linux/kernel/printk/printk.c
Linus Torvalds de848da12f drm next for 6.12-rc1
string:
 - add mem_is_zero()
 
 core:
 - support more device numbers
 - use XArray for minor ids
 - add backlight constants
 - Split dma fence array creation into alloc and arm
 
 fbdev:
 - remove usage of old fbdev hooks
 
 kms:
 - Add might_fault() to drm_modeset_lock priming
 - Add dynamic per-crtc vblank configuration support
 
 dma-buf:
 - docs cleanup
 
 buddy:
 - Add start address support for trim function
 
 printk:
 - pass description to kmsg_dump
 
 scheduler;
 - Remove full_recover from drm_sched_start
 
 ttm:
 - Make LRU walk restartable after dropping locks
 - Allow direct reclaim to allocate local memory
 
 panic:
 - add display QR code (in rust)
 
 displayport:
 - mst: GUID improvements
 
 bridge:
 - Silence error message on -EPROBE_DEFER
 - analogix: Clean aup
 - bridge-connector: Fix double free
 - lt6505: Disable interrupt when powered off
 - tc358767: Make default DP port preemphasis configurable
 - lt9611uxc: require DRM_BRIDGE_ATTACH_NO_CONNECTOR
 - anx7625: simplify OF array handling
 - dw-hdmi: simplify clock handling
 - lontium-lt8912b: fix mode validation
 - nwl-dsi: fix mode vsync/hsync polarity
 
 xe:
 - Enable LunarLake and Battlemage support
 - Introducing Xe2 ccs modifiers for integrated and discrete graphics
 - rename xe perf to xe observation
 - use wb caching on DGFX for system memory
 - add fence timeouts
 - Lunar Lake graphics/media/display workarounds
 - Battlemage workarounds
 - Battlemage GSC support
 - GSC and HuC fw updates for LL/BM
 - use dma_fence_chain_free
 - refactor hw engine lookup and mmio access
 - enable priority mem read for Xe2
 - Add first GuC BMG fw
 - fix dma-resv lock
 - Fix DGFX display suspend/resume
 - Use xe_managed for kernel BOs
 - Use reserved copy engine for user binds on faulting devices
 - Allow mixing dma-fence jobs and long-running faulting jobs
 - fix media TLB invalidation
 - fix rpm in TTM swapout path
 - track resources and VF state by PF
 
 i915:
 - Type-C programming fix for MTL+
 - FBC cleanup
 - Calc vblank delay more accurately
 - On DP MST, Enable LT fallback for UHBR<->non-UHBR rates
 - Fix DP LTTPR detection
 - limit relocations to INT_MAX
 - fix long hangs in buddy allocator on DG2/A380
 
 amdgpu:
 - Per-queue reset support
 - SDMA devcoredump support
 - DCN 4.0.1 updates
 - GFX12/VCN4/JPEG4 updates
 - Convert vbios embedded EDID to drm_edid
 - GFX9.3/9.4 devcoredump support
 - process isolation framework for GFX 9.4.3/4
 - take IOMMU mappings into account for P2P DMA
 
 amdkfd:
 - CRIU fixes
 - HMM fix
 - Enable process isolation support for GFX 9.4.3/4
 - Allow users to target recommended SDMA engines
 - KFD support for targetting queues on recommended SDMA engines
 
 radeon:
 - remove .load and drm_dev_alloc
 - Fix vbios embedded EDID size handling
 - Convert vbios embedded EDID to drm_edid
 - Use GEM references instead of TTM
 - r100 cp init cleanup
 - Fix potential overflows in evergreen CS offset tracking
 
 msm:
 - DPU:
 - implement DP/PHY mapping on SC8180X
 - Enable writeback on SM8150, SC8180X, SM6125, SM6350
 - DP:
 - Enable widebus on all relevant chipsets
 - MSM8998 HDMI support
 - GPU:
 - A642L speedbin support
 - A615/A306/A621 support
 - A7xx devcoredump support
 
 ast:
 - astdp: Support AST2600 with VGA
 - Clean up HPD
 - Fix timeout loop for DP link training
 - reorganize output code by type (VGA, DP, etc)
 - convert to struct drm_edid
 - fix BMC handling for all outputs
 
 exynos:
 - drop stale MAINTAINERS pattern
 - constify struct
 
 loongson:
 - use GEM refcount over TTM
 
 mgag200:
 - Improve BMC handling
 - Support VBLANK intterupts
 - transparently support BMC outputs
 
 nouveau:
 - Refactor and clean up internals
 - Use GEM refcount over TTM's
 
 gm12u320:
 - convert to struct drm_edid
 
 gma500:
 - update i2c terms
 
 lcdif:
 - pixel clock fix
 
 host1x:
 - fix syncpoint IRQ during resume
 - use iommu_paging_domain_alloc()
 
 imx:
 - ipuv3: convert to struct drm_edid
 
 omapdrm:
 - improve error handling
 - use common helper for_each_endpoint_of_node()
 
 panel:
 - add support for BOE TV101WUM-LL2 plus DT bindings
 - novatek-nt35950: improve error handling
 - nv3051d: improve error handling
 - panel-edp: add support for BOE NE140WUM-N6G; revert support for
   SDC ATNA45AF01
 - visionox-vtdr6130: improve error handling; use
   devm_regulator_bulk_get_const()
 - boe-th101mb31ig002: Support for starry-er88577 MIPI-DSI panel plus
   DT; Fix porch parameter
 - edp: Support AOU B116XTN02.3, AUO B116XAN06.1, AOU B116XAT04.1,
   BOE NV140WUM-N41, BOE NV133WUM-N63, BOE NV116WHM-A4D, CMN N116BCA-EA2,
   CMN N116BCP-EA2, CSW MNB601LS1-4
 - himax-hx8394: Support Microchip AC40T08A MIPI Display panel plus DT
 - ilitek-ili9806e: Support Densitron DMT028VGHMCMI-1D TFT plus DT
 - jd9365da: Support Melfas lmfbx101117480 MIPI-DSI panel plus DT; Refactor
   for code sharing
 - panel-edp: fix name for HKC MB116AN01
 - jd9365da: fix "exit sleep" commands
 - jdi-fhd-r63452: simplify error handling with DSI multi-style
   helpers
 - mantix-mlaf057we51: simplify error handling with DSI multi-style
   helpers
 - simple:
   support Innolux G070ACE-LH3 plus DT bindings
   support On Tat Industrial Company KD50G21-40NT-A1 plus DT bindings
 - st7701:
   decouple DSI and DRM code
   add SPI support
   support Anbernic RG28XX plus DT bindings
 
 mediatek:
 - support alpha blending
 - remove cl in struct cmdq_pkt
 - ovl adaptor fix
 - add power domain binding for mediatek DPI controller
 
 renesas:
 - rz-du: add support for RZ/G2UL plus DT bindings
 
 rockchip:
 - Improve DP sink-capability reporting
 - dw_hdmi: Support 4k@60Hz
 - vop: Support RGB display on Rockchip RK3066; Support 4096px width
 
 sti:
 - convert to struct drm_edid
 
 stm:
 - Avoid UAF wih managed plane and CRTC helpers
 - Fix module owner
 - Fix error handling in probe
 - Depend on COMMON_CLK
 - ltdc: Fix transparency after disabling plane; Remove unused interrupt
 
 tegra:
 - gr3d: improve PM domain handling
 - convert to struct drm_edid
 - Call drm_atomic_helper_shutdown()
 
 vc4:
 - fix PM during detect
 - replace DRM_ERROR() with drm_error()
 - v3d: simplify clock retrieval
 
 v3d:
 - Clean up perfmon
 
 virtio:
 - add DRM capset
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEEKbZHaGwW9KfbeusDHTzWXnEhr4FAmbq43gACgkQDHTzWXnE
 hr4+lg/+O/r41E7ioitcM0DWeWem0dTlvQr41pJ8jujHvw+bXNdg0BMGWtsTyTLA
 eOft2AwofsFjg+O7l8IFXOT37mQLdIdfjb3+w5brI198InL3OWC3QV8ZSwY9VGET
 n8crO9jFoxNmHZnFniBZbtI6egTyl6H+2ey3E0MTnKiPUKZQvsK/4+x532yVLPob
 UUOze5wcjyGZc7LJEIZPohPVneCb9ki7sabDQqh4cxIQ0Eg+nqPpWjYM4XVd+lTS
 8QmssbR49LrJ7z9m90qVE+8TjYUCn+ChDPMs61KZAAnc8k++nK41btjGZ23mDKPb
 YEguahCYthWJ4U8K18iXBPnLPxZv5+harQ8OIWAUYqdIOWSXHozvuJ2Z84eHV13a
 9mQ5vIymXang8G1nEXwX/vml9uhVhBCeWu3qfdse2jfaTWYUb1YzhqUoFvqI0R0K
 8wT03MyNdx965CSqAhpH5Jd559ueZmpd+jsHOfhAS+1gxfD6NgoPXv7lpnMUmGWX
 SnaeC9RLD4cgy7j2Swo7TEqQHrvK5XhZSwX94kU6RPmFE5RRKqWgFVQmwuikDMId
 UpNqDnPT5NL2UX4TNG4V4coyTXvKgVcSB9TA7j8NSLfwdGHhiz73pkYosaZXKyxe
 u6qKMwMONfZiT20nhD7RhH0AFnnKosAcO14dhn0TKFZPY6Ce9O8=
 =7jR+
 -----END PGP SIGNATURE-----

Merge tag 'drm-next-2024-09-19' of https://gitlab.freedesktop.org/drm/kernel

Pull drm updates from Dave Airlie:
 "This adds a couple of patches outside the drm core, all should be
  acked appropriately, the string and pstore ones are the main ones that
  come to mind.

  Otherwise it's the usual drivers, xe is getting enabled by default on
  some new hardware, we've changed the device number handling to allow
  more devices, and we added some optional rust code to create QR codes
  in the panic handler, an idea first suggested I think 10 years ago :-)

  string:
   - add mem_is_zero()

  core:
   - support more device numbers
   - use XArray for minor ids
   - add backlight constants
   - Split dma fence array creation into alloc and arm

  fbdev:
   - remove usage of old fbdev hooks

  kms:
   - Add might_fault() to drm_modeset_lock priming
   - Add dynamic per-crtc vblank configuration support

  dma-buf:
   - docs cleanup

  buddy:
   - Add start address support for trim function

  printk:
   - pass description to kmsg_dump

  scheduler:
   - Remove full_recover from drm_sched_start

  ttm:
   - Make LRU walk restartable after dropping locks
   - Allow direct reclaim to allocate local memory

  panic:
   - add display QR code (in rust)

  displayport:
   - mst: GUID improvements

  bridge:
   - Silence error message on -EPROBE_DEFER
   - analogix: Clean aup
   - bridge-connector: Fix double free
   - lt6505: Disable interrupt when powered off
   - tc358767: Make default DP port preemphasis configurable
   - lt9611uxc: require DRM_BRIDGE_ATTACH_NO_CONNECTOR
   - anx7625: simplify OF array handling
   - dw-hdmi: simplify clock handling
   - lontium-lt8912b: fix mode validation
   - nwl-dsi: fix mode vsync/hsync polarity

  xe:
   - Enable LunarLake and Battlemage support
   - Introducing Xe2 ccs modifiers for integrated and discrete graphics
   - rename xe perf to xe observation
   - use wb caching on DGFX for system memory
   - add fence timeouts
   - Lunar Lake graphics/media/display workarounds
   - Battlemage workarounds
   - Battlemage GSC support
   - GSC and HuC fw updates for LL/BM
   - use dma_fence_chain_free
   - refactor hw engine lookup and mmio access
   - enable priority mem read for Xe2
   - Add first GuC BMG fw
   - fix dma-resv lock
   - Fix DGFX display suspend/resume
   - Use xe_managed for kernel BOs
   - Use reserved copy engine for user binds on faulting devices
   - Allow mixing dma-fence jobs and long-running faulting jobs
   - fix media TLB invalidation
   - fix rpm in TTM swapout path
   - track resources and VF state by PF

  i915:
   - Type-C programming fix for MTL+
   - FBC cleanup
   - Calc vblank delay more accurately
   - On DP MST, Enable LT fallback for UHBR<->non-UHBR rates
   - Fix DP LTTPR detection
   - limit relocations to INT_MAX
   - fix long hangs in buddy allocator on DG2/A380

  amdgpu:
   - Per-queue reset support
   - SDMA devcoredump support
   - DCN 4.0.1 updates
   - GFX12/VCN4/JPEG4 updates
   - Convert vbios embedded EDID to drm_edid
   - GFX9.3/9.4 devcoredump support
   - process isolation framework for GFX 9.4.3/4
   - take IOMMU mappings into account for P2P DMA

  amdkfd:
   - CRIU fixes
   - HMM fix
   - Enable process isolation support for GFX 9.4.3/4
   - Allow users to target recommended SDMA engines
   - KFD support for targetting queues on recommended SDMA engines

  radeon:
   - remove .load and drm_dev_alloc
   - Fix vbios embedded EDID size handling
   - Convert vbios embedded EDID to drm_edid
   - Use GEM references instead of TTM
   - r100 cp init cleanup
   - Fix potential overflows in evergreen CS offset tracking

  msm:
   - DPU:
      - implement DP/PHY mapping on SC8180X
      - Enable writeback on SM8150, SC8180X, SM6125, SM6350
   - DP:
      - Enable widebus on all relevant chipsets
      - MSM8998 HDMI support
   - GPU:
      - A642L speedbin support
      - A615/A306/A621 support
      - A7xx devcoredump support

  ast:
   - astdp: Support AST2600 with VGA
   - Clean up HPD
   - Fix timeout loop for DP link training
   - reorganize output code by type (VGA, DP, etc)
   - convert to struct drm_edid
   - fix BMC handling for all outputs

  exynos:
   - drop stale MAINTAINERS pattern
   - constify struct

  loongson:
   - use GEM refcount over TTM

  mgag200:
   - Improve BMC handling
   - Support VBLANK intterupts
   - transparently support BMC outputs

  nouveau:
   - Refactor and clean up internals
   - Use GEM refcount over TTM's

  gm12u320:
   - convert to struct drm_edid

  gma500:
   - update i2c terms

  lcdif:
   - pixel clock fix

  host1x:
   - fix syncpoint IRQ during resume
   - use iommu_paging_domain_alloc()

  imx:
   - ipuv3: convert to struct drm_edid

  omapdrm:
   - improve error handling
   - use common helper for_each_endpoint_of_node()

  panel:
   - add support for BOE TV101WUM-LL2 plus DT bindings
   - novatek-nt35950: improve error handling
   - nv3051d: improve error handling
   - panel-edp:
      - add support for BOE NE140WUM-N6G
      - revert support for SDC ATNA45AF01
   - visionox-vtdr6130:
      - improve error handling
      - use devm_regulator_bulk_get_const()
   - boe-th101mb31ig002:
      - Support for starry-er88577 MIPI-DSI panel plus DT
      - Fix porch parameter
   - edp: Support AOU B116XTN02.3, AUO B116XAN06.1, AOU B116XAT04.1, BOE
     NV140WUM-N41, BOE NV133WUM-N63, BOE NV116WHM-A4D, CMN N116BCA-EA2,
     CMN N116BCP-EA2, CSW MNB601LS1-4
   - himax-hx8394: Support Microchip AC40T08A MIPI Display panel plus DT
   - ilitek-ili9806e: Support Densitron DMT028VGHMCMI-1D TFT plus DT
   - jd9365da:
      - Support Melfas lmfbx101117480 MIPI-DSI panel plus DT
      - Refactor for code sharing
   - panel-edp: fix name for HKC MB116AN01
   - jd9365da: fix "exit sleep" commands
   - jdi-fhd-r63452: simplify error handling with DSI multi-style
     helpers
   - mantix-mlaf057we51: simplify error handling with DSI multi-style
     helpers
   - simple:
      - support Innolux G070ACE-LH3 plus DT bindings
      - support On Tat Industrial Company KD50G21-40NT-A1 plus DT
        bindings
   - st7701:
      - decouple DSI and DRM code
      - add SPI support
      - support Anbernic RG28XX plus DT bindings

  mediatek:
   - support alpha blending
   - remove cl in struct cmdq_pkt
   - ovl adaptor fix
   - add power domain binding for mediatek DPI controller

  renesas:
   - rz-du: add support for RZ/G2UL plus DT bindings

  rockchip:
   - Improve DP sink-capability reporting
   - dw_hdmi: Support 4k@60Hz
   - vop:
      - Support RGB display on Rockchip RK3066
      - Support 4096px width

  sti:
   - convert to struct drm_edid

  stm:
   - Avoid UAF wih managed plane and CRTC helpers
   - Fix module owner
   - Fix error handling in probe
   - Depend on COMMON_CLK
   - ltdc:
      - Fix transparency after disabling plane
      - Remove unused interrupt

  tegra:
   - gr3d: improve PM domain handling
   - convert to struct drm_edid
   - Call drm_atomic_helper_shutdown()

  vc4:
   - fix PM during detect
   - replace DRM_ERROR() with drm_error()
   - v3d: simplify clock retrieval

  v3d:
   - Clean up perfmon

  virtio:
   - add DRM capset"

* tag 'drm-next-2024-09-19' of https://gitlab.freedesktop.org/drm/kernel: (1326 commits)
  drm/xe: Fix missing conversion to xe_display_pm_runtime_resume
  drm/xe/xe2hpg: Add Wa_15016589081
  drm/xe: Don't keep stale pointer to bo->ggtt_node
  drm/xe: fix missing 'xe_vm_put'
  drm/xe: fix build warning with CONFIG_PM=n
  drm/xe: Suppress missing outer rpm protection warning
  drm/xe: prevent potential UAF in pf_provision_vf_ggtt()
  drm/amd/display: Add all planes on CRTC to state for overlay cursor
  drm/i915/bios: fix printk format width
  drm/i915/display: Fix BMG CCS modifiers
  drm/amdgpu: get rid of bogus includes of fdtable.h
  drm/amdkfd: CRIU fixes
  drm/amdgpu: fix a race in kfd_mem_export_dmabuf()
  drm: new helper: drm_gem_prime_handle_to_dmabuf()
  drm/amdgpu/atomfirmware: Silence UBSAN warning
  drm/amdgpu: Fix kdoc entry in 'amdgpu_vm_cpu_prepare'
  drm/amd/amdgpu: apply command submission parser for JPEG v1
  drm/amd/amdgpu: apply command submission parser for JPEG v2+
  drm/amd/pm: fix the pp_dpm_pcie issue on smu v14.0.2/3
  drm/amd/pm: update the features set on smu v14.0.2/3
  ...
2024-09-19 10:18:15 +02:00

5007 lines
130 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/printk.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Modified to make sys_syslog() more flexible: added commands to
* return the last 4k of kernel messages, regardless of whether
* they've been read or not. Added option to suppress kernel printk's
* to the console. Added hook for sending the console messages
* elsewhere, in preparation for a serial line console (someday).
* Ted Ts'o, 2/11/93.
* Modified for sysctl support, 1/8/97, Chris Horn.
* Fixed SMP synchronization, 08/08/99, Manfred Spraul
* manfred@colorfullife.com
* Rewrote bits to get rid of console_lock
* 01Mar01 Andrew Morton
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/nmi.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/security.h>
#include <linux/memblock.h>
#include <linux/syscalls.h>
#include <linux/syscore_ops.h>
#include <linux/vmcore_info.h>
#include <linux/ratelimit.h>
#include <linux/kmsg_dump.h>
#include <linux/syslog.h>
#include <linux/cpu.h>
#include <linux/rculist.h>
#include <linux/poll.h>
#include <linux/irq_work.h>
#include <linux/ctype.h>
#include <linux/uio.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
#include <linux/sched/task_stack.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include <trace/events/initcall.h>
#define CREATE_TRACE_POINTS
#include <trace/events/printk.h>
#include "printk_ringbuffer.h"
#include "console_cmdline.h"
#include "braille.h"
#include "internal.h"
int console_printk[4] = {
CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
};
EXPORT_SYMBOL_GPL(console_printk);
atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
EXPORT_SYMBOL(ignore_console_lock_warning);
EXPORT_TRACEPOINT_SYMBOL_GPL(console);
/*
* Low level drivers may need that to know if they can schedule in
* their unblank() callback or not. So let's export it.
*/
int oops_in_progress;
EXPORT_SYMBOL(oops_in_progress);
/*
* console_mutex protects console_list updates and console->flags updates.
* The flags are synchronized only for consoles that are registered, i.e.
* accessible via the console list.
*/
static DEFINE_MUTEX(console_mutex);
/*
* console_sem protects updates to console->seq
* and also provides serialization for console printing.
*/
static DEFINE_SEMAPHORE(console_sem, 1);
HLIST_HEAD(console_list);
EXPORT_SYMBOL_GPL(console_list);
DEFINE_STATIC_SRCU(console_srcu);
/*
* System may need to suppress printk message under certain
* circumstances, like after kernel panic happens.
*/
int __read_mostly suppress_printk;
#ifdef CONFIG_LOCKDEP
static struct lockdep_map console_lock_dep_map = {
.name = "console_lock"
};
void lockdep_assert_console_list_lock_held(void)
{
lockdep_assert_held(&console_mutex);
}
EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
bool console_srcu_read_lock_is_held(void)
{
return srcu_read_lock_held(&console_srcu);
}
EXPORT_SYMBOL(console_srcu_read_lock_is_held);
#endif
enum devkmsg_log_bits {
__DEVKMSG_LOG_BIT_ON = 0,
__DEVKMSG_LOG_BIT_OFF,
__DEVKMSG_LOG_BIT_LOCK,
};
enum devkmsg_log_masks {
DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
};
/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
#define DEVKMSG_LOG_MASK_DEFAULT 0
static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
static int __control_devkmsg(char *str)
{
size_t len;
if (!str)
return -EINVAL;
len = str_has_prefix(str, "on");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_ON;
return len;
}
len = str_has_prefix(str, "off");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_OFF;
return len;
}
len = str_has_prefix(str, "ratelimit");
if (len) {
devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
return len;
}
return -EINVAL;
}
static int __init control_devkmsg(char *str)
{
if (__control_devkmsg(str) < 0) {
pr_warn("printk.devkmsg: bad option string '%s'\n", str);
return 1;
}
/*
* Set sysctl string accordingly:
*/
if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
strscpy(devkmsg_log_str, "on");
else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
strscpy(devkmsg_log_str, "off");
/* else "ratelimit" which is set by default. */
/*
* Sysctl cannot change it anymore. The kernel command line setting of
* this parameter is to force the setting to be permanent throughout the
* runtime of the system. This is a precation measure against userspace
* trying to be a smarta** and attempting to change it up on us.
*/
devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
return 1;
}
__setup("printk.devkmsg=", control_devkmsg);
char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
char old_str[DEVKMSG_STR_MAX_SIZE];
unsigned int old;
int err;
if (write) {
if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
return -EINVAL;
old = devkmsg_log;
strscpy(old_str, devkmsg_log_str);
}
err = proc_dostring(table, write, buffer, lenp, ppos);
if (err)
return err;
if (write) {
err = __control_devkmsg(devkmsg_log_str);
/*
* Do not accept an unknown string OR a known string with
* trailing crap...
*/
if (err < 0 || (err + 1 != *lenp)) {
/* ... and restore old setting. */
devkmsg_log = old;
strscpy(devkmsg_log_str, old_str);
return -EINVAL;
}
}
return 0;
}
#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
/**
* console_list_lock - Lock the console list
*
* For console list or console->flags updates
*/
void console_list_lock(void)
{
/*
* In unregister_console() and console_force_preferred_locked(),
* synchronize_srcu() is called with the console_list_lock held.
* Therefore it is not allowed that the console_list_lock is taken
* with the srcu_lock held.
*
* Detecting if this context is really in the read-side critical
* section is only possible if the appropriate debug options are
* enabled.
*/
WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
srcu_read_lock_held(&console_srcu));
mutex_lock(&console_mutex);
}
EXPORT_SYMBOL(console_list_lock);
/**
* console_list_unlock - Unlock the console list
*
* Counterpart to console_list_lock()
*/
void console_list_unlock(void)
{
mutex_unlock(&console_mutex);
}
EXPORT_SYMBOL(console_list_unlock);
/**
* console_srcu_read_lock - Register a new reader for the
* SRCU-protected console list
*
* Use for_each_console_srcu() to iterate the console list
*
* Context: Any context.
* Return: A cookie to pass to console_srcu_read_unlock().
*/
int console_srcu_read_lock(void)
__acquires(&console_srcu)
{
return srcu_read_lock_nmisafe(&console_srcu);
}
EXPORT_SYMBOL(console_srcu_read_lock);
/**
* console_srcu_read_unlock - Unregister an old reader from
* the SRCU-protected console list
* @cookie: cookie returned from console_srcu_read_lock()
*
* Counterpart to console_srcu_read_lock()
*/
void console_srcu_read_unlock(int cookie)
__releases(&console_srcu)
{
srcu_read_unlock_nmisafe(&console_srcu, cookie);
}
EXPORT_SYMBOL(console_srcu_read_unlock);
/*
* Helper macros to handle lockdep when locking/unlocking console_sem. We use
* macros instead of functions so that _RET_IP_ contains useful information.
*/
#define down_console_sem() do { \
down(&console_sem);\
mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
} while (0)
static int __down_trylock_console_sem(unsigned long ip)
{
int lock_failed;
unsigned long flags;
/*
* Here and in __up_console_sem() we need to be in safe mode,
* because spindump/WARN/etc from under console ->lock will
* deadlock in printk()->down_trylock_console_sem() otherwise.
*/
printk_safe_enter_irqsave(flags);
lock_failed = down_trylock(&console_sem);
printk_safe_exit_irqrestore(flags);
if (lock_failed)
return 1;
mutex_acquire(&console_lock_dep_map, 0, 1, ip);
return 0;
}
#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
static void __up_console_sem(unsigned long ip)
{
unsigned long flags;
mutex_release(&console_lock_dep_map, ip);
printk_safe_enter_irqsave(flags);
up(&console_sem);
printk_safe_exit_irqrestore(flags);
}
#define up_console_sem() __up_console_sem(_RET_IP_)
static bool panic_in_progress(void)
{
return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
}
/* Return true if a panic is in progress on the current CPU. */
bool this_cpu_in_panic(void)
{
/*
* We can use raw_smp_processor_id() here because it is impossible for
* the task to be migrated to the panic_cpu, or away from it. If
* panic_cpu has already been set, and we're not currently executing on
* that CPU, then we never will be.
*/
return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
}
/*
* Return true if a panic is in progress on a remote CPU.
*
* On true, the local CPU should immediately release any printing resources
* that may be needed by the panic CPU.
*/
bool other_cpu_in_panic(void)
{
return (panic_in_progress() && !this_cpu_in_panic());
}
/*
* This is used for debugging the mess that is the VT code by
* keeping track if we have the console semaphore held. It's
* definitely not the perfect debug tool (we don't know if _WE_
* hold it and are racing, but it helps tracking those weird code
* paths in the console code where we end up in places I want
* locked without the console semaphore held).
*/
static int console_locked;
/*
* Array of consoles built from command line options (console=)
*/
#define MAX_CMDLINECONSOLES 8
static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
static int preferred_console = -1;
int console_set_on_cmdline;
EXPORT_SYMBOL(console_set_on_cmdline);
/* Flag: console code may call schedule() */
static int console_may_schedule;
enum con_msg_format_flags {
MSG_FORMAT_DEFAULT = 0,
MSG_FORMAT_SYSLOG = (1 << 0),
};
static int console_msg_format = MSG_FORMAT_DEFAULT;
/*
* The printk log buffer consists of a sequenced collection of records, each
* containing variable length message text. Every record also contains its
* own meta-data (@info).
*
* Every record meta-data carries the timestamp in microseconds, as well as
* the standard userspace syslog level and syslog facility. The usual kernel
* messages use LOG_KERN; userspace-injected messages always carry a matching
* syslog facility, by default LOG_USER. The origin of every message can be
* reliably determined that way.
*
* The human readable log message of a record is available in @text, the
* length of the message text in @text_len. The stored message is not
* terminated.
*
* Optionally, a record can carry a dictionary of properties (key/value
* pairs), to provide userspace with a machine-readable message context.
*
* Examples for well-defined, commonly used property names are:
* DEVICE=b12:8 device identifier
* b12:8 block dev_t
* c127:3 char dev_t
* n8 netdev ifindex
* +sound:card0 subsystem:devname
* SUBSYSTEM=pci driver-core subsystem name
*
* Valid characters in property names are [a-zA-Z0-9.-_]. Property names
* and values are terminated by a '\0' character.
*
* Example of record values:
* record.text_buf = "it's a line" (unterminated)
* record.info.seq = 56
* record.info.ts_nsec = 36863
* record.info.text_len = 11
* record.info.facility = 0 (LOG_KERN)
* record.info.flags = 0
* record.info.level = 3 (LOG_ERR)
* record.info.caller_id = 299 (task 299)
* record.info.dev_info.subsystem = "pci" (terminated)
* record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
*
* The 'struct printk_info' buffer must never be directly exported to
* userspace, it is a kernel-private implementation detail that might
* need to be changed in the future, when the requirements change.
*
* /dev/kmsg exports the structured data in the following line format:
* "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
*
* Users of the export format should ignore possible additional values
* separated by ',', and find the message after the ';' character.
*
* The optional key/value pairs are attached as continuation lines starting
* with a space character and terminated by a newline. All possible
* non-prinatable characters are escaped in the "\xff" notation.
*/
/* syslog_lock protects syslog_* variables and write access to clear_seq. */
static DEFINE_MUTEX(syslog_lock);
/*
* Specifies if a legacy console is registered. If legacy consoles are
* present, it is necessary to perform the console lock/unlock dance
* whenever console flushing should occur.
*/
bool have_legacy_console;
/*
* Specifies if an nbcon console is registered. If nbcon consoles are present,
* synchronous printing of legacy consoles will not occur during panic until
* the backtrace has been stored to the ringbuffer.
*/
bool have_nbcon_console;
/*
* Specifies if a boot console is registered. If boot consoles are present,
* nbcon consoles cannot print simultaneously and must be synchronized by
* the console lock. This is because boot consoles and nbcon consoles may
* have mapped the same hardware.
*/
bool have_boot_console;
/* See printk_legacy_allow_panic_sync() for details. */
bool legacy_allow_panic_sync;
#ifdef CONFIG_PRINTK
DECLARE_WAIT_QUEUE_HEAD(log_wait);
static DECLARE_WAIT_QUEUE_HEAD(legacy_wait);
/* All 3 protected by @syslog_lock. */
/* the next printk record to read by syslog(READ) or /proc/kmsg */
static u64 syslog_seq;
static size_t syslog_partial;
static bool syslog_time;
/* True when _all_ printer threads are available for printing. */
bool printk_kthreads_running;
struct latched_seq {
seqcount_latch_t latch;
u64 val[2];
};
/*
* The next printk record to read after the last 'clear' command. There are
* two copies (updated with seqcount_latch) so that reads can locklessly
* access a valid value. Writers are synchronized by @syslog_lock.
*/
static struct latched_seq clear_seq = {
.latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
.val[0] = 0,
.val[1] = 0,
};
#define LOG_LEVEL(v) ((v) & 0x07)
#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
/* record buffer */
#define LOG_ALIGN __alignof__(unsigned long)
#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
#define LOG_BUF_LEN_MAX (u32)(1 << 31)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
static char *log_buf = __log_buf;
static u32 log_buf_len = __LOG_BUF_LEN;
/*
* Define the average message size. This only affects the number of
* descriptors that will be available. Underestimating is better than
* overestimating (too many available descriptors is better than not enough).
*/
#define PRB_AVGBITS 5 /* 32 character average length */
#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
#error CONFIG_LOG_BUF_SHIFT value too small.
#endif
_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
PRB_AVGBITS, &__log_buf[0]);
static struct printk_ringbuffer printk_rb_dynamic;
struct printk_ringbuffer *prb = &printk_rb_static;
/*
* We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
* per_cpu_areas are initialised. This variable is set to true when
* it's safe to access per-CPU data.
*/
static bool __printk_percpu_data_ready __ro_after_init;
bool printk_percpu_data_ready(void)
{
return __printk_percpu_data_ready;
}
/* Must be called under syslog_lock. */
static void latched_seq_write(struct latched_seq *ls, u64 val)
{
raw_write_seqcount_latch(&ls->latch);
ls->val[0] = val;
raw_write_seqcount_latch(&ls->latch);
ls->val[1] = val;
}
/* Can be called from any context. */
static u64 latched_seq_read_nolock(struct latched_seq *ls)
{
unsigned int seq;
unsigned int idx;
u64 val;
do {
seq = raw_read_seqcount_latch(&ls->latch);
idx = seq & 0x1;
val = ls->val[idx];
} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
return val;
}
/* Return log buffer address */
char *log_buf_addr_get(void)
{
return log_buf;
}
/* Return log buffer size */
u32 log_buf_len_get(void)
{
return log_buf_len;
}
/*
* Define how much of the log buffer we could take at maximum. The value
* must be greater than two. Note that only half of the buffer is available
* when the index points to the middle.
*/
#define MAX_LOG_TAKE_PART 4
static const char trunc_msg[] = "<truncated>";
static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
{
/*
* The message should not take the whole buffer. Otherwise, it might
* get removed too soon.
*/
u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
if (*text_len > max_text_len)
*text_len = max_text_len;
/* enable the warning message (if there is room) */
*trunc_msg_len = strlen(trunc_msg);
if (*text_len >= *trunc_msg_len)
*text_len -= *trunc_msg_len;
else
*trunc_msg_len = 0;
}
int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
static int syslog_action_restricted(int type)
{
if (dmesg_restrict)
return 1;
/*
* Unless restricted, we allow "read all" and "get buffer size"
* for everybody.
*/
return type != SYSLOG_ACTION_READ_ALL &&
type != SYSLOG_ACTION_SIZE_BUFFER;
}
static int check_syslog_permissions(int type, int source)
{
/*
* If this is from /proc/kmsg and we've already opened it, then we've
* already done the capabilities checks at open time.
*/
if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
goto ok;
if (syslog_action_restricted(type)) {
if (capable(CAP_SYSLOG))
goto ok;
return -EPERM;
}
ok:
return security_syslog(type);
}
static void append_char(char **pp, char *e, char c)
{
if (*pp < e)
*(*pp)++ = c;
}
static ssize_t info_print_ext_header(char *buf, size_t size,
struct printk_info *info)
{
u64 ts_usec = info->ts_nsec;
char caller[20];
#ifdef CONFIG_PRINTK_CALLER
u32 id = info->caller_id;
snprintf(caller, sizeof(caller), ",caller=%c%u",
id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
#else
caller[0] = '\0';
#endif
do_div(ts_usec, 1000);
return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
(info->facility << 3) | info->level, info->seq,
ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
}
static ssize_t msg_add_ext_text(char *buf, size_t size,
const char *text, size_t text_len,
unsigned char endc)
{
char *p = buf, *e = buf + size;
size_t i;
/* escape non-printable characters */
for (i = 0; i < text_len; i++) {
unsigned char c = text[i];
if (c < ' ' || c >= 127 || c == '\\')
p += scnprintf(p, e - p, "\\x%02x", c);
else
append_char(&p, e, c);
}
append_char(&p, e, endc);
return p - buf;
}
static ssize_t msg_add_dict_text(char *buf, size_t size,
const char *key, const char *val)
{
size_t val_len = strlen(val);
ssize_t len;
if (!val_len)
return 0;
len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
return len;
}
static ssize_t msg_print_ext_body(char *buf, size_t size,
char *text, size_t text_len,
struct dev_printk_info *dev_info)
{
ssize_t len;
len = msg_add_ext_text(buf, size, text, text_len, '\n');
if (!dev_info)
goto out;
len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
dev_info->subsystem);
len += msg_add_dict_text(buf + len, size - len, "DEVICE",
dev_info->device);
out:
return len;
}
/* /dev/kmsg - userspace message inject/listen interface */
struct devkmsg_user {
atomic64_t seq;
struct ratelimit_state rs;
struct mutex lock;
struct printk_buffers pbufs;
};
static __printf(3, 4) __cold
int devkmsg_emit(int facility, int level, const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_emit(facility, level, NULL, fmt, args);
va_end(args);
return r;
}
static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
{
char *buf, *line;
int level = default_message_loglevel;
int facility = 1; /* LOG_USER */
struct file *file = iocb->ki_filp;
struct devkmsg_user *user = file->private_data;
size_t len = iov_iter_count(from);
ssize_t ret = len;
if (len > PRINTKRB_RECORD_MAX)
return -EINVAL;
/* Ignore when user logging is disabled. */
if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
return len;
/* Ratelimit when not explicitly enabled. */
if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
if (!___ratelimit(&user->rs, current->comm))
return ret;
}
buf = kmalloc(len+1, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[len] = '\0';
if (!copy_from_iter_full(buf, len, from)) {
kfree(buf);
return -EFAULT;
}
/*
* Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
* the decimal value represents 32bit, the lower 3 bit are the log
* level, the rest are the log facility.
*
* If no prefix or no userspace facility is specified, we
* enforce LOG_USER, to be able to reliably distinguish
* kernel-generated messages from userspace-injected ones.
*/
line = buf;
if (line[0] == '<') {
char *endp = NULL;
unsigned int u;
u = simple_strtoul(line + 1, &endp, 10);
if (endp && endp[0] == '>') {
level = LOG_LEVEL(u);
if (LOG_FACILITY(u) != 0)
facility = LOG_FACILITY(u);
endp++;
line = endp;
}
}
devkmsg_emit(facility, level, "%s", line);
kfree(buf);
return ret;
}
static ssize_t devkmsg_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct devkmsg_user *user = file->private_data;
char *outbuf = &user->pbufs.outbuf[0];
struct printk_message pmsg = {
.pbufs = &user->pbufs,
};
ssize_t ret;
ret = mutex_lock_interruptible(&user->lock);
if (ret)
return ret;
if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out;
}
/*
* Guarantee this task is visible on the waitqueue before
* checking the wake condition.
*
* The full memory barrier within set_current_state() of
* prepare_to_wait_event() pairs with the full memory barrier
* within wq_has_sleeper().
*
* This pairs with __wake_up_klogd:A.
*/
ret = wait_event_interruptible(log_wait,
printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
false)); /* LMM(devkmsg_read:A) */
if (ret)
goto out;
}
if (pmsg.dropped) {
/* our last seen message is gone, return error and reset */
atomic64_set(&user->seq, pmsg.seq);
ret = -EPIPE;
goto out;
}
atomic64_set(&user->seq, pmsg.seq + 1);
if (pmsg.outbuf_len > count) {
ret = -EINVAL;
goto out;
}
if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
ret = -EFAULT;
goto out;
}
ret = pmsg.outbuf_len;
out:
mutex_unlock(&user->lock);
return ret;
}
/*
* Be careful when modifying this function!!!
*
* Only few operations are supported because the device works only with the
* entire variable length messages (records). Non-standard values are
* returned in the other cases and has been this way for quite some time.
* User space applications might depend on this behavior.
*/
static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
{
struct devkmsg_user *user = file->private_data;
loff_t ret = 0;
if (offset)
return -ESPIPE;
switch (whence) {
case SEEK_SET:
/* the first record */
atomic64_set(&user->seq, prb_first_valid_seq(prb));
break;
case SEEK_DATA:
/*
* The first record after the last SYSLOG_ACTION_CLEAR,
* like issued by 'dmesg -c'. Reading /dev/kmsg itself
* changes no global state, and does not clear anything.
*/
atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
break;
case SEEK_END:
/* after the last record */
atomic64_set(&user->seq, prb_next_seq(prb));
break;
default:
ret = -EINVAL;
}
return ret;
}
static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
{
struct devkmsg_user *user = file->private_data;
struct printk_info info;
__poll_t ret = 0;
poll_wait(file, &log_wait, wait);
if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
/* return error when data has vanished underneath us */
if (info.seq != atomic64_read(&user->seq))
ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
else
ret = EPOLLIN|EPOLLRDNORM;
}
return ret;
}
static int devkmsg_open(struct inode *inode, struct file *file)
{
struct devkmsg_user *user;
int err;
if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
return -EPERM;
/* write-only does not need any file context */
if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
SYSLOG_FROM_READER);
if (err)
return err;
}
user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
if (!user)
return -ENOMEM;
ratelimit_default_init(&user->rs);
ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
mutex_init(&user->lock);
atomic64_set(&user->seq, prb_first_valid_seq(prb));
file->private_data = user;
return 0;
}
static int devkmsg_release(struct inode *inode, struct file *file)
{
struct devkmsg_user *user = file->private_data;
ratelimit_state_exit(&user->rs);
mutex_destroy(&user->lock);
kvfree(user);
return 0;
}
const struct file_operations kmsg_fops = {
.open = devkmsg_open,
.read = devkmsg_read,
.write_iter = devkmsg_write,
.llseek = devkmsg_llseek,
.poll = devkmsg_poll,
.release = devkmsg_release,
};
#ifdef CONFIG_VMCORE_INFO
/*
* This appends the listed symbols to /proc/vmcore
*
* /proc/vmcore is used by various utilities, like crash and makedumpfile to
* obtain access to symbols that are otherwise very difficult to locate. These
* symbols are specifically used so that utilities can access and extract the
* dmesg log from a vmcore file after a crash.
*/
void log_buf_vmcoreinfo_setup(void)
{
struct dev_printk_info *dev_info = NULL;
VMCOREINFO_SYMBOL(prb);
VMCOREINFO_SYMBOL(printk_rb_static);
VMCOREINFO_SYMBOL(clear_seq);
/*
* Export struct size and field offsets. User space tools can
* parse it and detect any changes to structure down the line.
*/
VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
VMCOREINFO_OFFSET(printk_ringbuffer, fail);
VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
VMCOREINFO_OFFSET(prb_desc_ring, descs);
VMCOREINFO_OFFSET(prb_desc_ring, infos);
VMCOREINFO_OFFSET(prb_desc_ring, head_id);
VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
VMCOREINFO_STRUCT_SIZE(prb_desc);
VMCOREINFO_OFFSET(prb_desc, state_var);
VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
VMCOREINFO_STRUCT_SIZE(printk_info);
VMCOREINFO_OFFSET(printk_info, seq);
VMCOREINFO_OFFSET(printk_info, ts_nsec);
VMCOREINFO_OFFSET(printk_info, text_len);
VMCOREINFO_OFFSET(printk_info, caller_id);
VMCOREINFO_OFFSET(printk_info, dev_info);
VMCOREINFO_STRUCT_SIZE(dev_printk_info);
VMCOREINFO_OFFSET(dev_printk_info, subsystem);
VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
VMCOREINFO_OFFSET(dev_printk_info, device);
VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
VMCOREINFO_STRUCT_SIZE(prb_data_ring);
VMCOREINFO_OFFSET(prb_data_ring, size_bits);
VMCOREINFO_OFFSET(prb_data_ring, data);
VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
VMCOREINFO_SIZE(atomic_long_t);
VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
VMCOREINFO_STRUCT_SIZE(latched_seq);
VMCOREINFO_OFFSET(latched_seq, val);
}
#endif
/* requested log_buf_len from kernel cmdline */
static unsigned long __initdata new_log_buf_len;
/* we practice scaling the ring buffer by powers of 2 */
static void __init log_buf_len_update(u64 size)
{
if (size > (u64)LOG_BUF_LEN_MAX) {
size = (u64)LOG_BUF_LEN_MAX;
pr_err("log_buf over 2G is not supported.\n");
}
if (size)
size = roundup_pow_of_two(size);
if (size > log_buf_len)
new_log_buf_len = (unsigned long)size;
}
/* save requested log_buf_len since it's too early to process it */
static int __init log_buf_len_setup(char *str)
{
u64 size;
if (!str)
return -EINVAL;
size = memparse(str, &str);
log_buf_len_update(size);
return 0;
}
early_param("log_buf_len", log_buf_len_setup);
#ifdef CONFIG_SMP
#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
static void __init log_buf_add_cpu(void)
{
unsigned int cpu_extra;
/*
* archs should set up cpu_possible_bits properly with
* set_cpu_possible() after setup_arch() but just in
* case lets ensure this is valid.
*/
if (num_possible_cpus() == 1)
return;
cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
/* by default this will only continue through for large > 64 CPUs */
if (cpu_extra <= __LOG_BUF_LEN / 2)
return;
pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
__LOG_CPU_MAX_BUF_LEN);
pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
cpu_extra);
pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
}
#else /* !CONFIG_SMP */
static inline void log_buf_add_cpu(void) {}
#endif /* CONFIG_SMP */
static void __init set_percpu_data_ready(void)
{
__printk_percpu_data_ready = true;
}
static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
struct printk_record *r)
{
struct prb_reserved_entry e;
struct printk_record dest_r;
prb_rec_init_wr(&dest_r, r->info->text_len);
if (!prb_reserve(&e, rb, &dest_r))
return 0;
memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
dest_r.info->text_len = r->info->text_len;
dest_r.info->facility = r->info->facility;
dest_r.info->level = r->info->level;
dest_r.info->flags = r->info->flags;
dest_r.info->ts_nsec = r->info->ts_nsec;
dest_r.info->caller_id = r->info->caller_id;
memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
prb_final_commit(&e);
return prb_record_text_space(&e);
}
static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
void __init setup_log_buf(int early)
{
struct printk_info *new_infos;
unsigned int new_descs_count;
struct prb_desc *new_descs;
struct printk_info info;
struct printk_record r;
unsigned int text_size;
size_t new_descs_size;
size_t new_infos_size;
unsigned long flags;
char *new_log_buf;
unsigned int free;
u64 seq;
/*
* Some archs call setup_log_buf() multiple times - first is very
* early, e.g. from setup_arch(), and second - when percpu_areas
* are initialised.
*/
if (!early)
set_percpu_data_ready();
if (log_buf != __log_buf)
return;
if (!early && !new_log_buf_len)
log_buf_add_cpu();
if (!new_log_buf_len)
return;
new_descs_count = new_log_buf_len >> PRB_AVGBITS;
if (new_descs_count == 0) {
pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
return;
}
new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
if (unlikely(!new_log_buf)) {
pr_err("log_buf_len: %lu text bytes not available\n",
new_log_buf_len);
return;
}
new_descs_size = new_descs_count * sizeof(struct prb_desc);
new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
if (unlikely(!new_descs)) {
pr_err("log_buf_len: %zu desc bytes not available\n",
new_descs_size);
goto err_free_log_buf;
}
new_infos_size = new_descs_count * sizeof(struct printk_info);
new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
if (unlikely(!new_infos)) {
pr_err("log_buf_len: %zu info bytes not available\n",
new_infos_size);
goto err_free_descs;
}
prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
prb_init(&printk_rb_dynamic,
new_log_buf, ilog2(new_log_buf_len),
new_descs, ilog2(new_descs_count),
new_infos);
local_irq_save(flags);
log_buf_len = new_log_buf_len;
log_buf = new_log_buf;
new_log_buf_len = 0;
free = __LOG_BUF_LEN;
prb_for_each_record(0, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
prb = &printk_rb_dynamic;
local_irq_restore(flags);
/*
* Copy any remaining messages that might have appeared from
* NMI context after copying but before switching to the
* dynamic buffer.
*/
prb_for_each_record(seq, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
if (seq != prb_next_seq(&printk_rb_static)) {
pr_err("dropped %llu messages\n",
prb_next_seq(&printk_rb_static) - seq);
}
pr_info("log_buf_len: %u bytes\n", log_buf_len);
pr_info("early log buf free: %u(%u%%)\n",
free, (free * 100) / __LOG_BUF_LEN);
return;
err_free_descs:
memblock_free(new_descs, new_descs_size);
err_free_log_buf:
memblock_free(new_log_buf, new_log_buf_len);
}
static bool __read_mostly ignore_loglevel;
static int __init ignore_loglevel_setup(char *str)
{
ignore_loglevel = true;
pr_info("debug: ignoring loglevel setting.\n");
return 0;
}
early_param("ignore_loglevel", ignore_loglevel_setup);
module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ignore_loglevel,
"ignore loglevel setting (prints all kernel messages to the console)");
static bool suppress_message_printing(int level)
{
return (level >= console_loglevel && !ignore_loglevel);
}
#ifdef CONFIG_BOOT_PRINTK_DELAY
static int boot_delay; /* msecs delay after each printk during bootup */
static unsigned long long loops_per_msec; /* based on boot_delay */
static int __init boot_delay_setup(char *str)
{
unsigned long lpj;
lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
get_option(&str, &boot_delay);
if (boot_delay > 10 * 1000)
boot_delay = 0;
pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
"HZ: %d, loops_per_msec: %llu\n",
boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
return 0;
}
early_param("boot_delay", boot_delay_setup);
static void boot_delay_msec(int level)
{
unsigned long long k;
unsigned long timeout;
if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
|| suppress_message_printing(level)) {
return;
}
k = (unsigned long long)loops_per_msec * boot_delay;
timeout = jiffies + msecs_to_jiffies(boot_delay);
while (k) {
k--;
cpu_relax();
/*
* use (volatile) jiffies to prevent
* compiler reduction; loop termination via jiffies
* is secondary and may or may not happen.
*/
if (time_after(jiffies, timeout))
break;
touch_nmi_watchdog();
}
}
#else
static inline void boot_delay_msec(int level)
{
}
#endif
static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
static size_t print_syslog(unsigned int level, char *buf)
{
return sprintf(buf, "<%u>", level);
}
static size_t print_time(u64 ts, char *buf)
{
unsigned long rem_nsec = do_div(ts, 1000000000);
return sprintf(buf, "[%5lu.%06lu]",
(unsigned long)ts, rem_nsec / 1000);
}
#ifdef CONFIG_PRINTK_CALLER
static size_t print_caller(u32 id, char *buf)
{
char caller[12];
snprintf(caller, sizeof(caller), "%c%u",
id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
return sprintf(buf, "[%6s]", caller);
}
#else
#define print_caller(id, buf) 0
#endif
static size_t info_print_prefix(const struct printk_info *info, bool syslog,
bool time, char *buf)
{
size_t len = 0;
if (syslog)
len = print_syslog((info->facility << 3) | info->level, buf);
if (time)
len += print_time(info->ts_nsec, buf + len);
len += print_caller(info->caller_id, buf + len);
if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
buf[len++] = ' ';
buf[len] = '\0';
}
return len;
}
/*
* Prepare the record for printing. The text is shifted within the given
* buffer to avoid a need for another one. The following operations are
* done:
*
* - Add prefix for each line.
* - Drop truncated lines that no longer fit into the buffer.
* - Add the trailing newline that has been removed in vprintk_store().
* - Add a string terminator.
*
* Since the produced string is always terminated, the maximum possible
* return value is @r->text_buf_size - 1;
*
* Return: The length of the updated/prepared text, including the added
* prefixes and the newline. The terminator is not counted. The dropped
* line(s) are not counted.
*/
static size_t record_print_text(struct printk_record *r, bool syslog,
bool time)
{
size_t text_len = r->info->text_len;
size_t buf_size = r->text_buf_size;
char *text = r->text_buf;
char prefix[PRINTK_PREFIX_MAX];
bool truncated = false;
size_t prefix_len;
size_t line_len;
size_t len = 0;
char *next;
/*
* If the message was truncated because the buffer was not large
* enough, treat the available text as if it were the full text.
*/
if (text_len > buf_size)
text_len = buf_size;
prefix_len = info_print_prefix(r->info, syslog, time, prefix);
/*
* @text_len: bytes of unprocessed text
* @line_len: bytes of current line _without_ newline
* @text: pointer to beginning of current line
* @len: number of bytes prepared in r->text_buf
*/
for (;;) {
next = memchr(text, '\n', text_len);
if (next) {
line_len = next - text;
} else {
/* Drop truncated line(s). */
if (truncated)
break;
line_len = text_len;
}
/*
* Truncate the text if there is not enough space to add the
* prefix and a trailing newline and a terminator.
*/
if (len + prefix_len + text_len + 1 + 1 > buf_size) {
/* Drop even the current line if no space. */
if (len + prefix_len + line_len + 1 + 1 > buf_size)
break;
text_len = buf_size - len - prefix_len - 1 - 1;
truncated = true;
}
memmove(text + prefix_len, text, text_len);
memcpy(text, prefix, prefix_len);
/*
* Increment the prepared length to include the text and
* prefix that were just moved+copied. Also increment for the
* newline at the end of this line. If this is the last line,
* there is no newline, but it will be added immediately below.
*/
len += prefix_len + line_len + 1;
if (text_len == line_len) {
/*
* This is the last line. Add the trailing newline
* removed in vprintk_store().
*/
text[prefix_len + line_len] = '\n';
break;
}
/*
* Advance beyond the added prefix and the related line with
* its newline.
*/
text += prefix_len + line_len + 1;
/*
* The remaining text has only decreased by the line with its
* newline.
*
* Note that @text_len can become zero. It happens when @text
* ended with a newline (either due to truncation or the
* original string ending with "\n\n"). The loop is correctly
* repeated and (if not truncated) an empty line with a prefix
* will be prepared.
*/
text_len -= line_len + 1;
}
/*
* If a buffer was provided, it will be terminated. Space for the
* string terminator is guaranteed to be available. The terminator is
* not counted in the return value.
*/
if (buf_size > 0)
r->text_buf[len] = 0;
return len;
}
static size_t get_record_print_text_size(struct printk_info *info,
unsigned int line_count,
bool syslog, bool time)
{
char prefix[PRINTK_PREFIX_MAX];
size_t prefix_len;
prefix_len = info_print_prefix(info, syslog, time, prefix);
/*
* Each line will be preceded with a prefix. The intermediate
* newlines are already within the text, but a final trailing
* newline will be added.
*/
return ((prefix_len * line_count) + info->text_len + 1);
}
/*
* Beginning with @start_seq, find the first record where it and all following
* records up to (but not including) @max_seq fit into @size.
*
* @max_seq is simply an upper bound and does not need to exist. If the caller
* does not require an upper bound, -1 can be used for @max_seq.
*/
static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
bool syslog, bool time)
{
struct printk_info info;
unsigned int line_count;
size_t len = 0;
u64 seq;
/* Determine the size of the records up to @max_seq. */
prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
if (info.seq >= max_seq)
break;
len += get_record_print_text_size(&info, line_count, syslog, time);
}
/*
* Adjust the upper bound for the next loop to avoid subtracting
* lengths that were never added.
*/
if (seq < max_seq)
max_seq = seq;
/*
* Move first record forward until length fits into the buffer. Ignore
* newest messages that were not counted in the above cycle. Messages
* might appear and get lost in the meantime. This is a best effort
* that prevents an infinite loop that could occur with a retry.
*/
prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
if (len <= size || info.seq >= max_seq)
break;
len -= get_record_print_text_size(&info, line_count, syslog, time);
}
return seq;
}
/* The caller is responsible for making sure @size is greater than 0. */
static int syslog_print(char __user *buf, int size)
{
struct printk_info info;
struct printk_record r;
char *text;
int len = 0;
u64 seq;
text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
if (!text)
return -ENOMEM;
prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
mutex_lock(&syslog_lock);
/*
* Wait for the @syslog_seq record to be available. @syslog_seq may
* change while waiting.
*/
do {
seq = syslog_seq;
mutex_unlock(&syslog_lock);
/*
* Guarantee this task is visible on the waitqueue before
* checking the wake condition.
*
* The full memory barrier within set_current_state() of
* prepare_to_wait_event() pairs with the full memory barrier
* within wq_has_sleeper().
*
* This pairs with __wake_up_klogd:A.
*/
len = wait_event_interruptible(log_wait,
prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
mutex_lock(&syslog_lock);
if (len)
goto out;
} while (syslog_seq != seq);
/*
* Copy records that fit into the buffer. The above cycle makes sure
* that the first record is always available.
*/
do {
size_t n;
size_t skip;
int err;
if (!prb_read_valid(prb, syslog_seq, &r))
break;
if (r.info->seq != syslog_seq) {
/* message is gone, move to next valid one */
syslog_seq = r.info->seq;
syslog_partial = 0;
}
/*
* To keep reading/counting partial line consistent,
* use printk_time value as of the beginning of a line.
*/
if (!syslog_partial)
syslog_time = printk_time;
skip = syslog_partial;
n = record_print_text(&r, true, syslog_time);
if (n - syslog_partial <= size) {
/* message fits into buffer, move forward */
syslog_seq = r.info->seq + 1;
n -= syslog_partial;
syslog_partial = 0;
} else if (!len){
/* partial read(), remember position */
n = size;
syslog_partial += n;
} else
n = 0;
if (!n)
break;
mutex_unlock(&syslog_lock);
err = copy_to_user(buf, text + skip, n);
mutex_lock(&syslog_lock);
if (err) {
if (!len)
len = -EFAULT;
break;
}
len += n;
size -= n;
buf += n;
} while (size);
out:
mutex_unlock(&syslog_lock);
kfree(text);
return len;
}
static int syslog_print_all(char __user *buf, int size, bool clear)
{
struct printk_info info;
struct printk_record r;
char *text;
int len = 0;
u64 seq;
bool time;
text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
if (!text)
return -ENOMEM;
time = printk_time;
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump.
*/
seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
size, true, time);
prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
prb_for_each_record(seq, prb, seq, &r) {
int textlen;
textlen = record_print_text(&r, true, time);
if (len + textlen > size) {
seq--;
break;
}
if (copy_to_user(buf + len, text, textlen))
len = -EFAULT;
else
len += textlen;
if (len < 0)
break;
}
if (clear) {
mutex_lock(&syslog_lock);
latched_seq_write(&clear_seq, seq);
mutex_unlock(&syslog_lock);
}
kfree(text);
return len;
}
static void syslog_clear(void)
{
mutex_lock(&syslog_lock);
latched_seq_write(&clear_seq, prb_next_seq(prb));
mutex_unlock(&syslog_lock);
}
int do_syslog(int type, char __user *buf, int len, int source)
{
struct printk_info info;
bool clear = false;
static int saved_console_loglevel = LOGLEVEL_DEFAULT;
int error;
error = check_syslog_permissions(type, source);
if (error)
return error;
switch (type) {
case SYSLOG_ACTION_CLOSE: /* Close log */
break;
case SYSLOG_ACTION_OPEN: /* Open log */
break;
case SYSLOG_ACTION_READ: /* Read from log */
if (!buf || len < 0)
return -EINVAL;
if (!len)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = syslog_print(buf, len);
break;
/* Read/clear last kernel messages */
case SYSLOG_ACTION_READ_CLEAR:
clear = true;
fallthrough;
/* Read last kernel messages */
case SYSLOG_ACTION_READ_ALL:
if (!buf || len < 0)
return -EINVAL;
if (!len)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = syslog_print_all(buf, len, clear);
break;
/* Clear ring buffer */
case SYSLOG_ACTION_CLEAR:
syslog_clear();
break;
/* Disable logging to console */
case SYSLOG_ACTION_CONSOLE_OFF:
if (saved_console_loglevel == LOGLEVEL_DEFAULT)
saved_console_loglevel = console_loglevel;
console_loglevel = minimum_console_loglevel;
break;
/* Enable logging to console */
case SYSLOG_ACTION_CONSOLE_ON:
if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
console_loglevel = saved_console_loglevel;
saved_console_loglevel = LOGLEVEL_DEFAULT;
}
break;
/* Set level of messages printed to console */
case SYSLOG_ACTION_CONSOLE_LEVEL:
if (len < 1 || len > 8)
return -EINVAL;
if (len < minimum_console_loglevel)
len = minimum_console_loglevel;
console_loglevel = len;
/* Implicitly re-enable logging to console */
saved_console_loglevel = LOGLEVEL_DEFAULT;
break;
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
mutex_lock(&syslog_lock);
if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
/* No unread messages. */
mutex_unlock(&syslog_lock);
return 0;
}
if (info.seq != syslog_seq) {
/* messages are gone, move to first one */
syslog_seq = info.seq;
syslog_partial = 0;
}
if (source == SYSLOG_FROM_PROC) {
/*
* Short-cut for poll(/"proc/kmsg") which simply checks
* for pending data, not the size; return the count of
* records, not the length.
*/
error = prb_next_seq(prb) - syslog_seq;
} else {
bool time = syslog_partial ? syslog_time : printk_time;
unsigned int line_count;
u64 seq;
prb_for_each_info(syslog_seq, prb, seq, &info,
&line_count) {
error += get_record_print_text_size(&info, line_count,
true, time);
time = printk_time;
}
error -= syslog_partial;
}
mutex_unlock(&syslog_lock);
break;
/* Size of the log buffer */
case SYSLOG_ACTION_SIZE_BUFFER:
error = log_buf_len;
break;
default:
error = -EINVAL;
break;
}
return error;
}
SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
{
return do_syslog(type, buf, len, SYSLOG_FROM_READER);
}
/*
* Special console_lock variants that help to reduce the risk of soft-lockups.
* They allow to pass console_lock to another printk() call using a busy wait.
*/
#ifdef CONFIG_LOCKDEP
static struct lockdep_map console_owner_dep_map = {
.name = "console_owner"
};
#endif
static DEFINE_RAW_SPINLOCK(console_owner_lock);
static struct task_struct *console_owner;
static bool console_waiter;
/**
* console_lock_spinning_enable - mark beginning of code where another
* thread might safely busy wait
*
* This basically converts console_lock into a spinlock. This marks
* the section where the console_lock owner can not sleep, because
* there may be a waiter spinning (like a spinlock). Also it must be
* ready to hand over the lock at the end of the section.
*/
void console_lock_spinning_enable(void)
{
/*
* Do not use spinning in panic(). The panic CPU wants to keep the lock.
* Non-panic CPUs abandon the flush anyway.
*
* Just keep the lockdep annotation. The panic-CPU should avoid
* taking console_owner_lock because it might cause a deadlock.
* This looks like the easiest way how to prevent false lockdep
* reports without handling races a lockless way.
*/
if (panic_in_progress())
goto lockdep;
raw_spin_lock(&console_owner_lock);
console_owner = current;
raw_spin_unlock(&console_owner_lock);
lockdep:
/* The waiter may spin on us after setting console_owner */
spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
}
/**
* console_lock_spinning_disable_and_check - mark end of code where another
* thread was able to busy wait and check if there is a waiter
* @cookie: cookie returned from console_srcu_read_lock()
*
* This is called at the end of the section where spinning is allowed.
* It has two functions. First, it is a signal that it is no longer
* safe to start busy waiting for the lock. Second, it checks if
* there is a busy waiter and passes the lock rights to her.
*
* Important: Callers lose both the console_lock and the SRCU read lock if
* there was a busy waiter. They must not touch items synchronized by
* console_lock or SRCU read lock in this case.
*
* Return: 1 if the lock rights were passed, 0 otherwise.
*/
int console_lock_spinning_disable_and_check(int cookie)
{
int waiter;
/*
* Ignore spinning waiters during panic() because they might get stopped
* or blocked at any time,
*
* It is safe because nobody is allowed to start spinning during panic
* in the first place. If there has been a waiter then non panic CPUs
* might stay spinning. They would get stopped anyway. The panic context
* will never start spinning and an interrupted spin on panic CPU will
* never continue.
*/
if (panic_in_progress()) {
/* Keep lockdep happy. */
spin_release(&console_owner_dep_map, _THIS_IP_);
return 0;
}
raw_spin_lock(&console_owner_lock);
waiter = READ_ONCE(console_waiter);
console_owner = NULL;
raw_spin_unlock(&console_owner_lock);
if (!waiter) {
spin_release(&console_owner_dep_map, _THIS_IP_);
return 0;
}
/* The waiter is now free to continue */
WRITE_ONCE(console_waiter, false);
spin_release(&console_owner_dep_map, _THIS_IP_);
/*
* Preserve lockdep lock ordering. Release the SRCU read lock before
* releasing the console_lock.
*/
console_srcu_read_unlock(cookie);
/*
* Hand off console_lock to waiter. The waiter will perform
* the up(). After this, the waiter is the console_lock owner.
*/
mutex_release(&console_lock_dep_map, _THIS_IP_);
return 1;
}
/**
* console_trylock_spinning - try to get console_lock by busy waiting
*
* This allows to busy wait for the console_lock when the current
* owner is running in specially marked sections. It means that
* the current owner is running and cannot reschedule until it
* is ready to lose the lock.
*
* Return: 1 if we got the lock, 0 othrewise
*/
static int console_trylock_spinning(void)
{
struct task_struct *owner = NULL;
bool waiter;
bool spin = false;
unsigned long flags;
if (console_trylock())
return 1;
/*
* It's unsafe to spin once a panic has begun. If we are the
* panic CPU, we may have already halted the owner of the
* console_sem. If we are not the panic CPU, then we should
* avoid taking console_sem, so the panic CPU has a better
* chance of cleanly acquiring it later.
*/
if (panic_in_progress())
return 0;
printk_safe_enter_irqsave(flags);
raw_spin_lock(&console_owner_lock);
owner = READ_ONCE(console_owner);
waiter = READ_ONCE(console_waiter);
if (!waiter && owner && owner != current) {
WRITE_ONCE(console_waiter, true);
spin = true;
}
raw_spin_unlock(&console_owner_lock);
/*
* If there is an active printk() writing to the
* consoles, instead of having it write our data too,
* see if we can offload that load from the active
* printer, and do some printing ourselves.
* Go into a spin only if there isn't already a waiter
* spinning, and there is an active printer, and
* that active printer isn't us (recursive printk?).
*/
if (!spin) {
printk_safe_exit_irqrestore(flags);
return 0;
}
/* We spin waiting for the owner to release us */
spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
/* Owner will clear console_waiter on hand off */
while (READ_ONCE(console_waiter))
cpu_relax();
spin_release(&console_owner_dep_map, _THIS_IP_);
printk_safe_exit_irqrestore(flags);
/*
* The owner passed the console lock to us.
* Since we did not spin on console lock, annotate
* this as a trylock. Otherwise lockdep will
* complain.
*/
mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
/*
* Update @console_may_schedule for trylock because the previous
* owner may have been schedulable.
*/
console_may_schedule = 0;
return 1;
}
/*
* Recursion is tracked separately on each CPU. If NMIs are supported, an
* additional NMI context per CPU is also separately tracked. Until per-CPU
* is available, a separate "early tracking" is performed.
*/
static DEFINE_PER_CPU(u8, printk_count);
static u8 printk_count_early;
#ifdef CONFIG_HAVE_NMI
static DEFINE_PER_CPU(u8, printk_count_nmi);
static u8 printk_count_nmi_early;
#endif
/*
* Recursion is limited to keep the output sane. printk() should not require
* more than 1 level of recursion (allowing, for example, printk() to trigger
* a WARN), but a higher value is used in case some printk-internal errors
* exist, such as the ringbuffer validation checks failing.
*/
#define PRINTK_MAX_RECURSION 3
/*
* Return a pointer to the dedicated counter for the CPU+context of the
* caller.
*/
static u8 *__printk_recursion_counter(void)
{
#ifdef CONFIG_HAVE_NMI
if (in_nmi()) {
if (printk_percpu_data_ready())
return this_cpu_ptr(&printk_count_nmi);
return &printk_count_nmi_early;
}
#endif
if (printk_percpu_data_ready())
return this_cpu_ptr(&printk_count);
return &printk_count_early;
}
/*
* Enter recursion tracking. Interrupts are disabled to simplify tracking.
* The caller must check the boolean return value to see if the recursion is
* allowed. On failure, interrupts are not disabled.
*
* @recursion_ptr must be a variable of type (u8 *) and is the same variable
* that is passed to printk_exit_irqrestore().
*/
#define printk_enter_irqsave(recursion_ptr, flags) \
({ \
bool success = true; \
\
typecheck(u8 *, recursion_ptr); \
local_irq_save(flags); \
(recursion_ptr) = __printk_recursion_counter(); \
if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
local_irq_restore(flags); \
success = false; \
} else { \
(*(recursion_ptr))++; \
} \
success; \
})
/* Exit recursion tracking, restoring interrupts. */
#define printk_exit_irqrestore(recursion_ptr, flags) \
do { \
typecheck(u8 *, recursion_ptr); \
(*(recursion_ptr))--; \
local_irq_restore(flags); \
} while (0)
int printk_delay_msec __read_mostly;
static inline void printk_delay(int level)
{
boot_delay_msec(level);
if (unlikely(printk_delay_msec)) {
int m = printk_delay_msec;
while (m--) {
mdelay(1);
touch_nmi_watchdog();
}
}
}
static inline u32 printk_caller_id(void)
{
return in_task() ? task_pid_nr(current) :
0x80000000 + smp_processor_id();
}
/**
* printk_parse_prefix - Parse level and control flags.
*
* @text: The terminated text message.
* @level: A pointer to the current level value, will be updated.
* @flags: A pointer to the current printk_info flags, will be updated.
*
* @level may be NULL if the caller is not interested in the parsed value.
* Otherwise the variable pointed to by @level must be set to
* LOGLEVEL_DEFAULT in order to be updated with the parsed value.
*
* @flags may be NULL if the caller is not interested in the parsed value.
* Otherwise the variable pointed to by @flags will be OR'd with the parsed
* value.
*
* Return: The length of the parsed level and control flags.
*/
u16 printk_parse_prefix(const char *text, int *level,
enum printk_info_flags *flags)
{
u16 prefix_len = 0;
int kern_level;
while (*text) {
kern_level = printk_get_level(text);
if (!kern_level)
break;
switch (kern_level) {
case '0' ... '7':
if (level && *level == LOGLEVEL_DEFAULT)
*level = kern_level - '0';
break;
case 'c': /* KERN_CONT */
if (flags)
*flags |= LOG_CONT;
}
prefix_len += 2;
text += 2;
}
return prefix_len;
}
__printf(5, 0)
static u16 printk_sprint(char *text, u16 size, int facility,
enum printk_info_flags *flags, const char *fmt,
va_list args)
{
u16 text_len;
text_len = vscnprintf(text, size, fmt, args);
/* Mark and strip a trailing newline. */
if (text_len && text[text_len - 1] == '\n') {
text_len--;
*flags |= LOG_NEWLINE;
}
/* Strip log level and control flags. */
if (facility == 0) {
u16 prefix_len;
prefix_len = printk_parse_prefix(text, NULL, NULL);
if (prefix_len) {
text_len -= prefix_len;
memmove(text, text + prefix_len, text_len);
}
}
trace_console(text, text_len);
return text_len;
}
__printf(4, 0)
int vprintk_store(int facility, int level,
const struct dev_printk_info *dev_info,
const char *fmt, va_list args)
{
struct prb_reserved_entry e;
enum printk_info_flags flags = 0;
struct printk_record r;
unsigned long irqflags;
u16 trunc_msg_len = 0;
char prefix_buf[8];
u8 *recursion_ptr;
u16 reserve_size;
va_list args2;
u32 caller_id;
u16 text_len;
int ret = 0;
u64 ts_nsec;
if (!printk_enter_irqsave(recursion_ptr, irqflags))
return 0;
/*
* Since the duration of printk() can vary depending on the message
* and state of the ringbuffer, grab the timestamp now so that it is
* close to the call of printk(). This provides a more deterministic
* timestamp with respect to the caller.
*/
ts_nsec = local_clock();
caller_id = printk_caller_id();
/*
* The sprintf needs to come first since the syslog prefix might be
* passed in as a parameter. An extra byte must be reserved so that
* later the vscnprintf() into the reserved buffer has room for the
* terminating '\0', which is not counted by vsnprintf().
*/
va_copy(args2, args);
reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
va_end(args2);
if (reserve_size > PRINTKRB_RECORD_MAX)
reserve_size = PRINTKRB_RECORD_MAX;
/* Extract log level or control flags. */
if (facility == 0)
printk_parse_prefix(&prefix_buf[0], &level, &flags);
if (level == LOGLEVEL_DEFAULT)
level = default_message_loglevel;
if (dev_info)
flags |= LOG_NEWLINE;
if (flags & LOG_CONT) {
prb_rec_init_wr(&r, reserve_size);
if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
facility, &flags, fmt, args);
r.info->text_len += text_len;
if (flags & LOG_NEWLINE) {
r.info->flags |= LOG_NEWLINE;
prb_final_commit(&e);
} else {
prb_commit(&e);
}
ret = text_len;
goto out;
}
}
/*
* Explicitly initialize the record before every prb_reserve() call.
* prb_reserve_in_last() and prb_reserve() purposely invalidate the
* structure when they fail.
*/
prb_rec_init_wr(&r, reserve_size);
if (!prb_reserve(&e, prb, &r)) {
/* truncate the message if it is too long for empty buffer */
truncate_msg(&reserve_size, &trunc_msg_len);
prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
if (!prb_reserve(&e, prb, &r))
goto out;
}
/* fill message */
text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
if (trunc_msg_len)
memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
r.info->text_len = text_len + trunc_msg_len;
r.info->facility = facility;
r.info->level = level & 7;
r.info->flags = flags & 0x1f;
r.info->ts_nsec = ts_nsec;
r.info->caller_id = caller_id;
if (dev_info)
memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
/* A message without a trailing newline can be continued. */
if (!(flags & LOG_NEWLINE))
prb_commit(&e);
else
prb_final_commit(&e);
ret = text_len + trunc_msg_len;
out:
printk_exit_irqrestore(recursion_ptr, irqflags);
return ret;
}
/*
* This acts as a one-way switch to allow legacy consoles to print from
* the printk() caller context on a panic CPU. It also attempts to flush
* the legacy consoles in this context.
*/
void printk_legacy_allow_panic_sync(void)
{
struct console_flush_type ft;
legacy_allow_panic_sync = true;
printk_get_console_flush_type(&ft);
if (ft.legacy_direct) {
if (console_trylock())
console_unlock();
}
}
asmlinkage int vprintk_emit(int facility, int level,
const struct dev_printk_info *dev_info,
const char *fmt, va_list args)
{
struct console_flush_type ft;
int printed_len;
/* Suppress unimportant messages after panic happens */
if (unlikely(suppress_printk))
return 0;
/*
* The messages on the panic CPU are the most important. If
* non-panic CPUs are generating any messages, they will be
* silently dropped.
*/
if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace)
return 0;
printk_get_console_flush_type(&ft);
/* If called from the scheduler, we can not call up(). */
if (level == LOGLEVEL_SCHED) {
level = LOGLEVEL_DEFAULT;
ft.legacy_offload |= ft.legacy_direct;
ft.legacy_direct = false;
}
printk_delay(level);
printed_len = vprintk_store(facility, level, dev_info, fmt, args);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.nbcon_offload)
nbcon_kthreads_wake();
if (ft.legacy_direct) {
/*
* The caller may be holding system-critical or
* timing-sensitive locks. Disable preemption during
* printing of all remaining records to all consoles so that
* this context can return as soon as possible. Hopefully
* another printk() caller will take over the printing.
*/
preempt_disable();
/*
* Try to acquire and then immediately release the console
* semaphore. The release will print out buffers. With the
* spinning variant, this context tries to take over the
* printing from another printing context.
*/
if (console_trylock_spinning())
console_unlock();
preempt_enable();
}
if (ft.legacy_offload)
defer_console_output();
else
wake_up_klogd();
return printed_len;
}
EXPORT_SYMBOL(vprintk_emit);
int vprintk_default(const char *fmt, va_list args)
{
return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
}
EXPORT_SYMBOL_GPL(vprintk_default);
asmlinkage __visible int _printk(const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk(fmt, args);
va_end(args);
return r;
}
EXPORT_SYMBOL(_printk);
static bool pr_flush(int timeout_ms, bool reset_on_progress);
static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
#else /* CONFIG_PRINTK */
#define printk_time false
#define prb_read_valid(rb, seq, r) false
#define prb_first_valid_seq(rb) 0
#define prb_next_seq(rb) 0
static u64 syslog_seq;
static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
#endif /* CONFIG_PRINTK */
#ifdef CONFIG_EARLY_PRINTK
struct console *early_console;
asmlinkage __visible void early_printk(const char *fmt, ...)
{
va_list ap;
char buf[512];
int n;
if (!early_console)
return;
va_start(ap, fmt);
n = vscnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
early_console->write(early_console, buf, n);
}
#endif
static void set_user_specified(struct console_cmdline *c, bool user_specified)
{
if (!user_specified)
return;
/*
* @c console was defined by the user on the command line.
* Do not clear when added twice also by SPCR or the device tree.
*/
c->user_specified = true;
/* At least one console defined by the user on the command line. */
console_set_on_cmdline = 1;
}
static int __add_preferred_console(const char *name, const short idx,
const char *devname, char *options,
char *brl_options, bool user_specified)
{
struct console_cmdline *c;
int i;
if (!name && !devname)
return -EINVAL;
/*
* We use a signed short index for struct console for device drivers to
* indicate a not yet assigned index or port. However, a negative index
* value is not valid when the console name and index are defined on
* the command line.
*/
if (name && idx < 0)
return -EINVAL;
/*
* See if this tty is not yet registered, and
* if we have a slot free.
*/
for (i = 0, c = console_cmdline;
i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
i++, c++) {
if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
(devname && strcmp(c->devname, devname) == 0)) {
if (!brl_options)
preferred_console = i;
set_user_specified(c, user_specified);
return 0;
}
}
if (i == MAX_CMDLINECONSOLES)
return -E2BIG;
if (!brl_options)
preferred_console = i;
if (name)
strscpy(c->name, name);
if (devname)
strscpy(c->devname, devname);
c->options = options;
set_user_specified(c, user_specified);
braille_set_options(c, brl_options);
c->index = idx;
return 0;
}
static int __init console_msg_format_setup(char *str)
{
if (!strcmp(str, "syslog"))
console_msg_format = MSG_FORMAT_SYSLOG;
if (!strcmp(str, "default"))
console_msg_format = MSG_FORMAT_DEFAULT;
return 1;
}
__setup("console_msg_format=", console_msg_format_setup);
/*
* Set up a console. Called via do_early_param() in init/main.c
* for each "console=" parameter in the boot command line.
*/
static int __init console_setup(char *str)
{
static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
char buf[sizeof(console_cmdline[0].devname)];
char *brl_options = NULL;
char *ttyname = NULL;
char *devname = NULL;
char *options;
char *s;
int idx;
/*
* console="" or console=null have been suggested as a way to
* disable console output. Use ttynull that has been created
* for exactly this purpose.
*/
if (str[0] == 0 || strcmp(str, "null") == 0) {
__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
return 1;
}
if (_braille_console_setup(&str, &brl_options))
return 1;
/* For a DEVNAME:0.0 style console the character device is unknown early */
if (strchr(str, ':'))
devname = buf;
else
ttyname = buf;
/*
* Decode str into name, index, options.
*/
if (ttyname && isdigit(str[0]))
scnprintf(buf, sizeof(buf), "ttyS%s", str);
else
strscpy(buf, str);
options = strchr(str, ',');
if (options)
*(options++) = 0;
#ifdef __sparc__
if (!strcmp(str, "ttya"))
strscpy(buf, "ttyS0");
if (!strcmp(str, "ttyb"))
strscpy(buf, "ttyS1");
#endif
for (s = buf; *s; s++)
if ((ttyname && isdigit(*s)) || *s == ',')
break;
/* @idx will get defined when devname matches. */
if (devname)
idx = -1;
else
idx = simple_strtoul(s, NULL, 10);
*s = 0;
__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
return 1;
}
__setup("console=", console_setup);
/**
* add_preferred_console - add a device to the list of preferred consoles.
* @name: device name
* @idx: device index
* @options: options for this console
*
* The last preferred console added will be used for kernel messages
* and stdin/out/err for init. Normally this is used by console_setup
* above to handle user-supplied console arguments; however it can also
* be used by arch-specific code either to override the user or more
* commonly to provide a default console (ie from PROM variables) when
* the user has not supplied one.
*/
int add_preferred_console(const char *name, const short idx, char *options)
{
return __add_preferred_console(name, idx, NULL, options, NULL, false);
}
/**
* match_devname_and_update_preferred_console - Update a preferred console
* when matching devname is found.
* @devname: DEVNAME:0.0 style device name
* @name: Name of the corresponding console driver, e.g. "ttyS"
* @idx: Console index, e.g. port number.
*
* The function checks whether a device with the given @devname is
* preferred via the console=DEVNAME:0.0 command line option.
* It fills the missing console driver name and console index
* so that a later register_console() call could find (match)
* and enable this device.
*
* It might be used when a driver subsystem initializes particular
* devices with already known DEVNAME:0.0 style names. And it
* could predict which console driver name and index this device
* would later get associated with.
*
* Return: 0 on success, negative error code on failure.
*/
int match_devname_and_update_preferred_console(const char *devname,
const char *name,
const short idx)
{
struct console_cmdline *c = console_cmdline;
int i;
if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
return -EINVAL;
for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
i++, c++) {
if (!strcmp(devname, c->devname)) {
pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
devname, name, idx);
strscpy(c->name, name);
c->index = idx;
return 0;
}
}
return -ENOENT;
}
EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
bool console_suspend_enabled = true;
EXPORT_SYMBOL(console_suspend_enabled);
static int __init console_suspend_disable(char *str)
{
console_suspend_enabled = false;
return 1;
}
__setup("no_console_suspend", console_suspend_disable);
module_param_named(console_suspend, console_suspend_enabled,
bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
" and hibernate operations");
static bool printk_console_no_auto_verbose;
void console_verbose(void)
{
if (console_loglevel && !printk_console_no_auto_verbose)
console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
}
EXPORT_SYMBOL_GPL(console_verbose);
module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
/**
* suspend_console - suspend the console subsystem
*
* This disables printk() while we go into suspend states
*/
void suspend_console(void)
{
struct console *con;
if (!console_suspend_enabled)
return;
pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
pr_flush(1000, true);
console_list_lock();
for_each_console(con)
console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. All printing
* contexts must be able to see that they are suspended so that it
* is guaranteed that all printing has stopped when this function
* completes.
*/
synchronize_srcu(&console_srcu);
}
void resume_console(void)
{
struct console_flush_type ft;
struct console *con;
if (!console_suspend_enabled)
return;
console_list_lock();
for_each_console(con)
console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. All printing
* contexts must be able to see they are no longer suspended so
* that they are guaranteed to wake up and resume printing.
*/
synchronize_srcu(&console_srcu);
printk_get_console_flush_type(&ft);
if (ft.nbcon_offload)
nbcon_kthreads_wake();
if (ft.legacy_offload)
defer_console_output();
pr_flush(1000, true);
}
/**
* console_cpu_notify - print deferred console messages after CPU hotplug
* @cpu: unused
*
* If printk() is called from a CPU that is not online yet, the messages
* will be printed on the console only if there are CON_ANYTIME consoles.
* This function is called when a new CPU comes online (or fails to come
* up) or goes offline.
*/
static int console_cpu_notify(unsigned int cpu)
{
struct console_flush_type ft;
if (!cpuhp_tasks_frozen) {
printk_get_console_flush_type(&ft);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.legacy_direct) {
if (console_trylock())
console_unlock();
}
}
return 0;
}
/**
* console_lock - block the console subsystem from printing
*
* Acquires a lock which guarantees that no consoles will
* be in or enter their write() callback.
*
* Can sleep, returns nothing.
*/
void console_lock(void)
{
might_sleep();
/* On panic, the console_lock must be left to the panic cpu. */
while (other_cpu_in_panic())
msleep(1000);
down_console_sem();
console_locked = 1;
console_may_schedule = 1;
}
EXPORT_SYMBOL(console_lock);
/**
* console_trylock - try to block the console subsystem from printing
*
* Try to acquire a lock which guarantees that no consoles will
* be in or enter their write() callback.
*
* returns 1 on success, and 0 on failure to acquire the lock.
*/
int console_trylock(void)
{
/* On panic, the console_lock must be left to the panic cpu. */
if (other_cpu_in_panic())
return 0;
if (down_trylock_console_sem())
return 0;
console_locked = 1;
console_may_schedule = 0;
return 1;
}
EXPORT_SYMBOL(console_trylock);
int is_console_locked(void)
{
return console_locked;
}
EXPORT_SYMBOL(is_console_locked);
static void __console_unlock(void)
{
console_locked = 0;
up_console_sem();
}
#ifdef CONFIG_PRINTK
/*
* Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting
* the existing message over and inserting the scratchbuf message.
*
* @pmsg is the original printk message.
* @fmt is the printf format of the message which will prepend the existing one.
*
* If there is not enough space in @pmsg->pbufs->outbuf, the existing
* message text will be sufficiently truncated.
*
* If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
*/
__printf(2, 3)
static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...)
{
struct printk_buffers *pbufs = pmsg->pbufs;
const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
const size_t outbuf_sz = sizeof(pbufs->outbuf);
char *scratchbuf = &pbufs->scratchbuf[0];
char *outbuf = &pbufs->outbuf[0];
va_list args;
size_t len;
va_start(args, fmt);
len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args);
va_end(args);
/*
* Make sure outbuf is sufficiently large before prepending.
* Keep at least the prefix when the message must be truncated.
* It is a rather theoretical problem when someone tries to
* use a minimalist buffer.
*/
if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
return;
if (pmsg->outbuf_len + len >= outbuf_sz) {
/* Truncate the message, but keep it terminated. */
pmsg->outbuf_len = outbuf_sz - (len + 1);
outbuf[pmsg->outbuf_len] = 0;
}
memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
memcpy(outbuf, scratchbuf, len);
pmsg->outbuf_len += len;
}
/*
* Prepend the message in @pmsg->pbufs->outbuf with a "dropped message".
* @pmsg->outbuf_len is updated appropriately.
*
* @pmsg is the printk message to prepend.
*
* @dropped is the dropped count to report in the dropped message.
*/
void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
{
console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped);
}
/*
* Prepend the message in @pmsg->pbufs->outbuf with a "replay message".
* @pmsg->outbuf_len is updated appropriately.
*
* @pmsg is the printk message to prepend.
*/
void console_prepend_replay(struct printk_message *pmsg)
{
console_prepend_message(pmsg, "** replaying previous printk message **\n");
}
/*
* Read and format the specified record (or a later record if the specified
* record is not available).
*
* @pmsg will contain the formatted result. @pmsg->pbufs must point to a
* struct printk_buffers.
*
* @seq is the record to read and format. If it is not available, the next
* valid record is read.
*
* @is_extended specifies if the message should be formatted for extended
* console output.
*
* @may_supress specifies if records may be skipped based on loglevel.
*
* Returns false if no record is available. Otherwise true and all fields
* of @pmsg are valid. (See the documentation of struct printk_message
* for information about the @pmsg fields.)
*/
bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
bool is_extended, bool may_suppress)
{
struct printk_buffers *pbufs = pmsg->pbufs;
const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
const size_t outbuf_sz = sizeof(pbufs->outbuf);
char *scratchbuf = &pbufs->scratchbuf[0];
char *outbuf = &pbufs->outbuf[0];
struct printk_info info;
struct printk_record r;
size_t len = 0;
/*
* Formatting extended messages requires a separate buffer, so use the
* scratch buffer to read in the ringbuffer text.
*
* Formatting normal messages is done in-place, so read the ringbuffer
* text directly into the output buffer.
*/
if (is_extended)
prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
else
prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
if (!prb_read_valid(prb, seq, &r))
return false;
pmsg->seq = r.info->seq;
pmsg->dropped = r.info->seq - seq;
/* Skip record that has level above the console loglevel. */
if (may_suppress && suppress_message_printing(r.info->level))
goto out;
if (is_extended) {
len = info_print_ext_header(outbuf, outbuf_sz, r.info);
len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
&r.text_buf[0], r.info->text_len, &r.info->dev_info);
} else {
len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
}
out:
pmsg->outbuf_len = len;
return true;
}
/*
* Legacy console printing from printk() caller context does not respect
* raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a
* false positive. For PREEMPT_RT the false positive condition does not
* occur.
*
* This map is used to temporarily establish LD_WAIT_SLEEP context for the
* console write() callback when legacy printing to avoid false positive
* lockdep complaints, thus allowing lockdep to continue to function for
* real issues.
*/
#ifdef CONFIG_PREEMPT_RT
static inline void printk_legacy_allow_spinlock_enter(void) { }
static inline void printk_legacy_allow_spinlock_exit(void) { }
#else
static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP);
static inline void printk_legacy_allow_spinlock_enter(void)
{
lock_map_acquire_try(&printk_legacy_map);
}
static inline void printk_legacy_allow_spinlock_exit(void)
{
lock_map_release(&printk_legacy_map);
}
#endif /* CONFIG_PREEMPT_RT */
/*
* Used as the printk buffers for non-panic, serialized console printing.
* This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
* Its usage requires the console_lock held.
*/
struct printk_buffers printk_shared_pbufs;
/*
* Print one record for the given console. The record printed is whatever
* record is the next available record for the given console.
*
* @handover will be set to true if a printk waiter has taken over the
* console_lock, in which case the caller is no longer holding both the
* console_lock and the SRCU read lock. Otherwise it is set to false.
*
* @cookie is the cookie from the SRCU read lock.
*
* Returns false if the given console has no next record to print, otherwise
* true.
*
* Requires the console_lock and the SRCU read lock.
*/
static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
{
bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
char *outbuf = &printk_shared_pbufs.outbuf[0];
struct printk_message pmsg = {
.pbufs = &printk_shared_pbufs,
};
unsigned long flags;
*handover = false;
if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
return false;
con->dropped += pmsg.dropped;
/* Skip messages of formatted length 0. */
if (pmsg.outbuf_len == 0) {
con->seq = pmsg.seq + 1;
goto skip;
}
if (con->dropped && !is_extended) {
console_prepend_dropped(&pmsg, con->dropped);
con->dropped = 0;
}
/* Write everything out to the hardware. */
if (force_legacy_kthread() && !panic_in_progress()) {
/*
* With forced threading this function is in a task context
* (either legacy kthread or get_init_console_seq()). There
* is no need for concern about printk reentrance, handovers,
* or lockdep complaints.
*/
con->write(con, outbuf, pmsg.outbuf_len);
con->seq = pmsg.seq + 1;
} else {
/*
* While actively printing out messages, if another printk()
* were to occur on another CPU, it may wait for this one to
* finish. This task can not be preempted if there is a
* waiter waiting to take over.
*
* Interrupts are disabled because the hand over to a waiter
* must not be interrupted until the hand over is completed
* (@console_waiter is cleared).
*/
printk_safe_enter_irqsave(flags);
console_lock_spinning_enable();
/* Do not trace print latency. */
stop_critical_timings();
printk_legacy_allow_spinlock_enter();
con->write(con, outbuf, pmsg.outbuf_len);
printk_legacy_allow_spinlock_exit();
start_critical_timings();
con->seq = pmsg.seq + 1;
*handover = console_lock_spinning_disable_and_check(cookie);
printk_safe_exit_irqrestore(flags);
}
skip:
return true;
}
#else
static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
{
*handover = false;
return false;
}
static inline void printk_kthreads_check_locked(void) { }
#endif /* CONFIG_PRINTK */
/*
* Print out all remaining records to all consoles.
*
* @do_cond_resched is set by the caller. It can be true only in schedulable
* context.
*
* @next_seq is set to the sequence number after the last available record.
* The value is valid only when this function returns true. It means that all
* usable consoles are completely flushed.
*
* @handover will be set to true if a printk waiter has taken over the
* console_lock, in which case the caller is no longer holding the
* console_lock. Otherwise it is set to false.
*
* Returns true when there was at least one usable console and all messages
* were flushed to all usable consoles. A returned false informs the caller
* that everything was not flushed (either there were no usable consoles or
* another context has taken over printing or it is a panic situation and this
* is not the panic CPU). Regardless the reason, the caller should assume it
* is not useful to immediately try again.
*
* Requires the console_lock.
*/
static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
{
struct console_flush_type ft;
bool any_usable = false;
struct console *con;
bool any_progress;
int cookie;
*next_seq = 0;
*handover = false;
do {
any_progress = false;
printk_get_console_flush_type(&ft);
cookie = console_srcu_read_lock();
for_each_console_srcu(con) {
short flags = console_srcu_read_flags(con);
u64 printk_seq;
bool progress;
/*
* console_flush_all() is only responsible for nbcon
* consoles when the nbcon consoles cannot print via
* their atomic or threaded flushing.
*/
if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
continue;
if (!console_is_usable(con, flags, !do_cond_resched))
continue;
any_usable = true;
if (flags & CON_NBCON) {
progress = nbcon_legacy_emit_next_record(con, handover, cookie,
!do_cond_resched);
printk_seq = nbcon_seq_read(con);
} else {
progress = console_emit_next_record(con, handover, cookie);
printk_seq = con->seq;
}
/*
* If a handover has occurred, the SRCU read lock
* is already released.
*/
if (*handover)
return false;
/* Track the next of the highest seq flushed. */
if (printk_seq > *next_seq)
*next_seq = printk_seq;
if (!progress)
continue;
any_progress = true;
/* Allow panic_cpu to take over the consoles safely. */
if (other_cpu_in_panic())
goto abandon;
if (do_cond_resched)
cond_resched();
}
console_srcu_read_unlock(cookie);
} while (any_progress);
return any_usable;
abandon:
console_srcu_read_unlock(cookie);
return false;
}
static void __console_flush_and_unlock(void)
{
bool do_cond_resched;
bool handover;
bool flushed;
u64 next_seq;
/*
* Console drivers are called with interrupts disabled, so
* @console_may_schedule should be cleared before; however, we may
* end up dumping a lot of lines, for example, if called from
* console registration path, and should invoke cond_resched()
* between lines if allowable. Not doing so can cause a very long
* scheduling stall on a slow console leading to RCU stall and
* softlockup warnings which exacerbate the issue with more
* messages practically incapacitating the system. Therefore, create
* a local to use for the printing loop.
*/
do_cond_resched = console_may_schedule;
do {
console_may_schedule = 0;
flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
if (!handover)
__console_unlock();
/*
* Abort if there was a failure to flush all messages to all
* usable consoles. Either it is not possible to flush (in
* which case it would be an infinite loop of retrying) or
* another context has taken over printing.
*/
if (!flushed)
break;
/*
* Some context may have added new records after
* console_flush_all() but before unlocking the console.
* Re-check if there is a new record to flush. If the trylock
* fails, another context is already handling the printing.
*/
} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
}
/**
* console_unlock - unblock the legacy console subsystem from printing
*
* Releases the console_lock which the caller holds to block printing of
* the legacy console subsystem.
*
* While the console_lock was held, console output may have been buffered
* by printk(). If this is the case, console_unlock() emits the output on
* legacy consoles prior to releasing the lock.
*
* console_unlock(); may be called from any context.
*/
void console_unlock(void)
{
struct console_flush_type ft;
printk_get_console_flush_type(&ft);
if (ft.legacy_direct)
__console_flush_and_unlock();
else
__console_unlock();
}
EXPORT_SYMBOL(console_unlock);
/**
* console_conditional_schedule - yield the CPU if required
*
* If the console code is currently allowed to sleep, and
* if this CPU should yield the CPU to another task, do
* so here.
*
* Must be called within console_lock();.
*/
void __sched console_conditional_schedule(void)
{
if (console_may_schedule)
cond_resched();
}
EXPORT_SYMBOL(console_conditional_schedule);
void console_unblank(void)
{
bool found_unblank = false;
struct console *c;
int cookie;
/*
* First check if there are any consoles implementing the unblank()
* callback. If not, there is no reason to continue and take the
* console lock, which in particular can be dangerous if
* @oops_in_progress is set.
*/
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
found_unblank = true;
break;
}
}
console_srcu_read_unlock(cookie);
if (!found_unblank)
return;
/*
* Stop console printing because the unblank() callback may
* assume the console is not within its write() callback.
*
* If @oops_in_progress is set, this may be an atomic context.
* In that case, attempt a trylock as best-effort.
*/
if (oops_in_progress) {
/* Semaphores are not NMI-safe. */
if (in_nmi())
return;
/*
* Attempting to trylock the console lock can deadlock
* if another CPU was stopped while modifying the
* semaphore. "Hope and pray" that this is not the
* current situation.
*/
if (down_trylock_console_sem() != 0)
return;
} else
console_lock();
console_locked = 1;
console_may_schedule = 0;
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
c->unblank();
}
console_srcu_read_unlock(cookie);
console_unlock();
if (!oops_in_progress)
pr_flush(1000, true);
}
/*
* Rewind all consoles to the oldest available record.
*
* IMPORTANT: The function is safe only when called under
* console_lock(). It is not enforced because
* it is used as a best effort in panic().
*/
static void __console_rewind_all(void)
{
struct console *c;
short flags;
int cookie;
u64 seq;
seq = prb_first_valid_seq(prb);
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
flags = console_srcu_read_flags(c);
if (flags & CON_NBCON) {
nbcon_seq_force(c, seq);
} else {
/*
* This assignment is safe only when called under
* console_lock(). On panic, legacy consoles are
* only best effort.
*/
c->seq = seq;
}
}
console_srcu_read_unlock(cookie);
}
/**
* console_flush_on_panic - flush console content on panic
* @mode: flush all messages in buffer or just the pending ones
*
* Immediately output all pending messages no matter what.
*/
void console_flush_on_panic(enum con_flush_mode mode)
{
struct console_flush_type ft;
bool handover;
u64 next_seq;
/*
* Ignore the console lock and flush out the messages. Attempting a
* trylock would not be useful because:
*
* - if it is contended, it must be ignored anyway
* - console_lock() and console_trylock() block and fail
* respectively in panic for non-panic CPUs
* - semaphores are not NMI-safe
*/
/*
* If another context is holding the console lock,
* @console_may_schedule might be set. Clear it so that
* this context does not call cond_resched() while flushing.
*/
console_may_schedule = 0;
if (mode == CONSOLE_REPLAY_ALL)
__console_rewind_all();
printk_get_console_flush_type(&ft);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
/* Flush legacy consoles once allowed, even when dangerous. */
if (legacy_allow_panic_sync)
console_flush_all(false, &next_seq, &handover);
}
/*
* Return the console tty driver structure and its associated index
*/
struct tty_driver *console_device(int *index)
{
struct console *c;
struct tty_driver *driver = NULL;
int cookie;
/*
* Take console_lock to serialize device() callback with
* other console operations. For example, fg_console is
* modified under console_lock when switching vt.
*/
console_lock();
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if (!c->device)
continue;
driver = c->device(c, index);
if (driver)
break;
}
console_srcu_read_unlock(cookie);
console_unlock();
return driver;
}
/*
* Prevent further output on the passed console device so that (for example)
* serial drivers can disable console output before suspending a port, and can
* re-enable output afterwards.
*/
void console_stop(struct console *console)
{
__pr_flush(console, 1000, true);
console_list_lock();
console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. All contexts must
* be able to see that this console is disabled so that (for example)
* the caller can suspend the port without risk of another context
* using the port.
*/
synchronize_srcu(&console_srcu);
}
EXPORT_SYMBOL(console_stop);
void console_start(struct console *console)
{
struct console_flush_type ft;
bool is_nbcon;
console_list_lock();
console_srcu_write_flags(console, console->flags | CON_ENABLED);
is_nbcon = console->flags & CON_NBCON;
console_list_unlock();
/*
* Ensure that all SRCU list walks have completed. The related
* printing context must be able to see it is enabled so that
* it is guaranteed to wake up and resume printing.
*/
synchronize_srcu(&console_srcu);
printk_get_console_flush_type(&ft);
if (is_nbcon && ft.nbcon_offload)
nbcon_kthread_wake(console);
else if (ft.legacy_offload)
defer_console_output();
__pr_flush(console, 1000, true);
}
EXPORT_SYMBOL(console_start);
#ifdef CONFIG_PRINTK
static int unregister_console_locked(struct console *console);
/* True when system boot is far enough to create printer threads. */
static bool printk_kthreads_ready __ro_after_init;
static struct task_struct *printk_legacy_kthread;
static bool legacy_kthread_should_wakeup(void)
{
struct console_flush_type ft;
struct console *con;
bool ret = false;
int cookie;
if (kthread_should_stop())
return true;
printk_get_console_flush_type(&ft);
cookie = console_srcu_read_lock();
for_each_console_srcu(con) {
short flags = console_srcu_read_flags(con);
u64 printk_seq;
/*
* The legacy printer thread is only responsible for nbcon
* consoles when the nbcon consoles cannot print via their
* atomic or threaded flushing.
*/
if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
continue;
if (!console_is_usable(con, flags, false))
continue;
if (flags & CON_NBCON) {
printk_seq = nbcon_seq_read(con);
} else {
/*
* It is safe to read @seq because only this
* thread context updates @seq.
*/
printk_seq = con->seq;
}
if (prb_read_valid(prb, printk_seq, NULL)) {
ret = true;
break;
}
}
console_srcu_read_unlock(cookie);
return ret;
}
static int legacy_kthread_func(void *unused)
{
for (;;) {
wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup());
if (kthread_should_stop())
break;
console_lock();
__console_flush_and_unlock();
}
return 0;
}
static bool legacy_kthread_create(void)
{
struct task_struct *kt;
lockdep_assert_console_list_lock_held();
kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy");
if (WARN_ON(IS_ERR(kt))) {
pr_err("failed to start legacy printing thread\n");
return false;
}
printk_legacy_kthread = kt;
/*
* It is important that console printing threads are scheduled
* shortly after a printk call and with generous runtime budgets.
*/
sched_set_normal(printk_legacy_kthread, -20);
return true;
}
/**
* printk_kthreads_shutdown - shutdown all threaded printers
*
* On system shutdown all threaded printers are stopped. This allows printk
* to transition back to atomic printing, thus providing a robust mechanism
* for the final shutdown/reboot messages to be output.
*/
static void printk_kthreads_shutdown(void)
{
struct console *con;
console_list_lock();
if (printk_kthreads_running) {
printk_kthreads_running = false;
for_each_console(con) {
if (con->flags & CON_NBCON)
nbcon_kthread_stop(con);
}
/*
* The threads may have been stopped while printing a
* backlog. Flush any records left over.
*/
nbcon_atomic_flush_pending();
}
console_list_unlock();
}
static struct syscore_ops printk_syscore_ops = {
.shutdown = printk_kthreads_shutdown,
};
/*
* If appropriate, start nbcon kthreads and set @printk_kthreads_running.
* If any kthreads fail to start, those consoles are unregistered.
*
* Must be called under console_list_lock().
*/
static void printk_kthreads_check_locked(void)
{
struct hlist_node *tmp;
struct console *con;
lockdep_assert_console_list_lock_held();
if (!printk_kthreads_ready)
return;
if (have_legacy_console || have_boot_console) {
if (!printk_legacy_kthread &&
force_legacy_kthread() &&
!legacy_kthread_create()) {
/*
* All legacy consoles must be unregistered. If there
* are any nbcon consoles, they will set up their own
* kthread.
*/
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (con->flags & CON_NBCON)
continue;
unregister_console_locked(con);
}
}
} else if (printk_legacy_kthread) {
kthread_stop(printk_legacy_kthread);
printk_legacy_kthread = NULL;
}
/*
* Printer threads cannot be started as long as any boot console is
* registered because there is no way to synchronize the hardware
* registers between boot console code and regular console code.
* It can only be known that there will be no new boot consoles when
* an nbcon console is registered.
*/
if (have_boot_console || !have_nbcon_console) {
/* Clear flag in case all nbcon consoles unregistered. */
printk_kthreads_running = false;
return;
}
if (printk_kthreads_running)
return;
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (!(con->flags & CON_NBCON))
continue;
if (!nbcon_kthread_create(con))
unregister_console_locked(con);
}
printk_kthreads_running = true;
}
static int __init printk_set_kthreads_ready(void)
{
register_syscore_ops(&printk_syscore_ops);
console_list_lock();
printk_kthreads_ready = true;
printk_kthreads_check_locked();
console_list_unlock();
return 0;
}
early_initcall(printk_set_kthreads_ready);
#endif /* CONFIG_PRINTK */
static int __read_mostly keep_bootcon;
static int __init keep_bootcon_setup(char *str)
{
keep_bootcon = 1;
pr_info("debug: skip boot console de-registration.\n");
return 0;
}
early_param("keep_bootcon", keep_bootcon_setup);
static int console_call_setup(struct console *newcon, char *options)
{
int err;
if (!newcon->setup)
return 0;
/* Synchronize with possible boot console. */
console_lock();
err = newcon->setup(newcon, options);
console_unlock();
return err;
}
/*
* This is called by register_console() to try to match
* the newly registered console with any of the ones selected
* by either the command line or add_preferred_console() and
* setup/enable it.
*
* Care need to be taken with consoles that are statically
* enabled such as netconsole
*/
static int try_enable_preferred_console(struct console *newcon,
bool user_specified)
{
struct console_cmdline *c;
int i, err;
for (i = 0, c = console_cmdline;
i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
i++, c++) {
/* Console not yet initialized? */
if (!c->name[0])
continue;
if (c->user_specified != user_specified)
continue;
if (!newcon->match ||
newcon->match(newcon, c->name, c->index, c->options) != 0) {
/* default matching */
BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
if (strcmp(c->name, newcon->name) != 0)
continue;
if (newcon->index >= 0 &&
newcon->index != c->index)
continue;
if (newcon->index < 0)
newcon->index = c->index;
if (_braille_register_console(newcon, c))
return 0;
err = console_call_setup(newcon, c->options);
if (err)
return err;
}
newcon->flags |= CON_ENABLED;
if (i == preferred_console)
newcon->flags |= CON_CONSDEV;
return 0;
}
/*
* Some consoles, such as pstore and netconsole, can be enabled even
* without matching. Accept the pre-enabled consoles only when match()
* and setup() had a chance to be called.
*/
if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
return 0;
return -ENOENT;
}
/* Try to enable the console unconditionally */
static void try_enable_default_console(struct console *newcon)
{
if (newcon->index < 0)
newcon->index = 0;
if (console_call_setup(newcon, NULL) != 0)
return;
newcon->flags |= CON_ENABLED;
if (newcon->device)
newcon->flags |= CON_CONSDEV;
}
/* Return the starting sequence number for a newly registered console. */
static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered)
{
struct console *con;
bool handover;
u64 init_seq;
if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
/* Get a consistent copy of @syslog_seq. */
mutex_lock(&syslog_lock);
init_seq = syslog_seq;
mutex_unlock(&syslog_lock);
} else {
/* Begin with next message added to ringbuffer. */
init_seq = prb_next_seq(prb);
/*
* If any enabled boot consoles are due to be unregistered
* shortly, some may not be caught up and may be the same
* device as @newcon. Since it is not known which boot console
* is the same device, flush all consoles and, if necessary,
* start with the message of the enabled boot console that is
* the furthest behind.
*/
if (bootcon_registered && !keep_bootcon) {
/*
* Hold the console_lock to stop console printing and
* guarantee safe access to console->seq.
*/
console_lock();
/*
* Flush all consoles and set the console to start at
* the next unprinted sequence number.
*/
if (!console_flush_all(true, &init_seq, &handover)) {
/*
* Flushing failed. Just choose the lowest
* sequence of the enabled boot consoles.
*/
/*
* If there was a handover, this context no
* longer holds the console_lock.
*/
if (handover)
console_lock();
init_seq = prb_next_seq(prb);
for_each_console(con) {
u64 seq;
if (!(con->flags & CON_BOOT) ||
!(con->flags & CON_ENABLED)) {
continue;
}
if (con->flags & CON_NBCON)
seq = nbcon_seq_read(con);
else
seq = con->seq;
if (seq < init_seq)
init_seq = seq;
}
}
console_unlock();
}
}
return init_seq;
}
#define console_first() \
hlist_entry(console_list.first, struct console, node)
static int unregister_console_locked(struct console *console);
/*
* The console driver calls this routine during kernel initialization
* to register the console printing procedure with printk() and to
* print any messages that were printed by the kernel before the
* console driver was initialized.
*
* This can happen pretty early during the boot process (because of
* early_printk) - sometimes before setup_arch() completes - be careful
* of what kernel features are used - they may not be initialised yet.
*
* There are two types of consoles - bootconsoles (early_printk) and
* "real" consoles (everything which is not a bootconsole) which are
* handled differently.
* - Any number of bootconsoles can be registered at any time.
* - As soon as a "real" console is registered, all bootconsoles
* will be unregistered automatically.
* - Once a "real" console is registered, any attempt to register a
* bootconsoles will be rejected
*/
void register_console(struct console *newcon)
{
bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic;
bool bootcon_registered = false;
bool realcon_registered = false;
struct console *con;
unsigned long flags;
u64 init_seq;
int err;
console_list_lock();
for_each_console(con) {
if (WARN(con == newcon, "console '%s%d' already registered\n",
con->name, con->index)) {
goto unlock;
}
if (con->flags & CON_BOOT)
bootcon_registered = true;
else
realcon_registered = true;
}
/* Do not register boot consoles when there already is a real one. */
if ((newcon->flags & CON_BOOT) && realcon_registered) {
pr_info("Too late to register bootconsole %s%d\n",
newcon->name, newcon->index);
goto unlock;
}
if (newcon->flags & CON_NBCON) {
/*
* Ensure the nbcon console buffers can be allocated
* before modifying any global data.
*/
if (!nbcon_alloc(newcon))
goto unlock;
}
/*
* See if we want to enable this console driver by default.
*
* Nope when a console is preferred by the command line, device
* tree, or SPCR.
*
* The first real console with tty binding (driver) wins. More
* consoles might get enabled before the right one is found.
*
* Note that a console with tty binding will have CON_CONSDEV
* flag set and will be first in the list.
*/
if (preferred_console < 0) {
if (hlist_empty(&console_list) || !console_first()->device ||
console_first()->flags & CON_BOOT) {
try_enable_default_console(newcon);
}
}
/* See if this console matches one we selected on the command line */
err = try_enable_preferred_console(newcon, true);
/* If not, try to match against the platform default(s) */
if (err == -ENOENT)
err = try_enable_preferred_console(newcon, false);
/* printk() messages are not printed to the Braille console. */
if (err || newcon->flags & CON_BRL) {
if (newcon->flags & CON_NBCON)
nbcon_free(newcon);
goto unlock;
}
/*
* If we have a bootconsole, and are switching to a real console,
* don't print everything out again, since when the boot console, and
* the real console are the same physical device, it's annoying to
* see the beginning boot messages twice
*/
if (bootcon_registered &&
((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
newcon->flags &= ~CON_PRINTBUFFER;
}
newcon->dropped = 0;
init_seq = get_init_console_seq(newcon, bootcon_registered);
if (newcon->flags & CON_NBCON) {
have_nbcon_console = true;
nbcon_seq_force(newcon, init_seq);
} else {
have_legacy_console = true;
newcon->seq = init_seq;
}
if (newcon->flags & CON_BOOT)
have_boot_console = true;
/*
* If another context is actively using the hardware of this new
* console, it will not be aware of the nbcon synchronization. This
* is a risk that two contexts could access the hardware
* simultaneously if this new console is used for atomic printing
* and the other context is still using the hardware.
*
* Use the driver synchronization to ensure that the hardware is not
* in use while this new console transitions to being registered.
*/
if (use_device_lock)
newcon->device_lock(newcon, &flags);
/*
* Put this console in the list - keep the
* preferred driver at the head of the list.
*/
if (hlist_empty(&console_list)) {
/* Ensure CON_CONSDEV is always set for the head. */
newcon->flags |= CON_CONSDEV;
hlist_add_head_rcu(&newcon->node, &console_list);
} else if (newcon->flags & CON_CONSDEV) {
/* Only the new head can have CON_CONSDEV set. */
console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
hlist_add_head_rcu(&newcon->node, &console_list);
} else {
hlist_add_behind_rcu(&newcon->node, console_list.first);
}
/*
* No need to synchronize SRCU here! The caller does not rely
* on all contexts being able to see the new console before
* register_console() completes.
*/
/* This new console is now registered. */
if (use_device_lock)
newcon->device_unlock(newcon, flags);
console_sysfs_notify();
/*
* By unregistering the bootconsoles after we enable the real console
* we get the "console xxx enabled" message on all the consoles -
* boot consoles, real consoles, etc - this is to ensure that end
* users know there might be something in the kernel's log buffer that
* went to the bootconsole (that they do not see on the real console)
*/
con_printk(KERN_INFO, newcon, "enabled\n");
if (bootcon_registered &&
((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
!keep_bootcon) {
struct hlist_node *tmp;
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (con->flags & CON_BOOT)
unregister_console_locked(con);
}
}
/* Changed console list, may require printer threads to start/stop. */
printk_kthreads_check_locked();
unlock:
console_list_unlock();
}
EXPORT_SYMBOL(register_console);
/* Must be called under console_list_lock(). */
static int unregister_console_locked(struct console *console)
{
bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic;
bool found_legacy_con = false;
bool found_nbcon_con = false;
bool found_boot_con = false;
unsigned long flags;
struct console *c;
int res;
lockdep_assert_console_list_lock_held();
con_printk(KERN_INFO, console, "disabled\n");
res = _braille_unregister_console(console);
if (res < 0)
return res;
if (res > 0)
return 0;
if (!console_is_registered_locked(console))
res = -ENODEV;
else if (console_is_usable(console, console->flags, true))
__pr_flush(console, 1000, true);
/* Disable it unconditionally */
console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
if (res < 0)
return res;
/*
* Use the driver synchronization to ensure that the hardware is not
* in use while this console transitions to being unregistered.
*/
if (use_device_lock)
console->device_lock(console, &flags);
hlist_del_init_rcu(&console->node);
if (use_device_lock)
console->device_unlock(console, flags);
/*
* <HISTORICAL>
* If this isn't the last console and it has CON_CONSDEV set, we
* need to set it on the next preferred console.
* </HISTORICAL>
*
* The above makes no sense as there is no guarantee that the next
* console has any device attached. Oh well....
*/
if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
/*
* Ensure that all SRCU list walks have completed. All contexts
* must not be able to see this console in the list so that any
* exit/cleanup routines can be performed safely.
*/
synchronize_srcu(&console_srcu);
if (console->flags & CON_NBCON)
nbcon_free(console);
console_sysfs_notify();
if (console->exit)
res = console->exit(console);
/*
* With this console gone, the global flags tracking registered
* console types may have changed. Update them.
*/
for_each_console(c) {
if (c->flags & CON_BOOT)
found_boot_con = true;
if (c->flags & CON_NBCON)
found_nbcon_con = true;
else
found_legacy_con = true;
}
if (!found_boot_con)
have_boot_console = found_boot_con;
if (!found_legacy_con)
have_legacy_console = found_legacy_con;
if (!found_nbcon_con)
have_nbcon_console = found_nbcon_con;
/* Changed console list, may require printer threads to start/stop. */
printk_kthreads_check_locked();
return res;
}
int unregister_console(struct console *console)
{
int res;
console_list_lock();
res = unregister_console_locked(console);
console_list_unlock();
return res;
}
EXPORT_SYMBOL(unregister_console);
/**
* console_force_preferred_locked - force a registered console preferred
* @con: The registered console to force preferred.
*
* Must be called under console_list_lock().
*/
void console_force_preferred_locked(struct console *con)
{
struct console *cur_pref_con;
if (!console_is_registered_locked(con))
return;
cur_pref_con = console_first();
/* Already preferred? */
if (cur_pref_con == con)
return;
/*
* Delete, but do not re-initialize the entry. This allows the console
* to continue to appear registered (via any hlist_unhashed_lockless()
* checks), even though it was briefly removed from the console list.
*/
hlist_del_rcu(&con->node);
/*
* Ensure that all SRCU list walks have completed so that the console
* can be added to the beginning of the console list and its forward
* list pointer can be re-initialized.
*/
synchronize_srcu(&console_srcu);
con->flags |= CON_CONSDEV;
WARN_ON(!con->device);
/* Only the new head can have CON_CONSDEV set. */
console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
hlist_add_head_rcu(&con->node, &console_list);
}
EXPORT_SYMBOL(console_force_preferred_locked);
/*
* Initialize the console device. This is called *early*, so
* we can't necessarily depend on lots of kernel help here.
* Just do some early initializations, and do the complex setup
* later.
*/
void __init console_init(void)
{
int ret;
initcall_t call;
initcall_entry_t *ce;
/* Setup the default TTY line discipline. */
n_tty_init();
/*
* set up the console device so that later boot sequences can
* inform about problems etc..
*/
ce = __con_initcall_start;
trace_initcall_level("console");
while (ce < __con_initcall_end) {
call = initcall_from_entry(ce);
trace_initcall_start(call);
ret = call();
trace_initcall_finish(call, ret);
ce++;
}
}
/*
* Some boot consoles access data that is in the init section and which will
* be discarded after the initcalls have been run. To make sure that no code
* will access this data, unregister the boot consoles in a late initcall.
*
* If for some reason, such as deferred probe or the driver being a loadable
* module, the real console hasn't registered yet at this point, there will
* be a brief interval in which no messages are logged to the console, which
* makes it difficult to diagnose problems that occur during this time.
*
* To mitigate this problem somewhat, only unregister consoles whose memory
* intersects with the init section. Note that all other boot consoles will
* get unregistered when the real preferred console is registered.
*/
static int __init printk_late_init(void)
{
struct hlist_node *tmp;
struct console *con;
int ret;
console_list_lock();
hlist_for_each_entry_safe(con, tmp, &console_list, node) {
if (!(con->flags & CON_BOOT))
continue;
/* Check addresses that might be used for enabled consoles. */
if (init_section_intersects(con, sizeof(*con)) ||
init_section_contains(con->write, 0) ||
init_section_contains(con->read, 0) ||
init_section_contains(con->device, 0) ||
init_section_contains(con->unblank, 0) ||
init_section_contains(con->data, 0)) {
/*
* Please, consider moving the reported consoles out
* of the init section.
*/
pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
con->name, con->index);
unregister_console_locked(con);
}
}
console_list_unlock();
ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
console_cpu_notify);
WARN_ON(ret < 0);
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
console_cpu_notify, NULL);
WARN_ON(ret < 0);
printk_sysctl_init();
return 0;
}
late_initcall(printk_late_init);
#if defined CONFIG_PRINTK
/* If @con is specified, only wait for that console. Otherwise wait for all. */
static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
{
unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
unsigned long remaining_jiffies = timeout_jiffies;
struct console_flush_type ft;
struct console *c;
u64 last_diff = 0;
u64 printk_seq;
short flags;
int cookie;
u64 diff;
u64 seq;
/* Sorry, pr_flush() will not work this early. */
if (system_state < SYSTEM_SCHEDULING)
return false;
might_sleep();
seq = prb_next_reserve_seq(prb);
/* Flush the consoles so that records up to @seq are printed. */
printk_get_console_flush_type(&ft);
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.legacy_direct) {
console_lock();
console_unlock();
}
for (;;) {
unsigned long begin_jiffies;
unsigned long slept_jiffies;
diff = 0;
/*
* Hold the console_lock to guarantee safe access to
* console->seq. Releasing console_lock flushes more
* records in case @seq is still not printed on all
* usable consoles.
*
* Holding the console_lock is not necessary if there
* are no legacy or boot consoles. However, such a
* console could register at any time. Always hold the
* console_lock as a precaution rather than
* synchronizing against register_console().
*/
console_lock();
cookie = console_srcu_read_lock();
for_each_console_srcu(c) {
if (con && con != c)
continue;
flags = console_srcu_read_flags(c);
/*
* If consoles are not usable, it cannot be expected
* that they make forward progress, so only increment
* @diff for usable consoles.
*/
if (!console_is_usable(c, flags, true) &&
!console_is_usable(c, flags, false)) {
continue;
}
if (flags & CON_NBCON) {
printk_seq = nbcon_seq_read(c);
} else {
printk_seq = c->seq;
}
if (printk_seq < seq)
diff += seq - printk_seq;
}
console_srcu_read_unlock(cookie);
if (diff != last_diff && reset_on_progress)
remaining_jiffies = timeout_jiffies;
console_unlock();
/* Note: @diff is 0 if there are no usable consoles. */
if (diff == 0 || remaining_jiffies == 0)
break;
/* msleep(1) might sleep much longer. Check time by jiffies. */
begin_jiffies = jiffies;
msleep(1);
slept_jiffies = jiffies - begin_jiffies;
remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
last_diff = diff;
}
return (diff == 0);
}
/**
* pr_flush() - Wait for printing threads to catch up.
*
* @timeout_ms: The maximum time (in ms) to wait.
* @reset_on_progress: Reset the timeout if forward progress is seen.
*
* A value of 0 for @timeout_ms means no waiting will occur. A value of -1
* represents infinite waiting.
*
* If @reset_on_progress is true, the timeout will be reset whenever any
* printer has been seen to make some forward progress.
*
* Context: Process context. May sleep while acquiring console lock.
* Return: true if all usable printers are caught up.
*/
static bool pr_flush(int timeout_ms, bool reset_on_progress)
{
return __pr_flush(NULL, timeout_ms, reset_on_progress);
}
/*
* Delayed printk version, for scheduler-internal messages:
*/
#define PRINTK_PENDING_WAKEUP 0x01
#define PRINTK_PENDING_OUTPUT 0x02
static DEFINE_PER_CPU(int, printk_pending);
static void wake_up_klogd_work_func(struct irq_work *irq_work)
{
int pending = this_cpu_xchg(printk_pending, 0);
if (pending & PRINTK_PENDING_OUTPUT) {
if (force_legacy_kthread()) {
if (printk_legacy_kthread)
wake_up_interruptible(&legacy_wait);
} else {
if (console_trylock())
console_unlock();
}
}
if (pending & PRINTK_PENDING_WAKEUP)
wake_up_interruptible(&log_wait);
}
static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
static void __wake_up_klogd(int val)
{
if (!printk_percpu_data_ready())
return;
preempt_disable();
/*
* Guarantee any new records can be seen by tasks preparing to wait
* before this context checks if the wait queue is empty.
*
* The full memory barrier within wq_has_sleeper() pairs with the full
* memory barrier within set_current_state() of
* prepare_to_wait_event(), which is called after ___wait_event() adds
* the waiter but before it has checked the wait condition.
*
* This pairs with devkmsg_read:A and syslog_print:A.
*/
if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
(val & PRINTK_PENDING_OUTPUT)) {
this_cpu_or(printk_pending, val);
irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
}
preempt_enable();
}
/**
* wake_up_klogd - Wake kernel logging daemon
*
* Use this function when new records have been added to the ringbuffer
* and the console printing of those records has already occurred or is
* known to be handled by some other context. This function will only
* wake the logging daemon.
*
* Context: Any context.
*/
void wake_up_klogd(void)
{
__wake_up_klogd(PRINTK_PENDING_WAKEUP);
}
/**
* defer_console_output - Wake kernel logging daemon and trigger
* console printing in a deferred context
*
* Use this function when new records have been added to the ringbuffer,
* this context is responsible for console printing those records, but
* the current context is not allowed to perform the console printing.
* Trigger an irq_work context to perform the console printing. This
* function also wakes the logging daemon.
*
* Context: Any context.
*/
void defer_console_output(void)
{
/*
* New messages may have been added directly to the ringbuffer
* using vprintk_store(), so wake any waiters as well.
*/
__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
}
void printk_trigger_flush(void)
{
defer_console_output();
}
int vprintk_deferred(const char *fmt, va_list args)
{
return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
}
int _printk_deferred(const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = vprintk_deferred(fmt, args);
va_end(args);
return r;
}
/*
* printk rate limiting, lifted from the networking subsystem.
*
* This enforces a rate limit: not more than 10 kernel messages
* every 5s to make a denial-of-service attack impossible.
*/
DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
int __printk_ratelimit(const char *func)
{
return ___ratelimit(&printk_ratelimit_state, func);
}
EXPORT_SYMBOL(__printk_ratelimit);
/**
* printk_timed_ratelimit - caller-controlled printk ratelimiting
* @caller_jiffies: pointer to caller's state
* @interval_msecs: minimum interval between prints
*
* printk_timed_ratelimit() returns true if more than @interval_msecs
* milliseconds have elapsed since the last time printk_timed_ratelimit()
* returned true.
*/
bool printk_timed_ratelimit(unsigned long *caller_jiffies,
unsigned int interval_msecs)
{
unsigned long elapsed = jiffies - *caller_jiffies;
if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
return false;
*caller_jiffies = jiffies;
return true;
}
EXPORT_SYMBOL(printk_timed_ratelimit);
static DEFINE_SPINLOCK(dump_list_lock);
static LIST_HEAD(dump_list);
/**
* kmsg_dump_register - register a kernel log dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Adds a kernel log dumper to the system. The dump callback in the
* structure will be called when the kernel oopses or panics and must be
* set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
*/
int kmsg_dump_register(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EBUSY;
/* The dump callback needs to be set */
if (!dumper->dump)
return -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
/* Don't allow registering multiple times */
if (!dumper->registered) {
dumper->registered = 1;
list_add_tail_rcu(&dumper->list, &dump_list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_register);
/**
* kmsg_dump_unregister - unregister a kmsg dumper.
* @dumper: pointer to the kmsg_dumper structure
*
* Removes a dump device from the system. Returns zero on success and
* %-EINVAL otherwise.
*/
int kmsg_dump_unregister(struct kmsg_dumper *dumper)
{
unsigned long flags;
int err = -EINVAL;
spin_lock_irqsave(&dump_list_lock, flags);
if (dumper->registered) {
dumper->registered = 0;
list_del_rcu(&dumper->list);
err = 0;
}
spin_unlock_irqrestore(&dump_list_lock, flags);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
static bool always_kmsg_dump;
module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
{
switch (reason) {
case KMSG_DUMP_PANIC:
return "Panic";
case KMSG_DUMP_OOPS:
return "Oops";
case KMSG_DUMP_EMERG:
return "Emergency";
case KMSG_DUMP_SHUTDOWN:
return "Shutdown";
default:
return "Unknown";
}
}
EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
/**
* kmsg_dump_desc - dump kernel log to kernel message dumpers.
* @reason: the reason (oops, panic etc) for dumping
* @desc: a short string to describe what caused the panic or oops. Can be NULL
* if no additional description is available.
*
* Call each of the registered dumper's dump() callback, which can
* retrieve the kmsg records with kmsg_dump_get_line() or
* kmsg_dump_get_buffer().
*/
void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc)
{
struct kmsg_dumper *dumper;
struct kmsg_dump_detail detail = {
.reason = reason,
.description = desc};
rcu_read_lock();
list_for_each_entry_rcu(dumper, &dump_list, list) {
enum kmsg_dump_reason max_reason = dumper->max_reason;
/*
* If client has not provided a specific max_reason, default
* to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
*/
if (max_reason == KMSG_DUMP_UNDEF) {
max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
KMSG_DUMP_OOPS;
}
if (reason > max_reason)
continue;
/* invoke dumper which will iterate over records */
dumper->dump(dumper, &detail);
}
rcu_read_unlock();
}
/**
* kmsg_dump_get_line - retrieve one kmsg log line
* @iter: kmsg dump iterator
* @syslog: include the "<4>" prefixes
* @line: buffer to copy the line to
* @size: maximum size of the buffer
* @len: length of line placed into buffer
*
* Start at the beginning of the kmsg buffer, with the oldest kmsg
* record, and copy one record into the provided buffer.
*
* Consecutive calls will return the next available record moving
* towards the end of the buffer with the youngest messages.
*
* A return value of FALSE indicates that there are no more records to
* read.
*/
bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
char *line, size_t size, size_t *len)
{
u64 min_seq = latched_seq_read_nolock(&clear_seq);
struct printk_info info;
unsigned int line_count;
struct printk_record r;
size_t l = 0;
bool ret = false;
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
prb_rec_init_rd(&r, &info, line, size);
/* Read text or count text lines? */
if (line) {
if (!prb_read_valid(prb, iter->cur_seq, &r))
goto out;
l = record_print_text(&r, syslog, printk_time);
} else {
if (!prb_read_valid_info(prb, iter->cur_seq,
&info, &line_count)) {
goto out;
}
l = get_record_print_text_size(&info, line_count, syslog,
printk_time);
}
iter->cur_seq = r.info->seq + 1;
ret = true;
out:
if (len)
*len = l;
return ret;
}
EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
/**
* kmsg_dump_get_buffer - copy kmsg log lines
* @iter: kmsg dump iterator
* @syslog: include the "<4>" prefixes
* @buf: buffer to copy the line to
* @size: maximum size of the buffer
* @len_out: length of line placed into buffer
*
* Start at the end of the kmsg buffer and fill the provided buffer
* with as many of the *youngest* kmsg records that fit into it.
* If the buffer is large enough, all available kmsg records will be
* copied with a single call.
*
* Consecutive calls will fill the buffer with the next block of
* available older records, not including the earlier retrieved ones.
*
* A return value of FALSE indicates that there are no more records to
* read.
*/
bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
char *buf, size_t size, size_t *len_out)
{
u64 min_seq = latched_seq_read_nolock(&clear_seq);
struct printk_info info;
struct printk_record r;
u64 seq;
u64 next_seq;
size_t len = 0;
bool ret = false;
bool time = printk_time;
if (!buf || !size)
goto out;
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
if (info.seq != iter->cur_seq) {
/* messages are gone, move to first available one */
iter->cur_seq = info.seq;
}
}
/* last entry */
if (iter->cur_seq >= iter->next_seq)
goto out;
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump. Pass in size-1
* because this function (by way of record_print_text()) will
* not write more than size-1 bytes of text into @buf.
*/
seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
size - 1, syslog, time);
/*
* Next kmsg_dump_get_buffer() invocation will dump block of
* older records stored right before this one.
*/
next_seq = seq;
prb_rec_init_rd(&r, &info, buf, size);
prb_for_each_record(seq, prb, seq, &r) {
if (r.info->seq >= iter->next_seq)
break;
len += record_print_text(&r, syslog, time);
/* Adjust record to store to remaining buffer space. */
prb_rec_init_rd(&r, &info, buf + len, size - len);
}
iter->next_seq = next_seq;
ret = true;
out:
if (len_out)
*len_out = len;
return ret;
}
EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
/**
* kmsg_dump_rewind - reset the iterator
* @iter: kmsg dump iterator
*
* Reset the dumper's iterator so that kmsg_dump_get_line() and
* kmsg_dump_get_buffer() can be called again and used multiple
* times within the same dumper.dump() callback.
*/
void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
{
iter->cur_seq = latched_seq_read_nolock(&clear_seq);
iter->next_seq = prb_next_seq(prb);
}
EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
/**
* console_try_replay_all - try to replay kernel log on consoles
*
* Try to obtain lock on console subsystem and replay all
* available records in printk buffer on the consoles.
* Does nothing if lock is not obtained.
*
* Context: Any, except for NMI.
*/
void console_try_replay_all(void)
{
struct console_flush_type ft;
printk_get_console_flush_type(&ft);
if (console_trylock()) {
__console_rewind_all();
if (ft.nbcon_atomic)
nbcon_atomic_flush_pending();
if (ft.nbcon_offload)
nbcon_kthreads_wake();
if (ft.legacy_offload)
defer_console_output();
/* Consoles are flushed as part of console_unlock(). */
console_unlock();
}
}
#endif
#ifdef CONFIG_SMP
static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
/**
* __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
* spinning lock is not owned by any CPU.
*
* Context: Any context.
*/
void __printk_cpu_sync_wait(void)
{
do {
cpu_relax();
} while (atomic_read(&printk_cpu_sync_owner) != -1);
}
EXPORT_SYMBOL(__printk_cpu_sync_wait);
/**
* __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
* spinning lock.
*
* If no processor has the lock, the calling processor takes the lock and
* becomes the owner. If the calling processor is already the owner of the
* lock, this function succeeds immediately.
*
* Context: Any context. Expects interrupts to be disabled.
* Return: 1 on success, otherwise 0.
*/
int __printk_cpu_sync_try_get(void)
{
int cpu;
int old;
cpu = smp_processor_id();
/*
* Guarantee loads and stores from this CPU when it is the lock owner
* are _not_ visible to the previous lock owner. This pairs with
* __printk_cpu_sync_put:B.
*
* Memory barrier involvement:
*
* If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
* then __printk_cpu_sync_put:A can never read from
* __printk_cpu_sync_try_get:B.
*
* Relies on:
*
* RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
* of the previous CPU
* matching
* ACQUIRE from __printk_cpu_sync_try_get:A to
* __printk_cpu_sync_try_get:B of this CPU
*/
old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
cpu); /* LMM(__printk_cpu_sync_try_get:A) */
if (old == -1) {
/*
* This CPU is now the owner and begins loading/storing
* data: LMM(__printk_cpu_sync_try_get:B)
*/
return 1;
} else if (old == cpu) {
/* This CPU is already the owner. */
atomic_inc(&printk_cpu_sync_nested);
return 1;
}
return 0;
}
EXPORT_SYMBOL(__printk_cpu_sync_try_get);
/**
* __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
*
* The calling processor must be the owner of the lock.
*
* Context: Any context. Expects interrupts to be disabled.
*/
void __printk_cpu_sync_put(void)
{
if (atomic_read(&printk_cpu_sync_nested)) {
atomic_dec(&printk_cpu_sync_nested);
return;
}
/*
* This CPU is finished loading/storing data:
* LMM(__printk_cpu_sync_put:A)
*/
/*
* Guarantee loads and stores from this CPU when it was the
* lock owner are visible to the next lock owner. This pairs
* with __printk_cpu_sync_try_get:A.
*
* Memory barrier involvement:
*
* If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
* then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
*
* Relies on:
*
* RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
* of this CPU
* matching
* ACQUIRE from __printk_cpu_sync_try_get:A to
* __printk_cpu_sync_try_get:B of the next CPU
*/
atomic_set_release(&printk_cpu_sync_owner,
-1); /* LMM(__printk_cpu_sync_put:B) */
}
EXPORT_SYMBOL(__printk_cpu_sync_put);
#endif /* CONFIG_SMP */