++] = find_subpage(page, xas.xa_index);
if (nr == maxpages)
break;
}
rcu_read_unlock();
maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
iov_iter_advance(i, maxsize);
return maxsize;
}
/*
* Extract a list of contiguous pages from an ITER_BVEC iterator. This does
* not get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
struct page **p, *page;
size_t skip = i->iov_offset, offset, size;
int k;
for (;;) {
if (i->nr_segs == 0)
return 0;
size = min(maxsize, i->bvec->bv_len - skip);
if (size)
break;
i->iov_offset = 0;
i->nr_segs--;
i->bvec++;
skip = 0;
}
skip += i->bvec->bv_offset;
page = i->bvec->bv_page + skip / PAGE_SIZE;
offset = skip % PAGE_SIZE;
*offset0 = offset;
maxpages = want_pages_array(pages, size, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
for (k = 0; k < maxpages; k++)
p[k] = page + k;
size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
iov_iter_advance(i, size);
return size;
}
/*
* Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
* This does not get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
struct page **p, *page;
const void *kaddr;
size_t skip = i->iov_offset, offset, len, size;
int k;
for (;;) {
if (i->nr_segs == 0)
return 0;
size = min(maxsize, i->kvec->iov_len - skip);
if (size)
break;
i->iov_offset = 0;
i->nr_segs--;
i->kvec++;
skip = 0;
}
kaddr = i->kvec->iov_base + skip;
offset = (unsigned long)kaddr & ~PAGE_MASK;
*offset0 = offset;
maxpages = want_pages_array(pages, size, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
kaddr -= offset;
len = offset + size;
for (k = 0; k < maxpages; k++) {
size_t seg = min_t(size_t, len, PAGE_SIZE);
if (is_vmalloc_or_module_addr(kaddr))
page = vmalloc_to_page(kaddr);
else
page = virt_to_page(kaddr);
p[k] = page;
len -= seg;
kaddr += PAGE_SIZE;
}
size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
iov_iter_advance(i, size);
return size;
}
/*
* Extract a list of contiguous pages from a user iterator and get a pin on
* each of them. This should only be used if the iterator is user-backed
* (IOBUF/UBUF).
*
* It does not get refs on the pages, but the pages must be unpinned by the
* caller once the transfer is complete.
*
* This is safe to be used where background IO/DMA *is* going to be modifying
* the buffer; using a pin rather than a ref makes forces fork() to give the
* child a copy of the page.
*/
static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
struct page ***pages,
size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
unsigned long addr;
unsigned int gup_flags = 0;
size_t offset;
int res;
if (i->data_source == ITER_DEST)
gup_flags |= FOLL_WRITE;
if (extraction_flags & ITER_ALLOW_P2PDMA)
gup_flags |= FOLL_PCI_P2PDMA;
if (i->nofault)
gup_flags |= FOLL_NOFAULT;
addr = first_iovec_segment(i, &maxsize);
*offset0 = offset = addr % PAGE_SIZE;
addr &= PAGE_MASK;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
if (unlikely(res <= 0))
return res;
maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
iov_iter_advance(i, maxsize);
return maxsize;
}
/**
* iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
* @i: The iterator to extract from
* @pages: Where to return the list of pages
* @maxsize: The maximum amount of iterator to extract
* @maxpages: The maximum size of the list of pages
* @extraction_flags: Flags to qualify request
* @offset0: Where to return the starting offset into (*@pages)[0]
*
* Extract a list of contiguous pages from the current point of the iterator,
* advancing the iterator. The maximum number of pages and the maximum amount
* of page contents can be set.
*
* If *@pages is NULL, a page list will be allocated to the required size and
* *@pages will be set to its base. If *@pages is not NULL, it will be assumed
* that the caller allocated a page list at least @maxpages in size and this
* will be filled in.
*
* @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
* be allowed on the pages extracted.
*
* The iov_iter_extract_will_pin() function can be used to query how cleanup
* should be performed.
*
* Extra refs or pins on the pages may be obtained as follows:
*
* (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
* added to the pages, but refs will not be taken.
* iov_iter_extract_will_pin() will return true.
*
* (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
* pages are merely listed; no extra refs or pins are obtained.
* iov_iter_extract_will_pin() will return 0.
*
* Note also:
*
* (*) Use with ITER_DISCARD is not supported as that has no content.
*
* On success, the function sets *@pages to the new pagelist, if allocated, and
* sets *offset0 to the offset into the first page.
*
* It may also return -ENOMEM and -EFAULT.
*/
ssize_t iov_iter_extract_pages(struct iov_iter *i,
struct page ***pages,
size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
if (!maxsize)
return 0;
if (likely(user_backed_iter(i)))
return iov_iter_extract_user_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_kvec(i))
return iov_iter_extract_kvec_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_bvec(i))
return iov_iter_extract_bvec_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_folioq(i))
return iov_iter_extract_folioq_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_xarray(i))
return iov_iter_extract_xarray_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
return -EFAULT;
}
EXPORT_SYMBOL_GPL(iov_iter_extract_pages);