linux/drivers/vfio/pci/vfio_pci_intrs.c
Ye Bin 82b951e6fb vfio/pci: fix potential memory leak in vfio_intx_enable()
If vfio_irq_ctx_alloc() failed will lead to 'name' memory leak.

Fixes: 18c198c96a ("vfio/pci: Create persistent INTx handler")
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240415015029.3699844-1-yebin10@huawei.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2024-04-22 16:52:08 -06:00

864 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* VFIO PCI interrupt handling
*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*/
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/eventfd.h>
#include <linux/msi.h>
#include <linux/pci.h>
#include <linux/file.h>
#include <linux/vfio.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include "vfio_pci_priv.h"
struct vfio_pci_irq_ctx {
struct vfio_pci_core_device *vdev;
struct eventfd_ctx *trigger;
struct virqfd *unmask;
struct virqfd *mask;
char *name;
bool masked;
struct irq_bypass_producer producer;
};
static bool irq_is(struct vfio_pci_core_device *vdev, int type)
{
return vdev->irq_type == type;
}
static bool is_intx(struct vfio_pci_core_device *vdev)
{
return vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX;
}
static bool is_irq_none(struct vfio_pci_core_device *vdev)
{
return !(vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX ||
vdev->irq_type == VFIO_PCI_MSI_IRQ_INDEX ||
vdev->irq_type == VFIO_PCI_MSIX_IRQ_INDEX);
}
static
struct vfio_pci_irq_ctx *vfio_irq_ctx_get(struct vfio_pci_core_device *vdev,
unsigned long index)
{
return xa_load(&vdev->ctx, index);
}
static void vfio_irq_ctx_free(struct vfio_pci_core_device *vdev,
struct vfio_pci_irq_ctx *ctx, unsigned long index)
{
xa_erase(&vdev->ctx, index);
kfree(ctx);
}
static struct vfio_pci_irq_ctx *
vfio_irq_ctx_alloc(struct vfio_pci_core_device *vdev, unsigned long index)
{
struct vfio_pci_irq_ctx *ctx;
int ret;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
if (!ctx)
return NULL;
ret = xa_insert(&vdev->ctx, index, ctx, GFP_KERNEL_ACCOUNT);
if (ret) {
kfree(ctx);
return NULL;
}
return ctx;
}
/*
* INTx
*/
static void vfio_send_intx_eventfd(void *opaque, void *data)
{
struct vfio_pci_core_device *vdev = opaque;
if (likely(is_intx(vdev) && !vdev->virq_disabled)) {
struct vfio_pci_irq_ctx *ctx = data;
struct eventfd_ctx *trigger = READ_ONCE(ctx->trigger);
if (likely(trigger))
eventfd_signal(trigger);
}
}
/* Returns true if the INTx vfio_pci_irq_ctx.masked value is changed. */
static bool __vfio_pci_intx_mask(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx;
unsigned long flags;
bool masked_changed = false;
lockdep_assert_held(&vdev->igate);
spin_lock_irqsave(&vdev->irqlock, flags);
/*
* Masking can come from interrupt, ioctl, or config space
* via INTx disable. The latter means this can get called
* even when not using intx delivery. In this case, just
* try to have the physical bit follow the virtual bit.
*/
if (unlikely(!is_intx(vdev))) {
if (vdev->pci_2_3)
pci_intx(pdev, 0);
goto out_unlock;
}
ctx = vfio_irq_ctx_get(vdev, 0);
if (WARN_ON_ONCE(!ctx))
goto out_unlock;
if (!ctx->masked) {
/*
* Can't use check_and_mask here because we always want to
* mask, not just when something is pending.
*/
if (vdev->pci_2_3)
pci_intx(pdev, 0);
else
disable_irq_nosync(pdev->irq);
ctx->masked = true;
masked_changed = true;
}
out_unlock:
spin_unlock_irqrestore(&vdev->irqlock, flags);
return masked_changed;
}
bool vfio_pci_intx_mask(struct vfio_pci_core_device *vdev)
{
bool mask_changed;
mutex_lock(&vdev->igate);
mask_changed = __vfio_pci_intx_mask(vdev);
mutex_unlock(&vdev->igate);
return mask_changed;
}
/*
* If this is triggered by an eventfd, we can't call eventfd_signal
* or else we'll deadlock on the eventfd wait queue. Return >0 when
* a signal is necessary, which can then be handled via a work queue
* or directly depending on the caller.
*/
static int vfio_pci_intx_unmask_handler(void *opaque, void *data)
{
struct vfio_pci_core_device *vdev = opaque;
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx = data;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&vdev->irqlock, flags);
/*
* Unmasking comes from ioctl or config, so again, have the
* physical bit follow the virtual even when not using INTx.
*/
if (unlikely(!is_intx(vdev))) {
if (vdev->pci_2_3)
pci_intx(pdev, 1);
goto out_unlock;
}
if (ctx->masked && !vdev->virq_disabled) {
/*
* A pending interrupt here would immediately trigger,
* but we can avoid that overhead by just re-sending
* the interrupt to the user.
*/
if (vdev->pci_2_3) {
if (!pci_check_and_unmask_intx(pdev))
ret = 1;
} else
enable_irq(pdev->irq);
ctx->masked = (ret > 0);
}
out_unlock:
spin_unlock_irqrestore(&vdev->irqlock, flags);
return ret;
}
static void __vfio_pci_intx_unmask(struct vfio_pci_core_device *vdev)
{
struct vfio_pci_irq_ctx *ctx = vfio_irq_ctx_get(vdev, 0);
lockdep_assert_held(&vdev->igate);
if (vfio_pci_intx_unmask_handler(vdev, ctx) > 0)
vfio_send_intx_eventfd(vdev, ctx);
}
void vfio_pci_intx_unmask(struct vfio_pci_core_device *vdev)
{
mutex_lock(&vdev->igate);
__vfio_pci_intx_unmask(vdev);
mutex_unlock(&vdev->igate);
}
static irqreturn_t vfio_intx_handler(int irq, void *dev_id)
{
struct vfio_pci_irq_ctx *ctx = dev_id;
struct vfio_pci_core_device *vdev = ctx->vdev;
unsigned long flags;
int ret = IRQ_NONE;
spin_lock_irqsave(&vdev->irqlock, flags);
if (!vdev->pci_2_3) {
disable_irq_nosync(vdev->pdev->irq);
ctx->masked = true;
ret = IRQ_HANDLED;
} else if (!ctx->masked && /* may be shared */
pci_check_and_mask_intx(vdev->pdev)) {
ctx->masked = true;
ret = IRQ_HANDLED;
}
spin_unlock_irqrestore(&vdev->irqlock, flags);
if (ret == IRQ_HANDLED)
vfio_send_intx_eventfd(vdev, ctx);
return ret;
}
static int vfio_intx_enable(struct vfio_pci_core_device *vdev,
struct eventfd_ctx *trigger)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx;
unsigned long irqflags;
char *name;
int ret;
if (!is_irq_none(vdev))
return -EINVAL;
if (!pdev->irq)
return -ENODEV;
name = kasprintf(GFP_KERNEL_ACCOUNT, "vfio-intx(%s)", pci_name(pdev));
if (!name)
return -ENOMEM;
ctx = vfio_irq_ctx_alloc(vdev, 0);
if (!ctx) {
kfree(name);
return -ENOMEM;
}
ctx->name = name;
ctx->trigger = trigger;
ctx->vdev = vdev;
/*
* Fill the initial masked state based on virq_disabled. After
* enable, changing the DisINTx bit in vconfig directly changes INTx
* masking. igate prevents races during setup, once running masked
* is protected via irqlock.
*
* Devices supporting DisINTx also reflect the current mask state in
* the physical DisINTx bit, which is not affected during IRQ setup.
*
* Devices without DisINTx support require an exclusive interrupt.
* IRQ masking is performed at the IRQ chip. Again, igate protects
* against races during setup and IRQ handlers and irqfds are not
* yet active, therefore masked is stable and can be used to
* conditionally auto-enable the IRQ.
*
* irq_type must be stable while the IRQ handler is registered,
* therefore it must be set before request_irq().
*/
ctx->masked = vdev->virq_disabled;
if (vdev->pci_2_3) {
pci_intx(pdev, !ctx->masked);
irqflags = IRQF_SHARED;
} else {
irqflags = ctx->masked ? IRQF_NO_AUTOEN : 0;
}
vdev->irq_type = VFIO_PCI_INTX_IRQ_INDEX;
ret = request_irq(pdev->irq, vfio_intx_handler,
irqflags, ctx->name, ctx);
if (ret) {
vdev->irq_type = VFIO_PCI_NUM_IRQS;
kfree(name);
vfio_irq_ctx_free(vdev, ctx, 0);
return ret;
}
return 0;
}
static int vfio_intx_set_signal(struct vfio_pci_core_device *vdev,
struct eventfd_ctx *trigger)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx;
struct eventfd_ctx *old;
ctx = vfio_irq_ctx_get(vdev, 0);
if (WARN_ON_ONCE(!ctx))
return -EINVAL;
old = ctx->trigger;
WRITE_ONCE(ctx->trigger, trigger);
/* Releasing an old ctx requires synchronizing in-flight users */
if (old) {
synchronize_irq(pdev->irq);
vfio_virqfd_flush_thread(&ctx->unmask);
eventfd_ctx_put(old);
}
return 0;
}
static void vfio_intx_disable(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx;
ctx = vfio_irq_ctx_get(vdev, 0);
WARN_ON_ONCE(!ctx);
if (ctx) {
vfio_virqfd_disable(&ctx->unmask);
vfio_virqfd_disable(&ctx->mask);
free_irq(pdev->irq, ctx);
if (ctx->trigger)
eventfd_ctx_put(ctx->trigger);
kfree(ctx->name);
vfio_irq_ctx_free(vdev, ctx, 0);
}
vdev->irq_type = VFIO_PCI_NUM_IRQS;
}
/*
* MSI/MSI-X
*/
static irqreturn_t vfio_msihandler(int irq, void *arg)
{
struct eventfd_ctx *trigger = arg;
eventfd_signal(trigger);
return IRQ_HANDLED;
}
static int vfio_msi_enable(struct vfio_pci_core_device *vdev, int nvec, bool msix)
{
struct pci_dev *pdev = vdev->pdev;
unsigned int flag = msix ? PCI_IRQ_MSIX : PCI_IRQ_MSI;
int ret;
u16 cmd;
if (!is_irq_none(vdev))
return -EINVAL;
/* return the number of supported vectors if we can't get all: */
cmd = vfio_pci_memory_lock_and_enable(vdev);
ret = pci_alloc_irq_vectors(pdev, 1, nvec, flag);
if (ret < nvec) {
if (ret > 0)
pci_free_irq_vectors(pdev);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
return ret;
}
vfio_pci_memory_unlock_and_restore(vdev, cmd);
vdev->irq_type = msix ? VFIO_PCI_MSIX_IRQ_INDEX :
VFIO_PCI_MSI_IRQ_INDEX;
if (!msix) {
/*
* Compute the virtual hardware field for max msi vectors -
* it is the log base 2 of the number of vectors.
*/
vdev->msi_qmax = fls(nvec * 2 - 1) - 1;
}
return 0;
}
/*
* vfio_msi_alloc_irq() returns the Linux IRQ number of an MSI or MSI-X device
* interrupt vector. If a Linux IRQ number is not available then a new
* interrupt is allocated if dynamic MSI-X is supported.
*
* Where is vfio_msi_free_irq()? Allocated interrupts are maintained,
* essentially forming a cache that subsequent allocations can draw from.
* Interrupts are freed using pci_free_irq_vectors() when MSI/MSI-X is
* disabled.
*/
static int vfio_msi_alloc_irq(struct vfio_pci_core_device *vdev,
unsigned int vector, bool msix)
{
struct pci_dev *pdev = vdev->pdev;
struct msi_map map;
int irq;
u16 cmd;
irq = pci_irq_vector(pdev, vector);
if (WARN_ON_ONCE(irq == 0))
return -EINVAL;
if (irq > 0 || !msix || !vdev->has_dyn_msix)
return irq;
cmd = vfio_pci_memory_lock_and_enable(vdev);
map = pci_msix_alloc_irq_at(pdev, vector, NULL);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
return map.index < 0 ? map.index : map.virq;
}
static int vfio_msi_set_vector_signal(struct vfio_pci_core_device *vdev,
unsigned int vector, int fd, bool msix)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx;
struct eventfd_ctx *trigger;
int irq = -EINVAL, ret;
u16 cmd;
ctx = vfio_irq_ctx_get(vdev, vector);
if (ctx) {
irq_bypass_unregister_producer(&ctx->producer);
irq = pci_irq_vector(pdev, vector);
cmd = vfio_pci_memory_lock_and_enable(vdev);
free_irq(irq, ctx->trigger);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
/* Interrupt stays allocated, will be freed at MSI-X disable. */
kfree(ctx->name);
eventfd_ctx_put(ctx->trigger);
vfio_irq_ctx_free(vdev, ctx, vector);
}
if (fd < 0)
return 0;
if (irq == -EINVAL) {
/* Interrupt stays allocated, will be freed at MSI-X disable. */
irq = vfio_msi_alloc_irq(vdev, vector, msix);
if (irq < 0)
return irq;
}
ctx = vfio_irq_ctx_alloc(vdev, vector);
if (!ctx)
return -ENOMEM;
ctx->name = kasprintf(GFP_KERNEL_ACCOUNT, "vfio-msi%s[%d](%s)",
msix ? "x" : "", vector, pci_name(pdev));
if (!ctx->name) {
ret = -ENOMEM;
goto out_free_ctx;
}
trigger = eventfd_ctx_fdget(fd);
if (IS_ERR(trigger)) {
ret = PTR_ERR(trigger);
goto out_free_name;
}
/*
* If the vector was previously allocated, refresh the on-device
* message data before enabling in case it had been cleared or
* corrupted (e.g. due to backdoor resets) since writing.
*/
cmd = vfio_pci_memory_lock_and_enable(vdev);
if (msix) {
struct msi_msg msg;
get_cached_msi_msg(irq, &msg);
pci_write_msi_msg(irq, &msg);
}
ret = request_irq(irq, vfio_msihandler, 0, ctx->name, trigger);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
if (ret)
goto out_put_eventfd_ctx;
ctx->producer.token = trigger;
ctx->producer.irq = irq;
ret = irq_bypass_register_producer(&ctx->producer);
if (unlikely(ret)) {
dev_info(&pdev->dev,
"irq bypass producer (token %p) registration fails: %d\n",
ctx->producer.token, ret);
ctx->producer.token = NULL;
}
ctx->trigger = trigger;
return 0;
out_put_eventfd_ctx:
eventfd_ctx_put(trigger);
out_free_name:
kfree(ctx->name);
out_free_ctx:
vfio_irq_ctx_free(vdev, ctx, vector);
return ret;
}
static int vfio_msi_set_block(struct vfio_pci_core_device *vdev, unsigned start,
unsigned count, int32_t *fds, bool msix)
{
unsigned int i, j;
int ret = 0;
for (i = 0, j = start; i < count && !ret; i++, j++) {
int fd = fds ? fds[i] : -1;
ret = vfio_msi_set_vector_signal(vdev, j, fd, msix);
}
if (ret) {
for (i = start; i < j; i++)
vfio_msi_set_vector_signal(vdev, i, -1, msix);
}
return ret;
}
static void vfio_msi_disable(struct vfio_pci_core_device *vdev, bool msix)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_irq_ctx *ctx;
unsigned long i;
u16 cmd;
xa_for_each(&vdev->ctx, i, ctx) {
vfio_virqfd_disable(&ctx->unmask);
vfio_virqfd_disable(&ctx->mask);
vfio_msi_set_vector_signal(vdev, i, -1, msix);
}
cmd = vfio_pci_memory_lock_and_enable(vdev);
pci_free_irq_vectors(pdev);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
/*
* Both disable paths above use pci_intx_for_msi() to clear DisINTx
* via their shutdown paths. Restore for NoINTx devices.
*/
if (vdev->nointx)
pci_intx(pdev, 0);
vdev->irq_type = VFIO_PCI_NUM_IRQS;
}
/*
* IOCTL support
*/
static int vfio_pci_set_intx_unmask(struct vfio_pci_core_device *vdev,
unsigned index, unsigned start,
unsigned count, uint32_t flags, void *data)
{
if (!is_intx(vdev) || start != 0 || count != 1)
return -EINVAL;
if (flags & VFIO_IRQ_SET_DATA_NONE) {
__vfio_pci_intx_unmask(vdev);
} else if (flags & VFIO_IRQ_SET_DATA_BOOL) {
uint8_t unmask = *(uint8_t *)data;
if (unmask)
__vfio_pci_intx_unmask(vdev);
} else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
struct vfio_pci_irq_ctx *ctx = vfio_irq_ctx_get(vdev, 0);
int32_t fd = *(int32_t *)data;
if (WARN_ON_ONCE(!ctx))
return -EINVAL;
if (fd >= 0)
return vfio_virqfd_enable((void *) vdev,
vfio_pci_intx_unmask_handler,
vfio_send_intx_eventfd, ctx,
&ctx->unmask, fd);
vfio_virqfd_disable(&ctx->unmask);
}
return 0;
}
static int vfio_pci_set_intx_mask(struct vfio_pci_core_device *vdev,
unsigned index, unsigned start,
unsigned count, uint32_t flags, void *data)
{
if (!is_intx(vdev) || start != 0 || count != 1)
return -EINVAL;
if (flags & VFIO_IRQ_SET_DATA_NONE) {
__vfio_pci_intx_mask(vdev);
} else if (flags & VFIO_IRQ_SET_DATA_BOOL) {
uint8_t mask = *(uint8_t *)data;
if (mask)
__vfio_pci_intx_mask(vdev);
} else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
return -ENOTTY; /* XXX implement me */
}
return 0;
}
static int vfio_pci_set_intx_trigger(struct vfio_pci_core_device *vdev,
unsigned index, unsigned start,
unsigned count, uint32_t flags, void *data)
{
if (is_intx(vdev) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) {
vfio_intx_disable(vdev);
return 0;
}
if (!(is_intx(vdev) || is_irq_none(vdev)) || start != 0 || count != 1)
return -EINVAL;
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
struct eventfd_ctx *trigger = NULL;
int32_t fd = *(int32_t *)data;
int ret;
if (fd >= 0) {
trigger = eventfd_ctx_fdget(fd);
if (IS_ERR(trigger))
return PTR_ERR(trigger);
}
if (is_intx(vdev))
ret = vfio_intx_set_signal(vdev, trigger);
else
ret = vfio_intx_enable(vdev, trigger);
if (ret && trigger)
eventfd_ctx_put(trigger);
return ret;
}
if (!is_intx(vdev))
return -EINVAL;
if (flags & VFIO_IRQ_SET_DATA_NONE) {
vfio_send_intx_eventfd(vdev, vfio_irq_ctx_get(vdev, 0));
} else if (flags & VFIO_IRQ_SET_DATA_BOOL) {
uint8_t trigger = *(uint8_t *)data;
if (trigger)
vfio_send_intx_eventfd(vdev, vfio_irq_ctx_get(vdev, 0));
}
return 0;
}
static int vfio_pci_set_msi_trigger(struct vfio_pci_core_device *vdev,
unsigned index, unsigned start,
unsigned count, uint32_t flags, void *data)
{
struct vfio_pci_irq_ctx *ctx;
unsigned int i;
bool msix = (index == VFIO_PCI_MSIX_IRQ_INDEX) ? true : false;
if (irq_is(vdev, index) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) {
vfio_msi_disable(vdev, msix);
return 0;
}
if (!(irq_is(vdev, index) || is_irq_none(vdev)))
return -EINVAL;
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int32_t *fds = data;
int ret;
if (vdev->irq_type == index)
return vfio_msi_set_block(vdev, start, count,
fds, msix);
ret = vfio_msi_enable(vdev, start + count, msix);
if (ret)
return ret;
ret = vfio_msi_set_block(vdev, start, count, fds, msix);
if (ret)
vfio_msi_disable(vdev, msix);
return ret;
}
if (!irq_is(vdev, index))
return -EINVAL;
for (i = start; i < start + count; i++) {
ctx = vfio_irq_ctx_get(vdev, i);
if (!ctx)
continue;
if (flags & VFIO_IRQ_SET_DATA_NONE) {
eventfd_signal(ctx->trigger);
} else if (flags & VFIO_IRQ_SET_DATA_BOOL) {
uint8_t *bools = data;
if (bools[i - start])
eventfd_signal(ctx->trigger);
}
}
return 0;
}
static int vfio_pci_set_ctx_trigger_single(struct eventfd_ctx **ctx,
unsigned int count, uint32_t flags,
void *data)
{
/* DATA_NONE/DATA_BOOL enables loopback testing */
if (flags & VFIO_IRQ_SET_DATA_NONE) {
if (*ctx) {
if (count) {
eventfd_signal(*ctx);
} else {
eventfd_ctx_put(*ctx);
*ctx = NULL;
}
return 0;
}
} else if (flags & VFIO_IRQ_SET_DATA_BOOL) {
uint8_t trigger;
if (!count)
return -EINVAL;
trigger = *(uint8_t *)data;
if (trigger && *ctx)
eventfd_signal(*ctx);
return 0;
} else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int32_t fd;
if (!count)
return -EINVAL;
fd = *(int32_t *)data;
if (fd == -1) {
if (*ctx)
eventfd_ctx_put(*ctx);
*ctx = NULL;
} else if (fd >= 0) {
struct eventfd_ctx *efdctx;
efdctx = eventfd_ctx_fdget(fd);
if (IS_ERR(efdctx))
return PTR_ERR(efdctx);
if (*ctx)
eventfd_ctx_put(*ctx);
*ctx = efdctx;
}
return 0;
}
return -EINVAL;
}
static int vfio_pci_set_err_trigger(struct vfio_pci_core_device *vdev,
unsigned index, unsigned start,
unsigned count, uint32_t flags, void *data)
{
if (index != VFIO_PCI_ERR_IRQ_INDEX || start != 0 || count > 1)
return -EINVAL;
return vfio_pci_set_ctx_trigger_single(&vdev->err_trigger,
count, flags, data);
}
static int vfio_pci_set_req_trigger(struct vfio_pci_core_device *vdev,
unsigned index, unsigned start,
unsigned count, uint32_t flags, void *data)
{
if (index != VFIO_PCI_REQ_IRQ_INDEX || start != 0 || count > 1)
return -EINVAL;
return vfio_pci_set_ctx_trigger_single(&vdev->req_trigger,
count, flags, data);
}
int vfio_pci_set_irqs_ioctl(struct vfio_pci_core_device *vdev, uint32_t flags,
unsigned index, unsigned start, unsigned count,
void *data)
{
int (*func)(struct vfio_pci_core_device *vdev, unsigned index,
unsigned start, unsigned count, uint32_t flags,
void *data) = NULL;
switch (index) {
case VFIO_PCI_INTX_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
func = vfio_pci_set_intx_mask;
break;
case VFIO_IRQ_SET_ACTION_UNMASK:
func = vfio_pci_set_intx_unmask;
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
func = vfio_pci_set_intx_trigger;
break;
}
break;
case VFIO_PCI_MSI_IRQ_INDEX:
case VFIO_PCI_MSIX_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
case VFIO_IRQ_SET_ACTION_UNMASK:
/* XXX Need masking support exported */
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
func = vfio_pci_set_msi_trigger;
break;
}
break;
case VFIO_PCI_ERR_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_TRIGGER:
if (pci_is_pcie(vdev->pdev))
func = vfio_pci_set_err_trigger;
break;
}
break;
case VFIO_PCI_REQ_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_TRIGGER:
func = vfio_pci_set_req_trigger;
break;
}
break;
}
if (!func)
return -ENOTTY;
return func(vdev, index, start, count, flags, data);
}