mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 06:01:57 +00:00
8d3ad99ad8
Change legacy name master to modern name host or controller. No functional changed. Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Link: https://lore.kernel.org/r/20230818093154.1183529-9-yangyingliang@huawei.com Signed-off-by: Mark Brown <broonie@kernel.org>
917 lines
23 KiB
C
917 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interconnect.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
|
|
|
|
#define QSPI_NUM_CS 2
|
|
#define QSPI_BYTES_PER_WORD 4
|
|
|
|
#define MSTR_CONFIG 0x0000
|
|
#define FULL_CYCLE_MODE BIT(3)
|
|
#define FB_CLK_EN BIT(4)
|
|
#define PIN_HOLDN BIT(6)
|
|
#define PIN_WPN BIT(7)
|
|
#define DMA_ENABLE BIT(8)
|
|
#define BIG_ENDIAN_MODE BIT(9)
|
|
#define SPI_MODE_MSK 0xc00
|
|
#define SPI_MODE_SHFT 10
|
|
#define CHIP_SELECT_NUM BIT(12)
|
|
#define SBL_EN BIT(13)
|
|
#define LPA_BASE_MSK 0x3c000
|
|
#define LPA_BASE_SHFT 14
|
|
#define TX_DATA_DELAY_MSK 0xc0000
|
|
#define TX_DATA_DELAY_SHFT 18
|
|
#define TX_CLK_DELAY_MSK 0x300000
|
|
#define TX_CLK_DELAY_SHFT 20
|
|
#define TX_CS_N_DELAY_MSK 0xc00000
|
|
#define TX_CS_N_DELAY_SHFT 22
|
|
#define TX_DATA_OE_DELAY_MSK 0x3000000
|
|
#define TX_DATA_OE_DELAY_SHFT 24
|
|
|
|
#define AHB_MASTER_CFG 0x0004
|
|
#define HMEM_TYPE_START_MID_TRANS_MSK 0x7
|
|
#define HMEM_TYPE_START_MID_TRANS_SHFT 0
|
|
#define HMEM_TYPE_LAST_TRANS_MSK 0x38
|
|
#define HMEM_TYPE_LAST_TRANS_SHFT 3
|
|
#define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_MSK 0xc0
|
|
#define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_SHFT 6
|
|
#define HMEMTYPE_READ_TRANS_MSK 0x700
|
|
#define HMEMTYPE_READ_TRANS_SHFT 8
|
|
#define HSHARED BIT(11)
|
|
#define HINNERSHARED BIT(12)
|
|
|
|
#define MSTR_INT_EN 0x000C
|
|
#define MSTR_INT_STATUS 0x0010
|
|
#define RESP_FIFO_UNDERRUN BIT(0)
|
|
#define RESP_FIFO_NOT_EMPTY BIT(1)
|
|
#define RESP_FIFO_RDY BIT(2)
|
|
#define HRESP_FROM_NOC_ERR BIT(3)
|
|
#define WR_FIFO_EMPTY BIT(9)
|
|
#define WR_FIFO_FULL BIT(10)
|
|
#define WR_FIFO_OVERRUN BIT(11)
|
|
#define TRANSACTION_DONE BIT(16)
|
|
#define DMA_CHAIN_DONE BIT(31)
|
|
#define QSPI_ERR_IRQS (RESP_FIFO_UNDERRUN | HRESP_FROM_NOC_ERR | \
|
|
WR_FIFO_OVERRUN)
|
|
#define QSPI_ALL_IRQS (QSPI_ERR_IRQS | RESP_FIFO_RDY | \
|
|
WR_FIFO_EMPTY | WR_FIFO_FULL | \
|
|
TRANSACTION_DONE | DMA_CHAIN_DONE)
|
|
|
|
#define PIO_XFER_CTRL 0x0014
|
|
#define REQUEST_COUNT_MSK 0xffff
|
|
|
|
#define PIO_XFER_CFG 0x0018
|
|
#define TRANSFER_DIRECTION BIT(0)
|
|
#define MULTI_IO_MODE_MSK 0xe
|
|
#define MULTI_IO_MODE_SHFT 1
|
|
#define TRANSFER_FRAGMENT BIT(8)
|
|
#define SDR_1BIT 1
|
|
#define SDR_2BIT 2
|
|
#define SDR_4BIT 3
|
|
#define DDR_1BIT 5
|
|
#define DDR_2BIT 6
|
|
#define DDR_4BIT 7
|
|
#define DMA_DESC_SINGLE_SPI 1
|
|
#define DMA_DESC_DUAL_SPI 2
|
|
#define DMA_DESC_QUAD_SPI 3
|
|
|
|
#define PIO_XFER_STATUS 0x001c
|
|
#define WR_FIFO_BYTES_MSK 0xffff0000
|
|
#define WR_FIFO_BYTES_SHFT 16
|
|
|
|
#define PIO_DATAOUT_1B 0x0020
|
|
#define PIO_DATAOUT_4B 0x0024
|
|
|
|
#define RD_FIFO_CFG 0x0028
|
|
#define CONTINUOUS_MODE BIT(0)
|
|
|
|
#define RD_FIFO_STATUS 0x002c
|
|
#define FIFO_EMPTY BIT(11)
|
|
#define WR_CNTS_MSK 0x7f0
|
|
#define WR_CNTS_SHFT 4
|
|
#define RDY_64BYTE BIT(3)
|
|
#define RDY_32BYTE BIT(2)
|
|
#define RDY_16BYTE BIT(1)
|
|
#define FIFO_RDY BIT(0)
|
|
|
|
#define RD_FIFO_RESET 0x0030
|
|
#define RESET_FIFO BIT(0)
|
|
|
|
#define NEXT_DMA_DESC_ADDR 0x0040
|
|
#define CURRENT_DMA_DESC_ADDR 0x0044
|
|
#define CURRENT_MEM_ADDR 0x0048
|
|
|
|
#define CUR_MEM_ADDR 0x0048
|
|
#define HW_VERSION 0x004c
|
|
#define RD_FIFO 0x0050
|
|
#define SAMPLING_CLK_CFG 0x0090
|
|
#define SAMPLING_CLK_STATUS 0x0094
|
|
|
|
#define QSPI_ALIGN_REQ 32
|
|
|
|
enum qspi_dir {
|
|
QSPI_READ,
|
|
QSPI_WRITE,
|
|
};
|
|
|
|
struct qspi_cmd_desc {
|
|
u32 data_address;
|
|
u32 next_descriptor;
|
|
u32 direction:1;
|
|
u32 multi_io_mode:3;
|
|
u32 reserved1:4;
|
|
u32 fragment:1;
|
|
u32 reserved2:7;
|
|
u32 length:16;
|
|
};
|
|
|
|
struct qspi_xfer {
|
|
union {
|
|
const void *tx_buf;
|
|
void *rx_buf;
|
|
};
|
|
unsigned int rem_bytes;
|
|
unsigned int buswidth;
|
|
enum qspi_dir dir;
|
|
bool is_last;
|
|
};
|
|
|
|
enum qspi_clocks {
|
|
QSPI_CLK_CORE,
|
|
QSPI_CLK_IFACE,
|
|
QSPI_NUM_CLKS
|
|
};
|
|
|
|
/*
|
|
* Number of entries in sgt returned from spi framework that-
|
|
* will be supported. Can be modified as required.
|
|
* In practice, given max_dma_len is 64KB, the number of
|
|
* entries is not expected to exceed 1.
|
|
*/
|
|
#define QSPI_MAX_SG 5
|
|
|
|
struct qcom_qspi {
|
|
void __iomem *base;
|
|
struct device *dev;
|
|
struct clk_bulk_data *clks;
|
|
struct qspi_xfer xfer;
|
|
struct dma_pool *dma_cmd_pool;
|
|
dma_addr_t dma_cmd_desc[QSPI_MAX_SG];
|
|
void *virt_cmd_desc[QSPI_MAX_SG];
|
|
unsigned int n_cmd_desc;
|
|
struct icc_path *icc_path_cpu_to_qspi;
|
|
unsigned long last_speed;
|
|
/* Lock to protect data accessed by IRQs */
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static u32 qspi_buswidth_to_iomode(struct qcom_qspi *ctrl,
|
|
unsigned int buswidth)
|
|
{
|
|
switch (buswidth) {
|
|
case 1:
|
|
return SDR_1BIT;
|
|
case 2:
|
|
return SDR_2BIT;
|
|
case 4:
|
|
return SDR_4BIT;
|
|
default:
|
|
dev_warn_once(ctrl->dev,
|
|
"Unexpected bus width: %u\n", buswidth);
|
|
return SDR_1BIT;
|
|
}
|
|
}
|
|
|
|
static void qcom_qspi_pio_xfer_cfg(struct qcom_qspi *ctrl)
|
|
{
|
|
u32 pio_xfer_cfg;
|
|
u32 iomode;
|
|
const struct qspi_xfer *xfer;
|
|
|
|
xfer = &ctrl->xfer;
|
|
pio_xfer_cfg = readl(ctrl->base + PIO_XFER_CFG);
|
|
pio_xfer_cfg &= ~TRANSFER_DIRECTION;
|
|
pio_xfer_cfg |= xfer->dir;
|
|
if (xfer->is_last)
|
|
pio_xfer_cfg &= ~TRANSFER_FRAGMENT;
|
|
else
|
|
pio_xfer_cfg |= TRANSFER_FRAGMENT;
|
|
pio_xfer_cfg &= ~MULTI_IO_MODE_MSK;
|
|
iomode = qspi_buswidth_to_iomode(ctrl, xfer->buswidth);
|
|
pio_xfer_cfg |= iomode << MULTI_IO_MODE_SHFT;
|
|
|
|
writel(pio_xfer_cfg, ctrl->base + PIO_XFER_CFG);
|
|
}
|
|
|
|
static void qcom_qspi_pio_xfer_ctrl(struct qcom_qspi *ctrl)
|
|
{
|
|
u32 pio_xfer_ctrl;
|
|
|
|
pio_xfer_ctrl = readl(ctrl->base + PIO_XFER_CTRL);
|
|
pio_xfer_ctrl &= ~REQUEST_COUNT_MSK;
|
|
pio_xfer_ctrl |= ctrl->xfer.rem_bytes;
|
|
writel(pio_xfer_ctrl, ctrl->base + PIO_XFER_CTRL);
|
|
}
|
|
|
|
static void qcom_qspi_pio_xfer(struct qcom_qspi *ctrl)
|
|
{
|
|
u32 ints;
|
|
|
|
qcom_qspi_pio_xfer_cfg(ctrl);
|
|
|
|
/* Ack any previous interrupts that might be hanging around */
|
|
writel(QSPI_ALL_IRQS, ctrl->base + MSTR_INT_STATUS);
|
|
|
|
/* Setup new interrupts */
|
|
if (ctrl->xfer.dir == QSPI_WRITE)
|
|
ints = QSPI_ERR_IRQS | WR_FIFO_EMPTY;
|
|
else
|
|
ints = QSPI_ERR_IRQS | RESP_FIFO_RDY;
|
|
writel(ints, ctrl->base + MSTR_INT_EN);
|
|
|
|
/* Kick off the transfer */
|
|
qcom_qspi_pio_xfer_ctrl(ctrl);
|
|
}
|
|
|
|
static void qcom_qspi_handle_err(struct spi_controller *host,
|
|
struct spi_message *msg)
|
|
{
|
|
u32 int_status;
|
|
struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
writel(0, ctrl->base + MSTR_INT_EN);
|
|
int_status = readl(ctrl->base + MSTR_INT_STATUS);
|
|
writel(int_status, ctrl->base + MSTR_INT_STATUS);
|
|
ctrl->xfer.rem_bytes = 0;
|
|
|
|
/* free cmd descriptors if they are around (DMA mode) */
|
|
for (i = 0; i < ctrl->n_cmd_desc; i++)
|
|
dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
|
|
ctrl->dma_cmd_desc[i]);
|
|
ctrl->n_cmd_desc = 0;
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
}
|
|
|
|
static int qcom_qspi_set_speed(struct qcom_qspi *ctrl, unsigned long speed_hz)
|
|
{
|
|
int ret;
|
|
unsigned int avg_bw_cpu;
|
|
|
|
if (speed_hz == ctrl->last_speed)
|
|
return 0;
|
|
|
|
/* In regular operation (SBL_EN=1) core must be 4x transfer clock */
|
|
ret = dev_pm_opp_set_rate(ctrl->dev, speed_hz * 4);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "Failed to set core clk %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set BW quota for CPU.
|
|
* We don't have explicit peak requirement so keep it equal to avg_bw.
|
|
*/
|
|
avg_bw_cpu = Bps_to_icc(speed_hz);
|
|
ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, avg_bw_cpu, avg_bw_cpu);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ctrl->last_speed = speed_hz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qcom_qspi_alloc_desc(struct qcom_qspi *ctrl, dma_addr_t dma_ptr,
|
|
uint32_t n_bytes)
|
|
{
|
|
struct qspi_cmd_desc *virt_cmd_desc, *prev;
|
|
dma_addr_t dma_cmd_desc;
|
|
|
|
/* allocate for dma cmd descriptor */
|
|
virt_cmd_desc = dma_pool_alloc(ctrl->dma_cmd_pool, GFP_ATOMIC | __GFP_ZERO, &dma_cmd_desc);
|
|
if (!virt_cmd_desc) {
|
|
dev_warn_once(ctrl->dev, "Couldn't find memory for descriptor\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
ctrl->virt_cmd_desc[ctrl->n_cmd_desc] = virt_cmd_desc;
|
|
ctrl->dma_cmd_desc[ctrl->n_cmd_desc] = dma_cmd_desc;
|
|
ctrl->n_cmd_desc++;
|
|
|
|
/* setup cmd descriptor */
|
|
virt_cmd_desc->data_address = dma_ptr;
|
|
virt_cmd_desc->direction = ctrl->xfer.dir;
|
|
virt_cmd_desc->multi_io_mode = qspi_buswidth_to_iomode(ctrl, ctrl->xfer.buswidth);
|
|
virt_cmd_desc->fragment = !ctrl->xfer.is_last;
|
|
virt_cmd_desc->length = n_bytes;
|
|
|
|
/* update previous descriptor */
|
|
if (ctrl->n_cmd_desc >= 2) {
|
|
prev = (ctrl->virt_cmd_desc)[ctrl->n_cmd_desc - 2];
|
|
prev->next_descriptor = dma_cmd_desc;
|
|
prev->fragment = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qcom_qspi_setup_dma_desc(struct qcom_qspi *ctrl,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int ret;
|
|
struct sg_table *sgt;
|
|
dma_addr_t dma_ptr_sg;
|
|
unsigned int dma_len_sg;
|
|
int i;
|
|
|
|
if (ctrl->n_cmd_desc) {
|
|
dev_err(ctrl->dev, "Remnant dma buffers n_cmd_desc-%d\n", ctrl->n_cmd_desc);
|
|
return -EIO;
|
|
}
|
|
|
|
sgt = (ctrl->xfer.dir == QSPI_READ) ? &xfer->rx_sg : &xfer->tx_sg;
|
|
if (!sgt->nents || sgt->nents > QSPI_MAX_SG) {
|
|
dev_warn_once(ctrl->dev, "Cannot handle %d entries in scatter list\n", sgt->nents);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
for (i = 0; i < sgt->nents; i++) {
|
|
dma_ptr_sg = sg_dma_address(sgt->sgl + i);
|
|
dma_len_sg = sg_dma_len(sgt->sgl + i);
|
|
if (!IS_ALIGNED(dma_ptr_sg, QSPI_ALIGN_REQ)) {
|
|
dev_warn_once(ctrl->dev, "dma_address not aligned to %d\n", QSPI_ALIGN_REQ);
|
|
return -EAGAIN;
|
|
}
|
|
/*
|
|
* When reading with DMA the controller writes to memory 1 word
|
|
* at a time. If the length isn't a multiple of 4 bytes then
|
|
* the controller can clobber the things later in memory.
|
|
* Fallback to PIO to be safe.
|
|
*/
|
|
if (ctrl->xfer.dir == QSPI_READ && (dma_len_sg & 0x03)) {
|
|
dev_warn_once(ctrl->dev, "fallback to PIO for read of size %#010x\n",
|
|
dma_len_sg);
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < sgt->nents; i++) {
|
|
dma_ptr_sg = sg_dma_address(sgt->sgl + i);
|
|
dma_len_sg = sg_dma_len(sgt->sgl + i);
|
|
|
|
ret = qcom_qspi_alloc_desc(ctrl, dma_ptr_sg, dma_len_sg);
|
|
if (ret)
|
|
goto cleanup;
|
|
}
|
|
return 0;
|
|
|
|
cleanup:
|
|
for (i = 0; i < ctrl->n_cmd_desc; i++)
|
|
dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
|
|
ctrl->dma_cmd_desc[i]);
|
|
ctrl->n_cmd_desc = 0;
|
|
return ret;
|
|
}
|
|
|
|
static void qcom_qspi_dma_xfer(struct qcom_qspi *ctrl)
|
|
{
|
|
/* Setup new interrupts */
|
|
writel(DMA_CHAIN_DONE, ctrl->base + MSTR_INT_EN);
|
|
|
|
/* kick off transfer */
|
|
writel((u32)((ctrl->dma_cmd_desc)[0]), ctrl->base + NEXT_DMA_DESC_ADDR);
|
|
}
|
|
|
|
/* Switch to DMA if transfer length exceeds this */
|
|
#define QSPI_MAX_BYTES_FIFO 64
|
|
|
|
static bool qcom_qspi_can_dma(struct spi_controller *ctlr,
|
|
struct spi_device *slv, struct spi_transfer *xfer)
|
|
{
|
|
return xfer->len > QSPI_MAX_BYTES_FIFO;
|
|
}
|
|
|
|
static int qcom_qspi_transfer_one(struct spi_controller *host,
|
|
struct spi_device *slv,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
|
|
int ret;
|
|
unsigned long speed_hz;
|
|
unsigned long flags;
|
|
u32 mstr_cfg;
|
|
|
|
speed_hz = slv->max_speed_hz;
|
|
if (xfer->speed_hz)
|
|
speed_hz = xfer->speed_hz;
|
|
|
|
ret = qcom_qspi_set_speed(ctrl, speed_hz);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
mstr_cfg = readl(ctrl->base + MSTR_CONFIG);
|
|
|
|
/* We are half duplex, so either rx or tx will be set */
|
|
if (xfer->rx_buf) {
|
|
ctrl->xfer.dir = QSPI_READ;
|
|
ctrl->xfer.buswidth = xfer->rx_nbits;
|
|
ctrl->xfer.rx_buf = xfer->rx_buf;
|
|
} else {
|
|
ctrl->xfer.dir = QSPI_WRITE;
|
|
ctrl->xfer.buswidth = xfer->tx_nbits;
|
|
ctrl->xfer.tx_buf = xfer->tx_buf;
|
|
}
|
|
ctrl->xfer.is_last = list_is_last(&xfer->transfer_list,
|
|
&host->cur_msg->transfers);
|
|
ctrl->xfer.rem_bytes = xfer->len;
|
|
|
|
if (xfer->rx_sg.nents || xfer->tx_sg.nents) {
|
|
/* do DMA transfer */
|
|
if (!(mstr_cfg & DMA_ENABLE)) {
|
|
mstr_cfg |= DMA_ENABLE;
|
|
writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
|
|
}
|
|
|
|
ret = qcom_qspi_setup_dma_desc(ctrl, xfer);
|
|
if (ret != -EAGAIN) {
|
|
if (!ret) {
|
|
dma_wmb();
|
|
qcom_qspi_dma_xfer(ctrl);
|
|
}
|
|
goto exit;
|
|
}
|
|
dev_warn_once(ctrl->dev, "DMA failure, falling back to PIO\n");
|
|
ret = 0; /* We'll retry w/ PIO */
|
|
}
|
|
|
|
if (mstr_cfg & DMA_ENABLE) {
|
|
mstr_cfg &= ~DMA_ENABLE;
|
|
writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
|
|
}
|
|
qcom_qspi_pio_xfer(ctrl);
|
|
|
|
exit:
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We'll call spi_finalize_current_transfer() when done */
|
|
return 1;
|
|
}
|
|
|
|
static int qcom_qspi_prepare_message(struct spi_controller *host,
|
|
struct spi_message *message)
|
|
{
|
|
u32 mstr_cfg;
|
|
struct qcom_qspi *ctrl;
|
|
int tx_data_oe_delay = 1;
|
|
int tx_data_delay = 1;
|
|
unsigned long flags;
|
|
|
|
ctrl = spi_controller_get_devdata(host);
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
|
|
mstr_cfg = readl(ctrl->base + MSTR_CONFIG);
|
|
mstr_cfg &= ~CHIP_SELECT_NUM;
|
|
if (spi_get_chipselect(message->spi, 0))
|
|
mstr_cfg |= CHIP_SELECT_NUM;
|
|
|
|
mstr_cfg |= FB_CLK_EN | PIN_WPN | PIN_HOLDN | SBL_EN | FULL_CYCLE_MODE;
|
|
mstr_cfg &= ~(SPI_MODE_MSK | TX_DATA_OE_DELAY_MSK | TX_DATA_DELAY_MSK);
|
|
mstr_cfg |= message->spi->mode << SPI_MODE_SHFT;
|
|
mstr_cfg |= tx_data_oe_delay << TX_DATA_OE_DELAY_SHFT;
|
|
mstr_cfg |= tx_data_delay << TX_DATA_DELAY_SHFT;
|
|
mstr_cfg &= ~DMA_ENABLE;
|
|
|
|
writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qcom_qspi_alloc_dma(struct qcom_qspi *ctrl)
|
|
{
|
|
ctrl->dma_cmd_pool = dmam_pool_create("qspi cmd desc pool",
|
|
ctrl->dev, sizeof(struct qspi_cmd_desc), 0, 0);
|
|
if (!ctrl->dma_cmd_pool)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t pio_read(struct qcom_qspi *ctrl)
|
|
{
|
|
u32 rd_fifo_status;
|
|
u32 rd_fifo;
|
|
unsigned int wr_cnts;
|
|
unsigned int bytes_to_read;
|
|
unsigned int words_to_read;
|
|
u32 *word_buf;
|
|
u8 *byte_buf;
|
|
int i;
|
|
|
|
rd_fifo_status = readl(ctrl->base + RD_FIFO_STATUS);
|
|
|
|
if (!(rd_fifo_status & FIFO_RDY)) {
|
|
dev_dbg(ctrl->dev, "Spurious IRQ %#x\n", rd_fifo_status);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
wr_cnts = (rd_fifo_status & WR_CNTS_MSK) >> WR_CNTS_SHFT;
|
|
wr_cnts = min(wr_cnts, ctrl->xfer.rem_bytes);
|
|
|
|
words_to_read = wr_cnts / QSPI_BYTES_PER_WORD;
|
|
bytes_to_read = wr_cnts % QSPI_BYTES_PER_WORD;
|
|
|
|
if (words_to_read) {
|
|
word_buf = ctrl->xfer.rx_buf;
|
|
ctrl->xfer.rem_bytes -= words_to_read * QSPI_BYTES_PER_WORD;
|
|
ioread32_rep(ctrl->base + RD_FIFO, word_buf, words_to_read);
|
|
ctrl->xfer.rx_buf = word_buf + words_to_read;
|
|
}
|
|
|
|
if (bytes_to_read) {
|
|
byte_buf = ctrl->xfer.rx_buf;
|
|
rd_fifo = readl(ctrl->base + RD_FIFO);
|
|
ctrl->xfer.rem_bytes -= bytes_to_read;
|
|
for (i = 0; i < bytes_to_read; i++)
|
|
*byte_buf++ = rd_fifo >> (i * BITS_PER_BYTE);
|
|
ctrl->xfer.rx_buf = byte_buf;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t pio_write(struct qcom_qspi *ctrl)
|
|
{
|
|
const void *xfer_buf = ctrl->xfer.tx_buf;
|
|
const int *word_buf;
|
|
const char *byte_buf;
|
|
unsigned int wr_fifo_bytes;
|
|
unsigned int wr_fifo_words;
|
|
unsigned int wr_size;
|
|
unsigned int rem_words;
|
|
|
|
wr_fifo_bytes = readl(ctrl->base + PIO_XFER_STATUS);
|
|
wr_fifo_bytes >>= WR_FIFO_BYTES_SHFT;
|
|
|
|
if (ctrl->xfer.rem_bytes < QSPI_BYTES_PER_WORD) {
|
|
/* Process the last 1-3 bytes */
|
|
wr_size = min(wr_fifo_bytes, ctrl->xfer.rem_bytes);
|
|
ctrl->xfer.rem_bytes -= wr_size;
|
|
|
|
byte_buf = xfer_buf;
|
|
while (wr_size--)
|
|
writel(*byte_buf++,
|
|
ctrl->base + PIO_DATAOUT_1B);
|
|
ctrl->xfer.tx_buf = byte_buf;
|
|
} else {
|
|
/*
|
|
* Process all the whole words; to keep things simple we'll
|
|
* just wait for the next interrupt to handle the last 1-3
|
|
* bytes if we don't have an even number of words.
|
|
*/
|
|
rem_words = ctrl->xfer.rem_bytes / QSPI_BYTES_PER_WORD;
|
|
wr_fifo_words = wr_fifo_bytes / QSPI_BYTES_PER_WORD;
|
|
|
|
wr_size = min(rem_words, wr_fifo_words);
|
|
ctrl->xfer.rem_bytes -= wr_size * QSPI_BYTES_PER_WORD;
|
|
|
|
word_buf = xfer_buf;
|
|
iowrite32_rep(ctrl->base + PIO_DATAOUT_4B, word_buf, wr_size);
|
|
ctrl->xfer.tx_buf = word_buf + wr_size;
|
|
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t qcom_qspi_irq(int irq, void *dev_id)
|
|
{
|
|
u32 int_status;
|
|
struct qcom_qspi *ctrl = dev_id;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
spin_lock(&ctrl->lock);
|
|
|
|
int_status = readl(ctrl->base + MSTR_INT_STATUS);
|
|
writel(int_status, ctrl->base + MSTR_INT_STATUS);
|
|
|
|
/* Ignore disabled interrupts */
|
|
int_status &= readl(ctrl->base + MSTR_INT_EN);
|
|
|
|
/* PIO mode handling */
|
|
if (ctrl->xfer.dir == QSPI_WRITE) {
|
|
if (int_status & WR_FIFO_EMPTY)
|
|
ret = pio_write(ctrl);
|
|
} else {
|
|
if (int_status & RESP_FIFO_RDY)
|
|
ret = pio_read(ctrl);
|
|
}
|
|
|
|
if (int_status & QSPI_ERR_IRQS) {
|
|
if (int_status & RESP_FIFO_UNDERRUN)
|
|
dev_err(ctrl->dev, "IRQ error: FIFO underrun\n");
|
|
if (int_status & WR_FIFO_OVERRUN)
|
|
dev_err(ctrl->dev, "IRQ error: FIFO overrun\n");
|
|
if (int_status & HRESP_FROM_NOC_ERR)
|
|
dev_err(ctrl->dev, "IRQ error: NOC response error\n");
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (!ctrl->xfer.rem_bytes) {
|
|
writel(0, ctrl->base + MSTR_INT_EN);
|
|
spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev));
|
|
}
|
|
|
|
/* DMA mode handling */
|
|
if (int_status & DMA_CHAIN_DONE) {
|
|
int i;
|
|
|
|
writel(0, ctrl->base + MSTR_INT_EN);
|
|
ctrl->xfer.rem_bytes = 0;
|
|
|
|
for (i = 0; i < ctrl->n_cmd_desc; i++)
|
|
dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
|
|
ctrl->dma_cmd_desc[i]);
|
|
ctrl->n_cmd_desc = 0;
|
|
|
|
ret = IRQ_HANDLED;
|
|
spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev));
|
|
}
|
|
|
|
spin_unlock(&ctrl->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int qcom_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
|
{
|
|
/*
|
|
* If qcom_qspi_can_dma() is going to return false we don't need to
|
|
* adjust anything.
|
|
*/
|
|
if (op->data.nbytes <= QSPI_MAX_BYTES_FIFO)
|
|
return 0;
|
|
|
|
/*
|
|
* When reading, the transfer needs to be a multiple of 4 bytes so
|
|
* shrink the transfer if that's not true. The caller will then do a
|
|
* second transfer to finish things up.
|
|
*/
|
|
if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes & 0x3))
|
|
op->data.nbytes &= ~0x3;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops qcom_qspi_mem_ops = {
|
|
.adjust_op_size = qcom_qspi_adjust_op_size,
|
|
};
|
|
|
|
static int qcom_qspi_probe(struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
struct device *dev;
|
|
struct spi_controller *host;
|
|
struct qcom_qspi *ctrl;
|
|
|
|
dev = &pdev->dev;
|
|
|
|
host = devm_spi_alloc_host(dev, sizeof(*ctrl));
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
|
|
ctrl = spi_controller_get_devdata(host);
|
|
|
|
spin_lock_init(&ctrl->lock);
|
|
ctrl->dev = dev;
|
|
ctrl->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(ctrl->base))
|
|
return PTR_ERR(ctrl->base);
|
|
|
|
ctrl->clks = devm_kcalloc(dev, QSPI_NUM_CLKS,
|
|
sizeof(*ctrl->clks), GFP_KERNEL);
|
|
if (!ctrl->clks)
|
|
return -ENOMEM;
|
|
|
|
ctrl->clks[QSPI_CLK_CORE].id = "core";
|
|
ctrl->clks[QSPI_CLK_IFACE].id = "iface";
|
|
ret = devm_clk_bulk_get(dev, QSPI_NUM_CLKS, ctrl->clks);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctrl->icc_path_cpu_to_qspi = devm_of_icc_get(dev, "qspi-config");
|
|
if (IS_ERR(ctrl->icc_path_cpu_to_qspi))
|
|
return dev_err_probe(dev, PTR_ERR(ctrl->icc_path_cpu_to_qspi),
|
|
"Failed to get cpu path\n");
|
|
|
|
/* Set BW vote for register access */
|
|
ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, Bps_to_icc(1000),
|
|
Bps_to_icc(1000));
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = icc_disable(ctrl->icc_path_cpu_to_qspi);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "%s: ICC disable failed for cpu: %d\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = platform_get_irq(pdev, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = devm_request_irq(dev, ret, qcom_qspi_irq, 0, dev_name(dev), ctrl);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to request irq %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "could not set DMA mask\n");
|
|
|
|
host->max_speed_hz = 300000000;
|
|
host->max_dma_len = 65536; /* as per HPG */
|
|
host->dma_alignment = QSPI_ALIGN_REQ;
|
|
host->num_chipselect = QSPI_NUM_CS;
|
|
host->bus_num = -1;
|
|
host->dev.of_node = pdev->dev.of_node;
|
|
host->mode_bits = SPI_MODE_0 |
|
|
SPI_TX_DUAL | SPI_RX_DUAL |
|
|
SPI_TX_QUAD | SPI_RX_QUAD;
|
|
host->flags = SPI_CONTROLLER_HALF_DUPLEX;
|
|
host->prepare_message = qcom_qspi_prepare_message;
|
|
host->transfer_one = qcom_qspi_transfer_one;
|
|
host->handle_err = qcom_qspi_handle_err;
|
|
if (of_property_read_bool(pdev->dev.of_node, "iommus"))
|
|
host->can_dma = qcom_qspi_can_dma;
|
|
host->auto_runtime_pm = true;
|
|
host->mem_ops = &qcom_qspi_mem_ops;
|
|
|
|
ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
|
|
if (ret)
|
|
return ret;
|
|
/* OPP table is optional */
|
|
ret = devm_pm_opp_of_add_table(&pdev->dev);
|
|
if (ret && ret != -ENODEV) {
|
|
dev_err(&pdev->dev, "invalid OPP table in device tree\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = qcom_qspi_alloc_dma(ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pm_runtime_use_autosuspend(dev);
|
|
pm_runtime_set_autosuspend_delay(dev, 250);
|
|
pm_runtime_enable(dev);
|
|
|
|
ret = spi_register_controller(host);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
pm_runtime_disable(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void qcom_qspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *host = platform_get_drvdata(pdev);
|
|
|
|
/* Unregister _before_ disabling pm_runtime() so we stop transfers */
|
|
spi_unregister_controller(host);
|
|
|
|
pm_runtime_disable(&pdev->dev);
|
|
}
|
|
|
|
static int __maybe_unused qcom_qspi_runtime_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
/* Drop the performance state vote */
|
|
dev_pm_opp_set_rate(dev, 0);
|
|
clk_bulk_disable_unprepare(QSPI_NUM_CLKS, ctrl->clks);
|
|
|
|
ret = icc_disable(ctrl->icc_path_cpu_to_qspi);
|
|
if (ret) {
|
|
dev_err_ratelimited(ctrl->dev, "%s: ICC disable failed for cpu: %d\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
pinctrl_pm_select_sleep_state(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused qcom_qspi_runtime_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
pinctrl_pm_select_default_state(dev);
|
|
|
|
ret = icc_enable(ctrl->icc_path_cpu_to_qspi);
|
|
if (ret) {
|
|
dev_err_ratelimited(ctrl->dev, "%s: ICC enable failed for cpu: %d\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = clk_bulk_prepare_enable(QSPI_NUM_CLKS, ctrl->clks);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return dev_pm_opp_set_rate(dev, ctrl->last_speed * 4);
|
|
}
|
|
|
|
static int __maybe_unused qcom_qspi_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = spi_controller_suspend(host);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pm_runtime_force_suspend(dev);
|
|
if (ret)
|
|
spi_controller_resume(host);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused qcom_qspi_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = pm_runtime_force_resume(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_controller_resume(host);
|
|
if (ret)
|
|
pm_runtime_force_suspend(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct dev_pm_ops qcom_qspi_dev_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(qcom_qspi_runtime_suspend,
|
|
qcom_qspi_runtime_resume, NULL)
|
|
SET_SYSTEM_SLEEP_PM_OPS(qcom_qspi_suspend, qcom_qspi_resume)
|
|
};
|
|
|
|
static const struct of_device_id qcom_qspi_dt_match[] = {
|
|
{ .compatible = "qcom,qspi-v1", },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, qcom_qspi_dt_match);
|
|
|
|
static struct platform_driver qcom_qspi_driver = {
|
|
.driver = {
|
|
.name = "qcom_qspi",
|
|
.pm = &qcom_qspi_dev_pm_ops,
|
|
.of_match_table = qcom_qspi_dt_match,
|
|
},
|
|
.probe = qcom_qspi_probe,
|
|
.remove_new = qcom_qspi_remove,
|
|
};
|
|
module_platform_driver(qcom_qspi_driver);
|
|
|
|
MODULE_DESCRIPTION("SPI driver for QSPI cores");
|
|
MODULE_LICENSE("GPL v2");
|