linux/drivers/iommu/amd/init.c
Joerg Roedel f0295913c4 iommu/amd: Add kernel parameters to limit V1 page-sizes
Add two new kernel command line parameters to limit the page-sizes
used for v1 page-tables:

	nohugepages     - Limits page-sizes to 4KiB

	v2_pgsizes_only - Limits page-sizes to 4Kib/2Mib/1GiB; The
	                  same as the sizes used with v2 page-tables

This is needed for multiple scenarios. When assigning devices to
SEV-SNP guests the IOMMU page-sizes need to match the sizes in the RMP
table, otherwise the device will not be able to access all shared
memory.

Also, some ATS devices do not work properly with arbitrary IO
page-sizes as supported by AMD-Vi, so limiting the sizes used by the
driver is a suitable workaround.

All-in-all, these parameters are only workarounds until the IOMMU core
and related APIs gather the ability to negotiate the page-sizes in a
better way.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/20240905072240.253313-1-joro@8bytes.org
2024-09-10 11:48:57 +02:00

3864 lines
94 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
* Leo Duran <leo.duran@amd.com>
*/
#define pr_fmt(fmt) "AMD-Vi: " fmt
#define dev_fmt(fmt) pr_fmt(fmt)
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/syscore_ops.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <linux/amd-iommu.h>
#include <linux/export.h>
#include <linux/kmemleak.h>
#include <linux/cc_platform.h>
#include <linux/iopoll.h>
#include <asm/pci-direct.h>
#include <asm/iommu.h>
#include <asm/apic.h>
#include <asm/gart.h>
#include <asm/x86_init.h>
#include <asm/io_apic.h>
#include <asm/irq_remapping.h>
#include <asm/set_memory.h>
#include <asm/sev.h>
#include <linux/crash_dump.h>
#include "amd_iommu.h"
#include "../irq_remapping.h"
#include "../iommu-pages.h"
/*
* definitions for the ACPI scanning code
*/
#define IVRS_HEADER_LENGTH 48
#define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40
#define ACPI_IVMD_TYPE_ALL 0x20
#define ACPI_IVMD_TYPE 0x21
#define ACPI_IVMD_TYPE_RANGE 0x22
#define IVHD_DEV_ALL 0x01
#define IVHD_DEV_SELECT 0x02
#define IVHD_DEV_SELECT_RANGE_START 0x03
#define IVHD_DEV_RANGE_END 0x04
#define IVHD_DEV_ALIAS 0x42
#define IVHD_DEV_ALIAS_RANGE 0x43
#define IVHD_DEV_EXT_SELECT 0x46
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
#define IVHD_DEV_SPECIAL 0x48
#define IVHD_DEV_ACPI_HID 0xf0
#define UID_NOT_PRESENT 0
#define UID_IS_INTEGER 1
#define UID_IS_CHARACTER 2
#define IVHD_SPECIAL_IOAPIC 1
#define IVHD_SPECIAL_HPET 2
#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
#define IVHD_FLAG_PASSPW_EN_MASK 0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
#define IVHD_FLAG_ISOC_EN_MASK 0x08
#define IVMD_FLAG_EXCL_RANGE 0x08
#define IVMD_FLAG_IW 0x04
#define IVMD_FLAG_IR 0x02
#define IVMD_FLAG_UNITY_MAP 0x01
#define ACPI_DEVFLAG_INITPASS 0x01
#define ACPI_DEVFLAG_EXTINT 0x02
#define ACPI_DEVFLAG_NMI 0x04
#define ACPI_DEVFLAG_SYSMGT1 0x10
#define ACPI_DEVFLAG_SYSMGT2 0x20
#define ACPI_DEVFLAG_LINT0 0x40
#define ACPI_DEVFLAG_LINT1 0x80
#define ACPI_DEVFLAG_ATSDIS 0x10000000
#define IVRS_GET_SBDF_ID(seg, bus, dev, fn) (((seg & 0xffff) << 16) | ((bus & 0xff) << 8) \
| ((dev & 0x1f) << 3) | (fn & 0x7))
/*
* ACPI table definitions
*
* These data structures are laid over the table to parse the important values
* out of it.
*/
/*
* structure describing one IOMMU in the ACPI table. Typically followed by one
* or more ivhd_entrys.
*/
struct ivhd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 cap_ptr;
u64 mmio_phys;
u16 pci_seg;
u16 info;
u32 efr_attr;
/* Following only valid on IVHD type 11h and 40h */
u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */
u64 efr_reg2;
} __attribute__((packed));
/*
* A device entry describing which devices a specific IOMMU translates and
* which requestor ids they use.
*/
struct ivhd_entry {
u8 type;
u16 devid;
u8 flags;
struct_group(ext_hid,
u32 ext;
u32 hidh;
);
u64 cid;
u8 uidf;
u8 uidl;
u8 uid;
} __attribute__((packed));
/*
* An AMD IOMMU memory definition structure. It defines things like exclusion
* ranges for devices and regions that should be unity mapped.
*/
struct ivmd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 aux;
u16 pci_seg;
u8 resv[6];
u64 range_start;
u64 range_length;
} __attribute__((packed));
bool amd_iommu_dump;
bool amd_iommu_irq_remap __read_mostly;
enum io_pgtable_fmt amd_iommu_pgtable = AMD_IOMMU_V1;
/* Guest page table level */
int amd_iommu_gpt_level = PAGE_MODE_4_LEVEL;
int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
static int amd_iommu_xt_mode = IRQ_REMAP_XAPIC_MODE;
static bool amd_iommu_detected;
static bool amd_iommu_disabled __initdata;
static bool amd_iommu_force_enable __initdata;
static bool amd_iommu_irtcachedis;
static int amd_iommu_target_ivhd_type;
/* Global EFR and EFR2 registers */
u64 amd_iommu_efr;
u64 amd_iommu_efr2;
/* SNP is enabled on the system? */
bool amd_iommu_snp_en;
EXPORT_SYMBOL(amd_iommu_snp_en);
LIST_HEAD(amd_iommu_pci_seg_list); /* list of all PCI segments */
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
system */
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
/* Number of IOMMUs present in the system */
static int amd_iommus_present;
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
bool amd_iommu_iotlb_sup __read_mostly = true;
static bool amd_iommu_pc_present __read_mostly;
bool amdr_ivrs_remap_support __read_mostly;
bool amd_iommu_force_isolation __read_mostly;
unsigned long amd_iommu_pgsize_bitmap __ro_after_init = AMD_IOMMU_PGSIZES;
/*
* AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
* to know which ones are already in use.
*/
unsigned long *amd_iommu_pd_alloc_bitmap;
enum iommu_init_state {
IOMMU_START_STATE,
IOMMU_IVRS_DETECTED,
IOMMU_ACPI_FINISHED,
IOMMU_ENABLED,
IOMMU_PCI_INIT,
IOMMU_INTERRUPTS_EN,
IOMMU_INITIALIZED,
IOMMU_NOT_FOUND,
IOMMU_INIT_ERROR,
IOMMU_CMDLINE_DISABLED,
};
/* Early ioapic and hpet maps from kernel command line */
#define EARLY_MAP_SIZE 4
static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE];
static int __initdata early_ioapic_map_size;
static int __initdata early_hpet_map_size;
static int __initdata early_acpihid_map_size;
static bool __initdata cmdline_maps;
static enum iommu_init_state init_state = IOMMU_START_STATE;
static int amd_iommu_enable_interrupts(void);
static int __init iommu_go_to_state(enum iommu_init_state state);
static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg);
static bool amd_iommu_pre_enabled = true;
static u32 amd_iommu_ivinfo __initdata;
bool translation_pre_enabled(struct amd_iommu *iommu)
{
return (iommu->flags & AMD_IOMMU_FLAG_TRANS_PRE_ENABLED);
}
static void clear_translation_pre_enabled(struct amd_iommu *iommu)
{
iommu->flags &= ~AMD_IOMMU_FLAG_TRANS_PRE_ENABLED;
}
static void init_translation_status(struct amd_iommu *iommu)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
if (ctrl & (1<<CONTROL_IOMMU_EN))
iommu->flags |= AMD_IOMMU_FLAG_TRANS_PRE_ENABLED;
}
static inline unsigned long tbl_size(int entry_size, int last_bdf)
{
unsigned shift = PAGE_SHIFT +
get_order((last_bdf + 1) * entry_size);
return 1UL << shift;
}
int amd_iommu_get_num_iommus(void)
{
return amd_iommus_present;
}
/*
* Iterate through all the IOMMUs to get common EFR
* masks among all IOMMUs and warn if found inconsistency.
*/
static __init void get_global_efr(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
u64 tmp = iommu->features;
u64 tmp2 = iommu->features2;
if (list_is_first(&iommu->list, &amd_iommu_list)) {
amd_iommu_efr = tmp;
amd_iommu_efr2 = tmp2;
continue;
}
if (amd_iommu_efr == tmp &&
amd_iommu_efr2 == tmp2)
continue;
pr_err(FW_BUG
"Found inconsistent EFR/EFR2 %#llx,%#llx (global %#llx,%#llx) on iommu%d (%04x:%02x:%02x.%01x).\n",
tmp, tmp2, amd_iommu_efr, amd_iommu_efr2,
iommu->index, iommu->pci_seg->id,
PCI_BUS_NUM(iommu->devid), PCI_SLOT(iommu->devid),
PCI_FUNC(iommu->devid));
amd_iommu_efr &= tmp;
amd_iommu_efr2 &= tmp2;
}
pr_info("Using global IVHD EFR:%#llx, EFR2:%#llx\n", amd_iommu_efr, amd_iommu_efr2);
}
/*
* For IVHD type 0x11/0x40, EFR is also available via IVHD.
* Default to IVHD EFR since it is available sooner
* (i.e. before PCI init).
*/
static void __init early_iommu_features_init(struct amd_iommu *iommu,
struct ivhd_header *h)
{
if (amd_iommu_ivinfo & IOMMU_IVINFO_EFRSUP) {
iommu->features = h->efr_reg;
iommu->features2 = h->efr_reg2;
}
if (amd_iommu_ivinfo & IOMMU_IVINFO_DMA_REMAP)
amdr_ivrs_remap_support = true;
}
/* Access to l1 and l2 indexed register spaces */
static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
pci_read_config_dword(iommu->dev, 0xfc, &val);
return val;
}
static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
pci_write_config_dword(iommu->dev, 0xfc, val);
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}
static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf0, address);
pci_read_config_dword(iommu->dev, 0xf4, &val);
return val;
}
static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, val);
}
/****************************************************************************
*
* AMD IOMMU MMIO register space handling functions
*
* These functions are used to program the IOMMU device registers in
* MMIO space required for that driver.
*
****************************************************************************/
/*
* This function set the exclusion range in the IOMMU. DMA accesses to the
* exclusion range are passed through untranslated
*/
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
{
u64 start = iommu->exclusion_start & PAGE_MASK;
u64 limit = (start + iommu->exclusion_length - 1) & PAGE_MASK;
u64 entry;
if (!iommu->exclusion_start)
return;
entry = start | MMIO_EXCL_ENABLE_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
entry = limit;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
static void iommu_set_cwwb_range(struct amd_iommu *iommu)
{
u64 start = iommu_virt_to_phys((void *)iommu->cmd_sem);
u64 entry = start & PM_ADDR_MASK;
if (!check_feature(FEATURE_SNP))
return;
/* Note:
* Re-purpose Exclusion base/limit registers for Completion wait
* write-back base/limit.
*/
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
/* Note:
* Default to 4 Kbytes, which can be specified by setting base
* address equal to the limit address.
*/
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
/* Programs the physical address of the device table into the IOMMU hardware */
static void iommu_set_device_table(struct amd_iommu *iommu)
{
u64 entry;
u32 dev_table_size = iommu->pci_seg->dev_table_size;
void *dev_table = (void *)get_dev_table(iommu);
BUG_ON(iommu->mmio_base == NULL);
entry = iommu_virt_to_phys(dev_table);
entry |= (dev_table_size >> 12) - 1;
memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
&entry, sizeof(entry));
}
/* Generic functions to enable/disable certain features of the IOMMU. */
void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl |= (1ULL << bit);
writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~(1ULL << bit);
writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~CTRL_INV_TO_MASK;
ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
/* Function to enable the hardware */
static void iommu_enable(struct amd_iommu *iommu)
{
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}
static void iommu_disable(struct amd_iommu *iommu)
{
if (!iommu->mmio_base)
return;
/* Disable command buffer */
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
/* Disable event logging and event interrupts */
iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
/* Disable IOMMU GA_LOG */
iommu_feature_disable(iommu, CONTROL_GALOG_EN);
iommu_feature_disable(iommu, CONTROL_GAINT_EN);
/* Disable IOMMU PPR logging */
iommu_feature_disable(iommu, CONTROL_PPRLOG_EN);
iommu_feature_disable(iommu, CONTROL_PPRINT_EN);
/* Disable IOMMU hardware itself */
iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
/* Clear IRTE cache disabling bit */
iommu_feature_disable(iommu, CONTROL_IRTCACHEDIS);
}
/*
* mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
* the system has one.
*/
static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
{
if (!request_mem_region(address, end, "amd_iommu")) {
pr_err("Can not reserve memory region %llx-%llx for mmio\n",
address, end);
pr_err("This is a BIOS bug. Please contact your hardware vendor\n");
return NULL;
}
return (u8 __iomem *)ioremap(address, end);
}
static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
if (iommu->mmio_base)
iounmap(iommu->mmio_base);
release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
}
static inline u32 get_ivhd_header_size(struct ivhd_header *h)
{
u32 size = 0;
switch (h->type) {
case 0x10:
size = 24;
break;
case 0x11:
case 0x40:
size = 40;
break;
}
return size;
}
/****************************************************************************
*
* The functions below belong to the first pass of AMD IOMMU ACPI table
* parsing. In this pass we try to find out the highest device id this
* code has to handle. Upon this information the size of the shared data
* structures is determined later.
*
****************************************************************************/
/*
* This function calculates the length of a given IVHD entry
*/
static inline int ivhd_entry_length(u8 *ivhd)
{
u32 type = ((struct ivhd_entry *)ivhd)->type;
if (type < 0x80) {
return 0x04 << (*ivhd >> 6);
} else if (type == IVHD_DEV_ACPI_HID) {
/* For ACPI_HID, offset 21 is uid len */
return *((u8 *)ivhd + 21) + 22;
}
return 0;
}
/*
* After reading the highest device id from the IOMMU PCI capability header
* this function looks if there is a higher device id defined in the ACPI table
*/
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
u8 *p = (void *)h, *end = (void *)h;
struct ivhd_entry *dev;
int last_devid = -EINVAL;
u32 ivhd_size = get_ivhd_header_size(h);
if (!ivhd_size) {
pr_err("Unsupported IVHD type %#x\n", h->type);
return -EINVAL;
}
p += ivhd_size;
end += h->length;
while (p < end) {
dev = (struct ivhd_entry *)p;
switch (dev->type) {
case IVHD_DEV_ALL:
/* Use maximum BDF value for DEV_ALL */
return 0xffff;
case IVHD_DEV_SELECT:
case IVHD_DEV_RANGE_END:
case IVHD_DEV_ALIAS:
case IVHD_DEV_EXT_SELECT:
/* all the above subfield types refer to device ids */
if (dev->devid > last_devid)
last_devid = dev->devid;
break;
default:
break;
}
p += ivhd_entry_length(p);
}
WARN_ON(p != end);
return last_devid;
}
static int __init check_ivrs_checksum(struct acpi_table_header *table)
{
int i;
u8 checksum = 0, *p = (u8 *)table;
for (i = 0; i < table->length; ++i)
checksum += p[i];
if (checksum != 0) {
/* ACPI table corrupt */
pr_err(FW_BUG "IVRS invalid checksum\n");
return -ENODEV;
}
return 0;
}
/*
* Iterate over all IVHD entries in the ACPI table and find the highest device
* id which we need to handle. This is the first of three functions which parse
* the ACPI table. So we check the checksum here.
*/
static int __init find_last_devid_acpi(struct acpi_table_header *table, u16 pci_seg)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
int last_devid, last_bdf = 0;
p += IVRS_HEADER_LENGTH;
end += table->length;
while (p < end) {
h = (struct ivhd_header *)p;
if (h->pci_seg == pci_seg &&
h->type == amd_iommu_target_ivhd_type) {
last_devid = find_last_devid_from_ivhd(h);
if (last_devid < 0)
return -EINVAL;
if (last_devid > last_bdf)
last_bdf = last_devid;
}
p += h->length;
}
WARN_ON(p != end);
return last_bdf;
}
/****************************************************************************
*
* The following functions belong to the code path which parses the ACPI table
* the second time. In this ACPI parsing iteration we allocate IOMMU specific
* data structures, initialize the per PCI segment device/alias/rlookup table
* and also basically initialize the hardware.
*
****************************************************************************/
/* Allocate per PCI segment device table */
static inline int __init alloc_dev_table(struct amd_iommu_pci_seg *pci_seg)
{
pci_seg->dev_table = iommu_alloc_pages(GFP_KERNEL | GFP_DMA32,
get_order(pci_seg->dev_table_size));
if (!pci_seg->dev_table)
return -ENOMEM;
return 0;
}
static inline void free_dev_table(struct amd_iommu_pci_seg *pci_seg)
{
iommu_free_pages(pci_seg->dev_table,
get_order(pci_seg->dev_table_size));
pci_seg->dev_table = NULL;
}
/* Allocate per PCI segment IOMMU rlookup table. */
static inline int __init alloc_rlookup_table(struct amd_iommu_pci_seg *pci_seg)
{
pci_seg->rlookup_table = iommu_alloc_pages(GFP_KERNEL,
get_order(pci_seg->rlookup_table_size));
if (pci_seg->rlookup_table == NULL)
return -ENOMEM;
return 0;
}
static inline void free_rlookup_table(struct amd_iommu_pci_seg *pci_seg)
{
iommu_free_pages(pci_seg->rlookup_table,
get_order(pci_seg->rlookup_table_size));
pci_seg->rlookup_table = NULL;
}
static inline int __init alloc_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg)
{
pci_seg->irq_lookup_table = iommu_alloc_pages(GFP_KERNEL,
get_order(pci_seg->rlookup_table_size));
kmemleak_alloc(pci_seg->irq_lookup_table,
pci_seg->rlookup_table_size, 1, GFP_KERNEL);
if (pci_seg->irq_lookup_table == NULL)
return -ENOMEM;
return 0;
}
static inline void free_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg)
{
kmemleak_free(pci_seg->irq_lookup_table);
iommu_free_pages(pci_seg->irq_lookup_table,
get_order(pci_seg->rlookup_table_size));
pci_seg->irq_lookup_table = NULL;
}
static int __init alloc_alias_table(struct amd_iommu_pci_seg *pci_seg)
{
int i;
pci_seg->alias_table = iommu_alloc_pages(GFP_KERNEL,
get_order(pci_seg->alias_table_size));
if (!pci_seg->alias_table)
return -ENOMEM;
/*
* let all alias entries point to itself
*/
for (i = 0; i <= pci_seg->last_bdf; ++i)
pci_seg->alias_table[i] = i;
return 0;
}
static void __init free_alias_table(struct amd_iommu_pci_seg *pci_seg)
{
iommu_free_pages(pci_seg->alias_table,
get_order(pci_seg->alias_table_size));
pci_seg->alias_table = NULL;
}
/*
* Allocates the command buffer. This buffer is per AMD IOMMU. We can
* write commands to that buffer later and the IOMMU will execute them
* asynchronously
*/
static int __init alloc_command_buffer(struct amd_iommu *iommu)
{
iommu->cmd_buf = iommu_alloc_pages(GFP_KERNEL,
get_order(CMD_BUFFER_SIZE));
return iommu->cmd_buf ? 0 : -ENOMEM;
}
/*
* Interrupt handler has processed all pending events and adjusted head
* and tail pointer. Reset overflow mask and restart logging again.
*/
void amd_iommu_restart_log(struct amd_iommu *iommu, const char *evt_type,
u8 cntrl_intr, u8 cntrl_log,
u32 status_run_mask, u32 status_overflow_mask)
{
u32 status;
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (status & status_run_mask)
return;
pr_info_ratelimited("IOMMU %s log restarting\n", evt_type);
iommu_feature_disable(iommu, cntrl_log);
iommu_feature_disable(iommu, cntrl_intr);
writel(status_overflow_mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
iommu_feature_enable(iommu, cntrl_intr);
iommu_feature_enable(iommu, cntrl_log);
}
/*
* This function restarts event logging in case the IOMMU experienced
* an event log buffer overflow.
*/
void amd_iommu_restart_event_logging(struct amd_iommu *iommu)
{
amd_iommu_restart_log(iommu, "Event", CONTROL_EVT_INT_EN,
CONTROL_EVT_LOG_EN, MMIO_STATUS_EVT_RUN_MASK,
MMIO_STATUS_EVT_OVERFLOW_MASK);
}
/*
* This function restarts event logging in case the IOMMU experienced
* GA log overflow.
*/
void amd_iommu_restart_ga_log(struct amd_iommu *iommu)
{
amd_iommu_restart_log(iommu, "GA", CONTROL_GAINT_EN,
CONTROL_GALOG_EN, MMIO_STATUS_GALOG_RUN_MASK,
MMIO_STATUS_GALOG_OVERFLOW_MASK);
}
/*
* This function resets the command buffer if the IOMMU stopped fetching
* commands from it.
*/
static void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu->cmd_buf_head = 0;
iommu->cmd_buf_tail = 0;
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}
/*
* This function writes the command buffer address to the hardware and
* enables it.
*/
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->cmd_buf == NULL);
entry = iommu_virt_to_phys(iommu->cmd_buf);
entry |= MMIO_CMD_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
amd_iommu_reset_cmd_buffer(iommu);
}
/*
* This function disables the command buffer
*/
static void iommu_disable_command_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
}
static void __init free_command_buffer(struct amd_iommu *iommu)
{
iommu_free_pages(iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
}
void *__init iommu_alloc_4k_pages(struct amd_iommu *iommu, gfp_t gfp,
size_t size)
{
int order = get_order(size);
void *buf = iommu_alloc_pages(gfp, order);
if (buf &&
check_feature(FEATURE_SNP) &&
set_memory_4k((unsigned long)buf, (1 << order))) {
iommu_free_pages(buf, order);
buf = NULL;
}
return buf;
}
/* allocates the memory where the IOMMU will log its events to */
static int __init alloc_event_buffer(struct amd_iommu *iommu)
{
iommu->evt_buf = iommu_alloc_4k_pages(iommu, GFP_KERNEL,
EVT_BUFFER_SIZE);
return iommu->evt_buf ? 0 : -ENOMEM;
}
static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->evt_buf == NULL);
entry = iommu_virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
}
/*
* This function disables the event log buffer
*/
static void iommu_disable_event_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
}
static void __init free_event_buffer(struct amd_iommu *iommu)
{
iommu_free_pages(iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}
static void free_ga_log(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
iommu_free_pages(iommu->ga_log, get_order(GA_LOG_SIZE));
iommu_free_pages(iommu->ga_log_tail, get_order(8));
#endif
}
#ifdef CONFIG_IRQ_REMAP
static int iommu_ga_log_enable(struct amd_iommu *iommu)
{
u32 status, i;
u64 entry;
if (!iommu->ga_log)
return -EINVAL;
entry = iommu_virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET,
&entry, sizeof(entry));
entry = (iommu_virt_to_phys(iommu->ga_log_tail) &
(BIT_ULL(52)-1)) & ~7ULL;
memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET,
&entry, sizeof(entry));
writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_GAINT_EN);
iommu_feature_enable(iommu, CONTROL_GALOG_EN);
for (i = 0; i < MMIO_STATUS_TIMEOUT; ++i) {
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (status & (MMIO_STATUS_GALOG_RUN_MASK))
break;
udelay(10);
}
if (WARN_ON(i >= MMIO_STATUS_TIMEOUT))
return -EINVAL;
return 0;
}
static int iommu_init_ga_log(struct amd_iommu *iommu)
{
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
return 0;
iommu->ga_log = iommu_alloc_pages(GFP_KERNEL, get_order(GA_LOG_SIZE));
if (!iommu->ga_log)
goto err_out;
iommu->ga_log_tail = iommu_alloc_pages(GFP_KERNEL, get_order(8));
if (!iommu->ga_log_tail)
goto err_out;
return 0;
err_out:
free_ga_log(iommu);
return -EINVAL;
}
#endif /* CONFIG_IRQ_REMAP */
static int __init alloc_cwwb_sem(struct amd_iommu *iommu)
{
iommu->cmd_sem = iommu_alloc_4k_pages(iommu, GFP_KERNEL, 1);
return iommu->cmd_sem ? 0 : -ENOMEM;
}
static void __init free_cwwb_sem(struct amd_iommu *iommu)
{
if (iommu->cmd_sem)
iommu_free_page((void *)iommu->cmd_sem);
}
static void iommu_enable_xt(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
/*
* XT mode (32-bit APIC destination ID) requires
* GA mode (128-bit IRTE support) as a prerequisite.
*/
if (AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir) &&
amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
iommu_feature_enable(iommu, CONTROL_XT_EN);
#endif /* CONFIG_IRQ_REMAP */
}
static void iommu_enable_gt(struct amd_iommu *iommu)
{
if (!check_feature(FEATURE_GT))
return;
iommu_feature_enable(iommu, CONTROL_GT_EN);
}
/* sets a specific bit in the device table entry. */
static void __set_dev_entry_bit(struct dev_table_entry *dev_table,
u16 devid, u8 bit)
{
int i = (bit >> 6) & 0x03;
int _bit = bit & 0x3f;
dev_table[devid].data[i] |= (1UL << _bit);
}
static void set_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit)
{
struct dev_table_entry *dev_table = get_dev_table(iommu);
return __set_dev_entry_bit(dev_table, devid, bit);
}
static int __get_dev_entry_bit(struct dev_table_entry *dev_table,
u16 devid, u8 bit)
{
int i = (bit >> 6) & 0x03;
int _bit = bit & 0x3f;
return (dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
}
static int get_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit)
{
struct dev_table_entry *dev_table = get_dev_table(iommu);
return __get_dev_entry_bit(dev_table, devid, bit);
}
static bool __copy_device_table(struct amd_iommu *iommu)
{
u64 int_ctl, int_tab_len, entry = 0;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
struct dev_table_entry *old_devtb = NULL;
u32 lo, hi, devid, old_devtb_size;
phys_addr_t old_devtb_phys;
u16 dom_id, dte_v, irq_v;
u64 tmp;
/* Each IOMMU use separate device table with the same size */
lo = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET);
hi = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET + 4);
entry = (((u64) hi) << 32) + lo;
old_devtb_size = ((entry & ~PAGE_MASK) + 1) << 12;
if (old_devtb_size != pci_seg->dev_table_size) {
pr_err("The device table size of IOMMU:%d is not expected!\n",
iommu->index);
return false;
}
/*
* When SME is enabled in the first kernel, the entry includes the
* memory encryption mask(sme_me_mask), we must remove the memory
* encryption mask to obtain the true physical address in kdump kernel.
*/
old_devtb_phys = __sme_clr(entry) & PAGE_MASK;
if (old_devtb_phys >= 0x100000000ULL) {
pr_err("The address of old device table is above 4G, not trustworthy!\n");
return false;
}
old_devtb = (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) && is_kdump_kernel())
? (__force void *)ioremap_encrypted(old_devtb_phys,
pci_seg->dev_table_size)
: memremap(old_devtb_phys, pci_seg->dev_table_size, MEMREMAP_WB);
if (!old_devtb)
return false;
pci_seg->old_dev_tbl_cpy = iommu_alloc_pages(GFP_KERNEL | GFP_DMA32,
get_order(pci_seg->dev_table_size));
if (pci_seg->old_dev_tbl_cpy == NULL) {
pr_err("Failed to allocate memory for copying old device table!\n");
memunmap(old_devtb);
return false;
}
for (devid = 0; devid <= pci_seg->last_bdf; ++devid) {
pci_seg->old_dev_tbl_cpy[devid] = old_devtb[devid];
dom_id = old_devtb[devid].data[1] & DEV_DOMID_MASK;
dte_v = old_devtb[devid].data[0] & DTE_FLAG_V;
if (dte_v && dom_id) {
pci_seg->old_dev_tbl_cpy[devid].data[0] = old_devtb[devid].data[0];
pci_seg->old_dev_tbl_cpy[devid].data[1] = old_devtb[devid].data[1];
__set_bit(dom_id, amd_iommu_pd_alloc_bitmap);
/* If gcr3 table existed, mask it out */
if (old_devtb[devid].data[0] & DTE_FLAG_GV) {
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
tmp |= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
pci_seg->old_dev_tbl_cpy[devid].data[1] &= ~tmp;
tmp = DTE_GCR3_VAL_A(~0ULL) << DTE_GCR3_SHIFT_A;
tmp |= DTE_FLAG_GV;
pci_seg->old_dev_tbl_cpy[devid].data[0] &= ~tmp;
}
}
irq_v = old_devtb[devid].data[2] & DTE_IRQ_REMAP_ENABLE;
int_ctl = old_devtb[devid].data[2] & DTE_IRQ_REMAP_INTCTL_MASK;
int_tab_len = old_devtb[devid].data[2] & DTE_INTTABLEN_MASK;
if (irq_v && (int_ctl || int_tab_len)) {
if ((int_ctl != DTE_IRQ_REMAP_INTCTL) ||
(int_tab_len != DTE_INTTABLEN)) {
pr_err("Wrong old irq remapping flag: %#x\n", devid);
memunmap(old_devtb);
return false;
}
pci_seg->old_dev_tbl_cpy[devid].data[2] = old_devtb[devid].data[2];
}
}
memunmap(old_devtb);
return true;
}
static bool copy_device_table(void)
{
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
if (!amd_iommu_pre_enabled)
return false;
pr_warn("Translation is already enabled - trying to copy translation structures\n");
/*
* All IOMMUs within PCI segment shares common device table.
* Hence copy device table only once per PCI segment.
*/
for_each_pci_segment(pci_seg) {
for_each_iommu(iommu) {
if (pci_seg->id != iommu->pci_seg->id)
continue;
if (!__copy_device_table(iommu))
return false;
break;
}
}
return true;
}
void amd_iommu_apply_erratum_63(struct amd_iommu *iommu, u16 devid)
{
int sysmgt;
sysmgt = get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1) |
(get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2) << 1);
if (sysmgt == 0x01)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_IW);
}
/*
* This function takes the device specific flags read from the ACPI
* table and sets up the device table entry with that information
*/
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
u16 devid, u32 flags, u32 ext_flags)
{
if (flags & ACPI_DEVFLAG_INITPASS)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_INIT_PASS);
if (flags & ACPI_DEVFLAG_EXTINT)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_EINT_PASS);
if (flags & ACPI_DEVFLAG_NMI)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_NMI_PASS);
if (flags & ACPI_DEVFLAG_SYSMGT1)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1);
if (flags & ACPI_DEVFLAG_SYSMGT2)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2);
if (flags & ACPI_DEVFLAG_LINT0)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT0_PASS);
if (flags & ACPI_DEVFLAG_LINT1)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT1_PASS);
amd_iommu_apply_erratum_63(iommu, devid);
amd_iommu_set_rlookup_table(iommu, devid);
}
int __init add_special_device(u8 type, u8 id, u32 *devid, bool cmd_line)
{
struct devid_map *entry;
struct list_head *list;
if (type == IVHD_SPECIAL_IOAPIC)
list = &ioapic_map;
else if (type == IVHD_SPECIAL_HPET)
list = &hpet_map;
else
return -EINVAL;
list_for_each_entry(entry, list, list) {
if (!(entry->id == id && entry->cmd_line))
continue;
pr_info("Command-line override present for %s id %d - ignoring\n",
type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);
*devid = entry->devid;
return 0;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->id = id;
entry->devid = *devid;
entry->cmd_line = cmd_line;
list_add_tail(&entry->list, list);
return 0;
}
static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u32 *devid,
bool cmd_line)
{
struct acpihid_map_entry *entry;
struct list_head *list = &acpihid_map;
list_for_each_entry(entry, list, list) {
if (strcmp(entry->hid, hid) ||
(*uid && *entry->uid && strcmp(entry->uid, uid)) ||
!entry->cmd_line)
continue;
pr_info("Command-line override for hid:%s uid:%s\n",
hid, uid);
*devid = entry->devid;
return 0;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
memcpy(entry->uid, uid, strlen(uid));
memcpy(entry->hid, hid, strlen(hid));
entry->devid = *devid;
entry->cmd_line = cmd_line;
entry->root_devid = (entry->devid & (~0x7));
pr_info("%s, add hid:%s, uid:%s, rdevid:%d\n",
entry->cmd_line ? "cmd" : "ivrs",
entry->hid, entry->uid, entry->root_devid);
list_add_tail(&entry->list, list);
return 0;
}
static int __init add_early_maps(void)
{
int i, ret;
for (i = 0; i < early_ioapic_map_size; ++i) {
ret = add_special_device(IVHD_SPECIAL_IOAPIC,
early_ioapic_map[i].id,
&early_ioapic_map[i].devid,
early_ioapic_map[i].cmd_line);
if (ret)
return ret;
}
for (i = 0; i < early_hpet_map_size; ++i) {
ret = add_special_device(IVHD_SPECIAL_HPET,
early_hpet_map[i].id,
&early_hpet_map[i].devid,
early_hpet_map[i].cmd_line);
if (ret)
return ret;
}
for (i = 0; i < early_acpihid_map_size; ++i) {
ret = add_acpi_hid_device(early_acpihid_map[i].hid,
early_acpihid_map[i].uid,
&early_acpihid_map[i].devid,
early_acpihid_map[i].cmd_line);
if (ret)
return ret;
}
return 0;
}
/*
* Takes a pointer to an AMD IOMMU entry in the ACPI table and
* initializes the hardware and our data structures with it.
*/
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
struct ivhd_header *h)
{
u8 *p = (u8 *)h;
u8 *end = p, flags = 0;
u16 devid = 0, devid_start = 0, devid_to = 0, seg_id;
u32 dev_i, ext_flags = 0;
bool alias = false;
struct ivhd_entry *e;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
u32 ivhd_size;
int ret;
ret = add_early_maps();
if (ret)
return ret;
amd_iommu_apply_ivrs_quirks();
/*
* First save the recommended feature enable bits from ACPI
*/
iommu->acpi_flags = h->flags;
/*
* Done. Now parse the device entries
*/
ivhd_size = get_ivhd_header_size(h);
if (!ivhd_size) {
pr_err("Unsupported IVHD type %#x\n", h->type);
return -EINVAL;
}
p += ivhd_size;
end += h->length;
while (p < end) {
e = (struct ivhd_entry *)p;
seg_id = pci_seg->id;
switch (e->type) {
case IVHD_DEV_ALL:
DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags);
for (dev_i = 0; dev_i <= pci_seg->last_bdf; ++dev_i)
set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0);
break;
case IVHD_DEV_SELECT:
DUMP_printk(" DEV_SELECT\t\t\t devid: %04x:%02x:%02x.%x "
"flags: %02x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
case IVHD_DEV_SELECT_RANGE_START:
DUMP_printk(" DEV_SELECT_RANGE_START\t "
"devid: %04x:%02x:%02x.%x flags: %02x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid_start = e->devid;
flags = e->flags;
ext_flags = 0;
alias = false;
break;
case IVHD_DEV_ALIAS:
DUMP_printk(" DEV_ALIAS\t\t\t devid: %04x:%02x:%02x.%x "
"flags: %02x devid_to: %02x:%02x.%x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS_NUM(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid = e->devid;
devid_to = e->ext >> 8;
set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
pci_seg->alias_table[devid] = devid_to;
break;
case IVHD_DEV_ALIAS_RANGE:
DUMP_printk(" DEV_ALIAS_RANGE\t\t "
"devid: %04x:%02x:%02x.%x flags: %02x "
"devid_to: %04x:%02x:%02x.%x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
seg_id, PCI_BUS_NUM(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid_start = e->devid;
flags = e->flags;
devid_to = e->ext >> 8;
ext_flags = 0;
alias = true;
break;
case IVHD_DEV_EXT_SELECT:
DUMP_printk(" DEV_EXT_SELECT\t\t devid: %04x:%02x:%02x.%x "
"flags: %02x ext: %08x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags,
e->ext);
break;
case IVHD_DEV_EXT_SELECT_RANGE:
DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
"%04x:%02x:%02x.%x flags: %02x ext: %08x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid_start = e->devid;
flags = e->flags;
ext_flags = e->ext;
alias = false;
break;
case IVHD_DEV_RANGE_END:
DUMP_printk(" DEV_RANGE_END\t\t devid: %04x:%02x:%02x.%x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid));
devid = e->devid;
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
if (alias) {
pci_seg->alias_table[dev_i] = devid_to;
set_dev_entry_from_acpi(iommu,
devid_to, flags, ext_flags);
}
set_dev_entry_from_acpi(iommu, dev_i,
flags, ext_flags);
}
break;
case IVHD_DEV_SPECIAL: {
u8 handle, type;
const char *var;
u32 devid;
int ret;
handle = e->ext & 0xff;
devid = PCI_SEG_DEVID_TO_SBDF(seg_id, (e->ext >> 8));
type = (e->ext >> 24) & 0xff;
if (type == IVHD_SPECIAL_IOAPIC)
var = "IOAPIC";
else if (type == IVHD_SPECIAL_HPET)
var = "HPET";
else
var = "UNKNOWN";
DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %04x:%02x:%02x.%x\n",
var, (int)handle,
seg_id, PCI_BUS_NUM(devid),
PCI_SLOT(devid),
PCI_FUNC(devid));
ret = add_special_device(type, handle, &devid, false);
if (ret)
return ret;
/*
* add_special_device might update the devid in case a
* command-line override is present. So call
* set_dev_entry_from_acpi after add_special_device.
*/
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
}
case IVHD_DEV_ACPI_HID: {
u32 devid;
u8 hid[ACPIHID_HID_LEN];
u8 uid[ACPIHID_UID_LEN];
int ret;
if (h->type != 0x40) {
pr_err(FW_BUG "Invalid IVHD device type %#x\n",
e->type);
break;
}
BUILD_BUG_ON(sizeof(e->ext_hid) != ACPIHID_HID_LEN - 1);
memcpy(hid, &e->ext_hid, ACPIHID_HID_LEN - 1);
hid[ACPIHID_HID_LEN - 1] = '\0';
if (!(*hid)) {
pr_err(FW_BUG "Invalid HID.\n");
break;
}
uid[0] = '\0';
switch (e->uidf) {
case UID_NOT_PRESENT:
if (e->uidl != 0)
pr_warn(FW_BUG "Invalid UID length.\n");
break;
case UID_IS_INTEGER:
sprintf(uid, "%d", e->uid);
break;
case UID_IS_CHARACTER:
memcpy(uid, &e->uid, e->uidl);
uid[e->uidl] = '\0';
break;
default:
break;
}
devid = PCI_SEG_DEVID_TO_SBDF(seg_id, e->devid);
DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %04x:%02x:%02x.%x\n",
hid, uid, seg_id,
PCI_BUS_NUM(devid),
PCI_SLOT(devid),
PCI_FUNC(devid));
flags = e->flags;
ret = add_acpi_hid_device(hid, uid, &devid, false);
if (ret)
return ret;
/*
* add_special_device might update the devid in case a
* command-line override is present. So call
* set_dev_entry_from_acpi after add_special_device.
*/
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
}
default:
break;
}
p += ivhd_entry_length(p);
}
return 0;
}
/* Allocate PCI segment data structure */
static struct amd_iommu_pci_seg *__init alloc_pci_segment(u16 id,
struct acpi_table_header *ivrs_base)
{
struct amd_iommu_pci_seg *pci_seg;
int last_bdf;
/*
* First parse ACPI tables to find the largest Bus/Dev/Func we need to
* handle in this PCI segment. Upon this information the shared data
* structures for the PCI segments in the system will be allocated.
*/
last_bdf = find_last_devid_acpi(ivrs_base, id);
if (last_bdf < 0)
return NULL;
pci_seg = kzalloc(sizeof(struct amd_iommu_pci_seg), GFP_KERNEL);
if (pci_seg == NULL)
return NULL;
pci_seg->last_bdf = last_bdf;
DUMP_printk("PCI segment : 0x%0x, last bdf : 0x%04x\n", id, last_bdf);
pci_seg->dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE, last_bdf);
pci_seg->alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE, last_bdf);
pci_seg->rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE, last_bdf);
pci_seg->id = id;
init_llist_head(&pci_seg->dev_data_list);
INIT_LIST_HEAD(&pci_seg->unity_map);
list_add_tail(&pci_seg->list, &amd_iommu_pci_seg_list);
if (alloc_dev_table(pci_seg))
return NULL;
if (alloc_alias_table(pci_seg))
return NULL;
if (alloc_rlookup_table(pci_seg))
return NULL;
return pci_seg;
}
static struct amd_iommu_pci_seg *__init get_pci_segment(u16 id,
struct acpi_table_header *ivrs_base)
{
struct amd_iommu_pci_seg *pci_seg;
for_each_pci_segment(pci_seg) {
if (pci_seg->id == id)
return pci_seg;
}
return alloc_pci_segment(id, ivrs_base);
}
static void __init free_pci_segments(void)
{
struct amd_iommu_pci_seg *pci_seg, *next;
for_each_pci_segment_safe(pci_seg, next) {
list_del(&pci_seg->list);
free_irq_lookup_table(pci_seg);
free_rlookup_table(pci_seg);
free_alias_table(pci_seg);
free_dev_table(pci_seg);
kfree(pci_seg);
}
}
static void __init free_sysfs(struct amd_iommu *iommu)
{
if (iommu->iommu.dev) {
iommu_device_unregister(&iommu->iommu);
iommu_device_sysfs_remove(&iommu->iommu);
}
}
static void __init free_iommu_one(struct amd_iommu *iommu)
{
free_sysfs(iommu);
free_cwwb_sem(iommu);
free_command_buffer(iommu);
free_event_buffer(iommu);
amd_iommu_free_ppr_log(iommu);
free_ga_log(iommu);
iommu_unmap_mmio_space(iommu);
amd_iommu_iopf_uninit(iommu);
}
static void __init free_iommu_all(void)
{
struct amd_iommu *iommu, *next;
for_each_iommu_safe(iommu, next) {
list_del(&iommu->list);
free_iommu_one(iommu);
kfree(iommu);
}
}
/*
* Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
* Workaround:
* BIOS should disable L2B micellaneous clock gating by setting
* L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
*/
static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
{
u32 value;
if ((boot_cpu_data.x86 != 0x15) ||
(boot_cpu_data.x86_model < 0x10) ||
(boot_cpu_data.x86_model > 0x1f))
return;
pci_write_config_dword(iommu->dev, 0xf0, 0x90);
pci_read_config_dword(iommu->dev, 0xf4, &value);
if (value & BIT(2))
return;
/* Select NB indirect register 0x90 and enable writing */
pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
pci_info(iommu->dev, "Applying erratum 746 workaround\n");
/* Clear the enable writing bit */
pci_write_config_dword(iommu->dev, 0xf0, 0x90);
}
/*
* Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission)
* Workaround:
* BIOS should enable ATS write permission check by setting
* L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b
*/
static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu)
{
u32 value;
if ((boot_cpu_data.x86 != 0x15) ||
(boot_cpu_data.x86_model < 0x30) ||
(boot_cpu_data.x86_model > 0x3f))
return;
/* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */
value = iommu_read_l2(iommu, 0x47);
if (value & BIT(0))
return;
/* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */
iommu_write_l2(iommu, 0x47, value | BIT(0));
pci_info(iommu->dev, "Applying ATS write check workaround\n");
}
/*
* This function glues the initialization function for one IOMMU
* together and also allocates the command buffer and programs the
* hardware. It does NOT enable the IOMMU. This is done afterwards.
*/
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h,
struct acpi_table_header *ivrs_base)
{
struct amd_iommu_pci_seg *pci_seg;
pci_seg = get_pci_segment(h->pci_seg, ivrs_base);
if (pci_seg == NULL)
return -ENOMEM;
iommu->pci_seg = pci_seg;
raw_spin_lock_init(&iommu->lock);
atomic64_set(&iommu->cmd_sem_val, 0);
/* Add IOMMU to internal data structures */
list_add_tail(&iommu->list, &amd_iommu_list);
iommu->index = amd_iommus_present++;
if (unlikely(iommu->index >= MAX_IOMMUS)) {
WARN(1, "System has more IOMMUs than supported by this driver\n");
return -ENOSYS;
}
/* Index is fine - add IOMMU to the array */
amd_iommus[iommu->index] = iommu;
/*
* Copy data from ACPI table entry to the iommu struct
*/
iommu->devid = h->devid;
iommu->cap_ptr = h->cap_ptr;
iommu->mmio_phys = h->mmio_phys;
switch (h->type) {
case 0x10:
/* Check if IVHD EFR contains proper max banks/counters */
if ((h->efr_attr != 0) &&
((h->efr_attr & (0xF << 13)) != 0) &&
((h->efr_attr & (0x3F << 17)) != 0))
iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
else
iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
/*
* Note: GA (128-bit IRTE) mode requires cmpxchg16b supports.
* GAM also requires GA mode. Therefore, we need to
* check cmpxchg16b support before enabling it.
*/
if (!boot_cpu_has(X86_FEATURE_CX16) ||
((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0))
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
case 0x11:
case 0x40:
if (h->efr_reg & (1 << 9))
iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
else
iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
/*
* Note: GA (128-bit IRTE) mode requires cmpxchg16b supports.
* XT, GAM also requires GA mode. Therefore, we need to
* check cmpxchg16b support before enabling them.
*/
if (!boot_cpu_has(X86_FEATURE_CX16) ||
((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0)) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
}
if (h->efr_reg & BIT(IOMMU_EFR_XTSUP_SHIFT))
amd_iommu_xt_mode = IRQ_REMAP_X2APIC_MODE;
early_iommu_features_init(iommu, h);
break;
default:
return -EINVAL;
}
iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
iommu->mmio_phys_end);
if (!iommu->mmio_base)
return -ENOMEM;
return init_iommu_from_acpi(iommu, h);
}
static int __init init_iommu_one_late(struct amd_iommu *iommu)
{
int ret;
if (alloc_cwwb_sem(iommu))
return -ENOMEM;
if (alloc_command_buffer(iommu))
return -ENOMEM;
if (alloc_event_buffer(iommu))
return -ENOMEM;
iommu->int_enabled = false;
init_translation_status(iommu);
if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
iommu_disable(iommu);
clear_translation_pre_enabled(iommu);
pr_warn("Translation was enabled for IOMMU:%d but we are not in kdump mode\n",
iommu->index);
}
if (amd_iommu_pre_enabled)
amd_iommu_pre_enabled = translation_pre_enabled(iommu);
if (amd_iommu_irq_remap) {
ret = amd_iommu_create_irq_domain(iommu);
if (ret)
return ret;
}
/*
* Make sure IOMMU is not considered to translate itself. The IVRS
* table tells us so, but this is a lie!
*/
iommu->pci_seg->rlookup_table[iommu->devid] = NULL;
return 0;
}
/**
* get_highest_supported_ivhd_type - Look up the appropriate IVHD type
* @ivrs: Pointer to the IVRS header
*
* This function search through all IVDB of the maximum supported IVHD
*/
static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs)
{
u8 *base = (u8 *)ivrs;
struct ivhd_header *ivhd = (struct ivhd_header *)
(base + IVRS_HEADER_LENGTH);
u8 last_type = ivhd->type;
u16 devid = ivhd->devid;
while (((u8 *)ivhd - base < ivrs->length) &&
(ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) {
u8 *p = (u8 *) ivhd;
if (ivhd->devid == devid)
last_type = ivhd->type;
ivhd = (struct ivhd_header *)(p + ivhd->length);
}
return last_type;
}
/*
* Iterates over all IOMMU entries in the ACPI table, allocates the
* IOMMU structure and initializes it with init_iommu_one()
*/
static int __init init_iommu_all(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
struct amd_iommu *iommu;
int ret;
end += table->length;
p += IVRS_HEADER_LENGTH;
/* Phase 1: Process all IVHD blocks */
while (p < end) {
h = (struct ivhd_header *)p;
if (*p == amd_iommu_target_ivhd_type) {
DUMP_printk("device: %04x:%02x:%02x.%01x cap: %04x "
"flags: %01x info %04x\n",
h->pci_seg, PCI_BUS_NUM(h->devid),
PCI_SLOT(h->devid), PCI_FUNC(h->devid),
h->cap_ptr, h->flags, h->info);
DUMP_printk(" mmio-addr: %016llx\n",
h->mmio_phys);
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
if (iommu == NULL)
return -ENOMEM;
ret = init_iommu_one(iommu, h, table);
if (ret)
return ret;
}
p += h->length;
}
WARN_ON(p != end);
/* Phase 2 : Early feature support check */
get_global_efr();
/* Phase 3 : Enabling IOMMU features */
for_each_iommu(iommu) {
ret = init_iommu_one_late(iommu);
if (ret)
return ret;
}
return 0;
}
static void init_iommu_perf_ctr(struct amd_iommu *iommu)
{
u64 val;
struct pci_dev *pdev = iommu->dev;
if (!check_feature(FEATURE_PC))
return;
amd_iommu_pc_present = true;
pci_info(pdev, "IOMMU performance counters supported\n");
val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
iommu->max_banks = (u8) ((val >> 12) & 0x3f);
iommu->max_counters = (u8) ((val >> 7) & 0xf);
return;
}
static ssize_t amd_iommu_show_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_iommu *iommu = dev_to_amd_iommu(dev);
return sysfs_emit(buf, "%x\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL);
static ssize_t amd_iommu_show_features(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%llx:%llx\n", amd_iommu_efr, amd_iommu_efr2);
}
static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL);
static struct attribute *amd_iommu_attrs[] = {
&dev_attr_cap.attr,
&dev_attr_features.attr,
NULL,
};
static struct attribute_group amd_iommu_group = {
.name = "amd-iommu",
.attrs = amd_iommu_attrs,
};
static const struct attribute_group *amd_iommu_groups[] = {
&amd_iommu_group,
NULL,
};
/*
* Note: IVHD 0x11 and 0x40 also contains exact copy
* of the IOMMU Extended Feature Register [MMIO Offset 0030h].
* Default to EFR in IVHD since it is available sooner (i.e. before PCI init).
*/
static void __init late_iommu_features_init(struct amd_iommu *iommu)
{
u64 features, features2;
if (!(iommu->cap & (1 << IOMMU_CAP_EFR)))
return;
/* read extended feature bits */
features = readq(iommu->mmio_base + MMIO_EXT_FEATURES);
features2 = readq(iommu->mmio_base + MMIO_EXT_FEATURES2);
if (!amd_iommu_efr) {
amd_iommu_efr = features;
amd_iommu_efr2 = features2;
return;
}
/*
* Sanity check and warn if EFR values from
* IVHD and MMIO conflict.
*/
if (features != amd_iommu_efr ||
features2 != amd_iommu_efr2) {
pr_warn(FW_WARN
"EFR mismatch. Use IVHD EFR (%#llx : %#llx), EFR2 (%#llx : %#llx).\n",
features, amd_iommu_efr,
features2, amd_iommu_efr2);
}
}
static int __init iommu_init_pci(struct amd_iommu *iommu)
{
int cap_ptr = iommu->cap_ptr;
int ret;
iommu->dev = pci_get_domain_bus_and_slot(iommu->pci_seg->id,
PCI_BUS_NUM(iommu->devid),
iommu->devid & 0xff);
if (!iommu->dev)
return -ENODEV;
/* Prevent binding other PCI device drivers to IOMMU devices */
iommu->dev->match_driver = false;
/* ACPI _PRT won't have an IRQ for IOMMU */
iommu->dev->irq_managed = 1;
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
&iommu->cap);
if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
amd_iommu_iotlb_sup = false;
late_iommu_features_init(iommu);
if (check_feature(FEATURE_GT)) {
int glxval;
u64 pasmax;
pasmax = FIELD_GET(FEATURE_PASMAX, amd_iommu_efr);
iommu->iommu.max_pasids = (1 << (pasmax + 1)) - 1;
BUG_ON(iommu->iommu.max_pasids & ~PASID_MASK);
glxval = FIELD_GET(FEATURE_GLX, amd_iommu_efr);
if (amd_iommu_max_glx_val == -1)
amd_iommu_max_glx_val = glxval;
else
amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
iommu_enable_gt(iommu);
}
if (check_feature(FEATURE_PPR) && amd_iommu_alloc_ppr_log(iommu))
return -ENOMEM;
if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE)) {
pr_info("Using strict mode due to virtualization\n");
iommu_set_dma_strict();
amd_iommu_np_cache = true;
}
init_iommu_perf_ctr(iommu);
if (amd_iommu_pgtable == AMD_IOMMU_V2) {
if (!check_feature(FEATURE_GIOSUP) ||
!check_feature(FEATURE_GT)) {
pr_warn("Cannot enable v2 page table for DMA-API. Fallback to v1.\n");
amd_iommu_pgtable = AMD_IOMMU_V1;
}
}
if (is_rd890_iommu(iommu->dev)) {
int i, j;
iommu->root_pdev =
pci_get_domain_bus_and_slot(iommu->pci_seg->id,
iommu->dev->bus->number,
PCI_DEVFN(0, 0));
/*
* Some rd890 systems may not be fully reconfigured by the
* BIOS, so it's necessary for us to store this information so
* it can be reprogrammed on resume
*/
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
&iommu->stored_addr_lo);
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
&iommu->stored_addr_hi);
/* Low bit locks writes to configuration space */
iommu->stored_addr_lo &= ~1;
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
for (i = 0; i < 0x83; i++)
iommu->stored_l2[i] = iommu_read_l2(iommu, i);
}
amd_iommu_erratum_746_workaround(iommu);
amd_iommu_ats_write_check_workaround(iommu);
ret = iommu_device_sysfs_add(&iommu->iommu, &iommu->dev->dev,
amd_iommu_groups, "ivhd%d", iommu->index);
if (ret)
return ret;
/*
* Allocate per IOMMU IOPF queue here so that in attach device path,
* PRI capable device can be added to IOPF queue
*/
if (amd_iommu_gt_ppr_supported()) {
ret = amd_iommu_iopf_init(iommu);
if (ret)
return ret;
}
iommu_device_register(&iommu->iommu, &amd_iommu_ops, NULL);
return pci_enable_device(iommu->dev);
}
static void print_iommu_info(void)
{
int i;
static const char * const feat_str[] = {
"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
"IA", "GA", "HE", "PC"
};
if (amd_iommu_efr) {
pr_info("Extended features (%#llx, %#llx):", amd_iommu_efr, amd_iommu_efr2);
for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
if (check_feature(1ULL << i))
pr_cont(" %s", feat_str[i]);
}
if (check_feature(FEATURE_GAM_VAPIC))
pr_cont(" GA_vAPIC");
if (check_feature(FEATURE_SNP))
pr_cont(" SNP");
pr_cont("\n");
}
if (irq_remapping_enabled) {
pr_info("Interrupt remapping enabled\n");
if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
pr_info("X2APIC enabled\n");
}
if (amd_iommu_pgtable == AMD_IOMMU_V2) {
pr_info("V2 page table enabled (Paging mode : %d level)\n",
amd_iommu_gpt_level);
}
}
static int __init amd_iommu_init_pci(void)
{
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
int ret;
for_each_iommu(iommu) {
ret = iommu_init_pci(iommu);
if (ret) {
pr_err("IOMMU%d: Failed to initialize IOMMU Hardware (error=%d)!\n",
iommu->index, ret);
goto out;
}
/* Need to setup range after PCI init */
iommu_set_cwwb_range(iommu);
}
/*
* Order is important here to make sure any unity map requirements are
* fulfilled. The unity mappings are created and written to the device
* table during the iommu_init_pci() call.
*
* After that we call init_device_table_dma() to make sure any
* uninitialized DTE will block DMA, and in the end we flush the caches
* of all IOMMUs to make sure the changes to the device table are
* active.
*/
for_each_pci_segment(pci_seg)
init_device_table_dma(pci_seg);
for_each_iommu(iommu)
amd_iommu_flush_all_caches(iommu);
print_iommu_info();
out:
return ret;
}
/****************************************************************************
*
* The following functions initialize the MSI interrupts for all IOMMUs
* in the system. It's a bit challenging because there could be multiple
* IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
* pci_dev.
*
****************************************************************************/
static int iommu_setup_msi(struct amd_iommu *iommu)
{
int r;
r = pci_enable_msi(iommu->dev);
if (r)
return r;
r = request_threaded_irq(iommu->dev->irq,
amd_iommu_int_handler,
amd_iommu_int_thread,
0, "AMD-Vi",
iommu);
if (r) {
pci_disable_msi(iommu->dev);
return r;
}
return 0;
}
union intcapxt {
u64 capxt;
struct {
u64 reserved_0 : 2,
dest_mode_logical : 1,
reserved_1 : 5,
destid_0_23 : 24,
vector : 8,
reserved_2 : 16,
destid_24_31 : 8;
};
} __attribute__ ((packed));
static struct irq_chip intcapxt_controller;
static int intcapxt_irqdomain_activate(struct irq_domain *domain,
struct irq_data *irqd, bool reserve)
{
return 0;
}
static void intcapxt_irqdomain_deactivate(struct irq_domain *domain,
struct irq_data *irqd)
{
}
static int intcapxt_irqdomain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
int i, ret;
if (!info || info->type != X86_IRQ_ALLOC_TYPE_AMDVI)
return -EINVAL;
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
for (i = virq; i < virq + nr_irqs; i++) {
struct irq_data *irqd = irq_domain_get_irq_data(domain, i);
irqd->chip = &intcapxt_controller;
irqd->hwirq = info->hwirq;
irqd->chip_data = info->data;
__irq_set_handler(i, handle_edge_irq, 0, "edge");
}
return ret;
}
static void intcapxt_irqdomain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
irq_domain_free_irqs_top(domain, virq, nr_irqs);
}
static void intcapxt_unmask_irq(struct irq_data *irqd)
{
struct amd_iommu *iommu = irqd->chip_data;
struct irq_cfg *cfg = irqd_cfg(irqd);
union intcapxt xt;
xt.capxt = 0ULL;
xt.dest_mode_logical = apic->dest_mode_logical;
xt.vector = cfg->vector;
xt.destid_0_23 = cfg->dest_apicid & GENMASK(23, 0);
xt.destid_24_31 = cfg->dest_apicid >> 24;
writeq(xt.capxt, iommu->mmio_base + irqd->hwirq);
}
static void intcapxt_mask_irq(struct irq_data *irqd)
{
struct amd_iommu *iommu = irqd->chip_data;
writeq(0, iommu->mmio_base + irqd->hwirq);
}
static int intcapxt_set_affinity(struct irq_data *irqd,
const struct cpumask *mask, bool force)
{
struct irq_data *parent = irqd->parent_data;
int ret;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
return 0;
}
static int intcapxt_set_wake(struct irq_data *irqd, unsigned int on)
{
return on ? -EOPNOTSUPP : 0;
}
static struct irq_chip intcapxt_controller = {
.name = "IOMMU-MSI",
.irq_unmask = intcapxt_unmask_irq,
.irq_mask = intcapxt_mask_irq,
.irq_ack = irq_chip_ack_parent,
.irq_retrigger = irq_chip_retrigger_hierarchy,
.irq_set_affinity = intcapxt_set_affinity,
.irq_set_wake = intcapxt_set_wake,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static const struct irq_domain_ops intcapxt_domain_ops = {
.alloc = intcapxt_irqdomain_alloc,
.free = intcapxt_irqdomain_free,
.activate = intcapxt_irqdomain_activate,
.deactivate = intcapxt_irqdomain_deactivate,
};
static struct irq_domain *iommu_irqdomain;
static struct irq_domain *iommu_get_irqdomain(void)
{
struct fwnode_handle *fn;
/* No need for locking here (yet) as the init is single-threaded */
if (iommu_irqdomain)
return iommu_irqdomain;
fn = irq_domain_alloc_named_fwnode("AMD-Vi-MSI");
if (!fn)
return NULL;
iommu_irqdomain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0,
fn, &intcapxt_domain_ops,
NULL);
if (!iommu_irqdomain)
irq_domain_free_fwnode(fn);
return iommu_irqdomain;
}
static int __iommu_setup_intcapxt(struct amd_iommu *iommu, const char *devname,
int hwirq, irq_handler_t thread_fn)
{
struct irq_domain *domain;
struct irq_alloc_info info;
int irq, ret;
int node = dev_to_node(&iommu->dev->dev);
domain = iommu_get_irqdomain();
if (!domain)
return -ENXIO;
init_irq_alloc_info(&info, NULL);
info.type = X86_IRQ_ALLOC_TYPE_AMDVI;
info.data = iommu;
info.hwirq = hwirq;
irq = irq_domain_alloc_irqs(domain, 1, node, &info);
if (irq < 0) {
irq_domain_remove(domain);
return irq;
}
ret = request_threaded_irq(irq, amd_iommu_int_handler,
thread_fn, 0, devname, iommu);
if (ret) {
irq_domain_free_irqs(irq, 1);
irq_domain_remove(domain);
return ret;
}
return 0;
}
static int iommu_setup_intcapxt(struct amd_iommu *iommu)
{
int ret;
snprintf(iommu->evt_irq_name, sizeof(iommu->evt_irq_name),
"AMD-Vi%d-Evt", iommu->index);
ret = __iommu_setup_intcapxt(iommu, iommu->evt_irq_name,
MMIO_INTCAPXT_EVT_OFFSET,
amd_iommu_int_thread_evtlog);
if (ret)
return ret;
snprintf(iommu->ppr_irq_name, sizeof(iommu->ppr_irq_name),
"AMD-Vi%d-PPR", iommu->index);
ret = __iommu_setup_intcapxt(iommu, iommu->ppr_irq_name,
MMIO_INTCAPXT_PPR_OFFSET,
amd_iommu_int_thread_pprlog);
if (ret)
return ret;
#ifdef CONFIG_IRQ_REMAP
snprintf(iommu->ga_irq_name, sizeof(iommu->ga_irq_name),
"AMD-Vi%d-GA", iommu->index);
ret = __iommu_setup_intcapxt(iommu, iommu->ga_irq_name,
MMIO_INTCAPXT_GALOG_OFFSET,
amd_iommu_int_thread_galog);
#endif
return ret;
}
static int iommu_init_irq(struct amd_iommu *iommu)
{
int ret;
if (iommu->int_enabled)
goto enable_faults;
if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
ret = iommu_setup_intcapxt(iommu);
else if (iommu->dev->msi_cap)
ret = iommu_setup_msi(iommu);
else
ret = -ENODEV;
if (ret)
return ret;
iommu->int_enabled = true;
enable_faults:
if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
iommu_feature_enable(iommu, CONTROL_INTCAPXT_EN);
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
return 0;
}
/****************************************************************************
*
* The next functions belong to the third pass of parsing the ACPI
* table. In this last pass the memory mapping requirements are
* gathered (like exclusion and unity mapping ranges).
*
****************************************************************************/
static void __init free_unity_maps(void)
{
struct unity_map_entry *entry, *next;
struct amd_iommu_pci_seg *p, *pci_seg;
for_each_pci_segment_safe(pci_seg, p) {
list_for_each_entry_safe(entry, next, &pci_seg->unity_map, list) {
list_del(&entry->list);
kfree(entry);
}
}
}
/* called for unity map ACPI definition */
static int __init init_unity_map_range(struct ivmd_header *m,
struct acpi_table_header *ivrs_base)
{
struct unity_map_entry *e = NULL;
struct amd_iommu_pci_seg *pci_seg;
char *s;
pci_seg = get_pci_segment(m->pci_seg, ivrs_base);
if (pci_seg == NULL)
return -ENOMEM;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL)
return -ENOMEM;
switch (m->type) {
default:
kfree(e);
return 0;
case ACPI_IVMD_TYPE:
s = "IVMD_TYPEi\t\t\t";
e->devid_start = e->devid_end = m->devid;
break;
case ACPI_IVMD_TYPE_ALL:
s = "IVMD_TYPE_ALL\t\t";
e->devid_start = 0;
e->devid_end = pci_seg->last_bdf;
break;
case ACPI_IVMD_TYPE_RANGE:
s = "IVMD_TYPE_RANGE\t\t";
e->devid_start = m->devid;
e->devid_end = m->aux;
break;
}
e->address_start = PAGE_ALIGN(m->range_start);
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
e->prot = m->flags >> 1;
/*
* Treat per-device exclusion ranges as r/w unity-mapped regions
* since some buggy BIOSes might lead to the overwritten exclusion
* range (exclusion_start and exclusion_length members). This
* happens when there are multiple exclusion ranges (IVMD entries)
* defined in ACPI table.
*/
if (m->flags & IVMD_FLAG_EXCL_RANGE)
e->prot = (IVMD_FLAG_IW | IVMD_FLAG_IR) >> 1;
DUMP_printk("%s devid_start: %04x:%02x:%02x.%x devid_end: "
"%04x:%02x:%02x.%x range_start: %016llx range_end: %016llx"
" flags: %x\n", s, m->pci_seg,
PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
PCI_FUNC(e->devid_start), m->pci_seg,
PCI_BUS_NUM(e->devid_end),
PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
e->address_start, e->address_end, m->flags);
list_add_tail(&e->list, &pci_seg->unity_map);
return 0;
}
/* iterates over all memory definitions we find in the ACPI table */
static int __init init_memory_definitions(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivmd_header *m;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
m = (struct ivmd_header *)p;
if (m->flags & (IVMD_FLAG_UNITY_MAP | IVMD_FLAG_EXCL_RANGE))
init_unity_map_range(m, table);
p += m->length;
}
return 0;
}
/*
* Init the device table to not allow DMA access for devices
*/
static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg)
{
u32 devid;
struct dev_table_entry *dev_table = pci_seg->dev_table;
if (dev_table == NULL)
return;
for (devid = 0; devid <= pci_seg->last_bdf; ++devid) {
__set_dev_entry_bit(dev_table, devid, DEV_ENTRY_VALID);
if (!amd_iommu_snp_en)
__set_dev_entry_bit(dev_table, devid, DEV_ENTRY_TRANSLATION);
}
}
static void __init uninit_device_table_dma(struct amd_iommu_pci_seg *pci_seg)
{
u32 devid;
struct dev_table_entry *dev_table = pci_seg->dev_table;
if (dev_table == NULL)
return;
for (devid = 0; devid <= pci_seg->last_bdf; ++devid) {
dev_table[devid].data[0] = 0ULL;
dev_table[devid].data[1] = 0ULL;
}
}
static void init_device_table(void)
{
struct amd_iommu_pci_seg *pci_seg;
u32 devid;
if (!amd_iommu_irq_remap)
return;
for_each_pci_segment(pci_seg) {
for (devid = 0; devid <= pci_seg->last_bdf; ++devid)
__set_dev_entry_bit(pci_seg->dev_table,
devid, DEV_ENTRY_IRQ_TBL_EN);
}
}
static void iommu_init_flags(struct amd_iommu *iommu)
{
iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
iommu_feature_disable(iommu, CONTROL_ISOC_EN);
/*
* make IOMMU memory accesses cache coherent
*/
iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
/* Set IOTLB invalidation timeout to 1s */
iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
}
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
{
int i, j;
u32 ioc_feature_control;
struct pci_dev *pdev = iommu->root_pdev;
/* RD890 BIOSes may not have completely reconfigured the iommu */
if (!is_rd890_iommu(iommu->dev) || !pdev)
return;
/*
* First, we need to ensure that the iommu is enabled. This is
* controlled by a register in the northbridge
*/
/* Select Northbridge indirect register 0x75 and enable writing */
pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
/* Enable the iommu */
if (!(ioc_feature_control & 0x1))
pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
/* Restore the iommu BAR */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo);
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
iommu->stored_addr_hi);
/* Restore the l1 indirect regs for each of the 6 l1s */
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
/* Restore the l2 indirect regs */
for (i = 0; i < 0x83; i++)
iommu_write_l2(iommu, i, iommu->stored_l2[i]);
/* Lock PCI setup registers */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo | 1);
}
static void iommu_enable_ga(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
switch (amd_iommu_guest_ir) {
case AMD_IOMMU_GUEST_IR_VAPIC:
case AMD_IOMMU_GUEST_IR_LEGACY_GA:
iommu_feature_enable(iommu, CONTROL_GA_EN);
iommu->irte_ops = &irte_128_ops;
break;
default:
iommu->irte_ops = &irte_32_ops;
break;
}
#endif
}
static void iommu_disable_irtcachedis(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_IRTCACHEDIS);
}
static void iommu_enable_irtcachedis(struct amd_iommu *iommu)
{
u64 ctrl;
if (!amd_iommu_irtcachedis)
return;
/*
* Note:
* The support for IRTCacheDis feature is dertermined by
* checking if the bit is writable.
*/
iommu_feature_enable(iommu, CONTROL_IRTCACHEDIS);
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= (1ULL << CONTROL_IRTCACHEDIS);
if (ctrl)
iommu->irtcachedis_enabled = true;
pr_info("iommu%d (%#06x) : IRT cache is %s\n",
iommu->index, iommu->devid,
iommu->irtcachedis_enabled ? "disabled" : "enabled");
}
static void early_enable_iommu(struct amd_iommu *iommu)
{
iommu_disable(iommu);
iommu_init_flags(iommu);
iommu_set_device_table(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_set_exclusion_range(iommu);
iommu_enable_gt(iommu);
iommu_enable_ga(iommu);
iommu_enable_xt(iommu);
iommu_enable_irtcachedis(iommu);
iommu_enable(iommu);
amd_iommu_flush_all_caches(iommu);
}
/*
* This function finally enables all IOMMUs found in the system after
* they have been initialized.
*
* Or if in kdump kernel and IOMMUs are all pre-enabled, try to copy
* the old content of device table entries. Not this case or copy failed,
* just continue as normal kernel does.
*/
static void early_enable_iommus(void)
{
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
if (!copy_device_table()) {
/*
* If come here because of failure in copying device table from old
* kernel with all IOMMUs enabled, print error message and try to
* free allocated old_dev_tbl_cpy.
*/
if (amd_iommu_pre_enabled)
pr_err("Failed to copy DEV table from previous kernel.\n");
for_each_pci_segment(pci_seg) {
if (pci_seg->old_dev_tbl_cpy != NULL) {
iommu_free_pages(pci_seg->old_dev_tbl_cpy,
get_order(pci_seg->dev_table_size));
pci_seg->old_dev_tbl_cpy = NULL;
}
}
for_each_iommu(iommu) {
clear_translation_pre_enabled(iommu);
early_enable_iommu(iommu);
}
} else {
pr_info("Copied DEV table from previous kernel.\n");
for_each_pci_segment(pci_seg) {
iommu_free_pages(pci_seg->dev_table,
get_order(pci_seg->dev_table_size));
pci_seg->dev_table = pci_seg->old_dev_tbl_cpy;
}
for_each_iommu(iommu) {
iommu_disable_command_buffer(iommu);
iommu_disable_event_buffer(iommu);
iommu_disable_irtcachedis(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_enable_ga(iommu);
iommu_enable_xt(iommu);
iommu_enable_irtcachedis(iommu);
iommu_set_device_table(iommu);
amd_iommu_flush_all_caches(iommu);
}
}
}
static void enable_iommus_ppr(void)
{
struct amd_iommu *iommu;
if (!amd_iommu_gt_ppr_supported())
return;
for_each_iommu(iommu)
amd_iommu_enable_ppr_log(iommu);
}
static void enable_iommus_vapic(void)
{
#ifdef CONFIG_IRQ_REMAP
u32 status, i;
struct amd_iommu *iommu;
for_each_iommu(iommu) {
/*
* Disable GALog if already running. It could have been enabled
* in the previous boot before kdump.
*/
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (!(status & MMIO_STATUS_GALOG_RUN_MASK))
continue;
iommu_feature_disable(iommu, CONTROL_GALOG_EN);
iommu_feature_disable(iommu, CONTROL_GAINT_EN);
/*
* Need to set and poll check the GALOGRun bit to zero before
* we can set/ modify GA Log registers safely.
*/
for (i = 0; i < MMIO_STATUS_TIMEOUT; ++i) {
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (!(status & MMIO_STATUS_GALOG_RUN_MASK))
break;
udelay(10);
}
if (WARN_ON(i >= MMIO_STATUS_TIMEOUT))
return;
}
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
!check_feature(FEATURE_GAM_VAPIC)) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
return;
}
if (amd_iommu_snp_en &&
!FEATURE_SNPAVICSUP_GAM(amd_iommu_efr2)) {
pr_warn("Force to disable Virtual APIC due to SNP\n");
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
return;
}
/* Enabling GAM and SNPAVIC support */
for_each_iommu(iommu) {
if (iommu_init_ga_log(iommu) ||
iommu_ga_log_enable(iommu))
return;
iommu_feature_enable(iommu, CONTROL_GAM_EN);
if (amd_iommu_snp_en)
iommu_feature_enable(iommu, CONTROL_SNPAVIC_EN);
}
amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP);
pr_info("Virtual APIC enabled\n");
#endif
}
static void enable_iommus(void)
{
early_enable_iommus();
}
static void disable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_disable(iommu);
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP);
#endif
}
/*
* Suspend/Resume support
* disable suspend until real resume implemented
*/
static void amd_iommu_resume(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_apply_resume_quirks(iommu);
/* re-load the hardware */
enable_iommus();
amd_iommu_enable_interrupts();
}
static int amd_iommu_suspend(void)
{
/* disable IOMMUs to go out of the way for BIOS */
disable_iommus();
return 0;
}
static struct syscore_ops amd_iommu_syscore_ops = {
.suspend = amd_iommu_suspend,
.resume = amd_iommu_resume,
};
static void __init free_iommu_resources(void)
{
kmem_cache_destroy(amd_iommu_irq_cache);
amd_iommu_irq_cache = NULL;
free_iommu_all();
free_pci_segments();
}
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0))
static bool __init check_ioapic_information(void)
{
const char *fw_bug = FW_BUG;
bool ret, has_sb_ioapic;
int idx;
has_sb_ioapic = false;
ret = false;
/*
* If we have map overrides on the kernel command line the
* messages in this function might not describe firmware bugs
* anymore - so be careful
*/
if (cmdline_maps)
fw_bug = "";
for (idx = 0; idx < nr_ioapics; idx++) {
int devid, id = mpc_ioapic_id(idx);
devid = get_ioapic_devid(id);
if (devid < 0) {
pr_err("%s: IOAPIC[%d] not in IVRS table\n",
fw_bug, id);
ret = false;
} else if (devid == IOAPIC_SB_DEVID) {
has_sb_ioapic = true;
ret = true;
}
}
if (!has_sb_ioapic) {
/*
* We expect the SB IOAPIC to be listed in the IVRS
* table. The system timer is connected to the SB IOAPIC
* and if we don't have it in the list the system will
* panic at boot time. This situation usually happens
* when the BIOS is buggy and provides us the wrong
* device id for the IOAPIC in the system.
*/
pr_err("%s: No southbridge IOAPIC found\n", fw_bug);
}
if (!ret)
pr_err("Disabling interrupt remapping\n");
return ret;
}
static void __init free_dma_resources(void)
{
iommu_free_pages(amd_iommu_pd_alloc_bitmap,
get_order(MAX_DOMAIN_ID / 8));
amd_iommu_pd_alloc_bitmap = NULL;
free_unity_maps();
}
static void __init ivinfo_init(void *ivrs)
{
amd_iommu_ivinfo = *((u32 *)(ivrs + IOMMU_IVINFO_OFFSET));
}
/*
* This is the hardware init function for AMD IOMMU in the system.
* This function is called either from amd_iommu_init or from the interrupt
* remapping setup code.
*
* This function basically parses the ACPI table for AMD IOMMU (IVRS)
* four times:
*
* 1 pass) Discover the most comprehensive IVHD type to use.
*
* 2 pass) Find the highest PCI device id the driver has to handle.
* Upon this information the size of the data structures is
* determined that needs to be allocated.
*
* 3 pass) Initialize the data structures just allocated with the
* information in the ACPI table about available AMD IOMMUs
* in the system. It also maps the PCI devices in the
* system to specific IOMMUs
*
* 4 pass) After the basic data structures are allocated and
* initialized we update them with information about memory
* remapping requirements parsed out of the ACPI table in
* this last pass.
*
* After everything is set up the IOMMUs are enabled and the necessary
* hotplug and suspend notifiers are registered.
*/
static int __init early_amd_iommu_init(void)
{
struct acpi_table_header *ivrs_base;
int remap_cache_sz, ret;
acpi_status status;
if (!amd_iommu_detected)
return -ENODEV;
status = acpi_get_table("IVRS", 0, &ivrs_base);
if (status == AE_NOT_FOUND)
return -ENODEV;
else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("IVRS table error: %s\n", err);
return -EINVAL;
}
/*
* Validate checksum here so we don't need to do it when
* we actually parse the table
*/
ret = check_ivrs_checksum(ivrs_base);
if (ret)
goto out;
ivinfo_init(ivrs_base);
amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base);
DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type);
/* Device table - directly used by all IOMMUs */
ret = -ENOMEM;
amd_iommu_pd_alloc_bitmap = iommu_alloc_pages(GFP_KERNEL,
get_order(MAX_DOMAIN_ID / 8));
if (amd_iommu_pd_alloc_bitmap == NULL)
goto out;
/*
* never allocate domain 0 because its used as the non-allocated and
* error value placeholder
*/
__set_bit(0, amd_iommu_pd_alloc_bitmap);
/*
* now the data structures are allocated and basically initialized
* start the real acpi table scan
*/
ret = init_iommu_all(ivrs_base);
if (ret)
goto out;
/* 5 level guest page table */
if (cpu_feature_enabled(X86_FEATURE_LA57) &&
FIELD_GET(FEATURE_GATS, amd_iommu_efr) == GUEST_PGTABLE_5_LEVEL)
amd_iommu_gpt_level = PAGE_MODE_5_LEVEL;
/* Disable any previously enabled IOMMUs */
if (!is_kdump_kernel() || amd_iommu_disabled)
disable_iommus();
if (amd_iommu_irq_remap)
amd_iommu_irq_remap = check_ioapic_information();
if (amd_iommu_irq_remap) {
struct amd_iommu_pci_seg *pci_seg;
/*
* Interrupt remapping enabled, create kmem_cache for the
* remapping tables.
*/
ret = -ENOMEM;
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32);
else
remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2);
amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
remap_cache_sz,
DTE_INTTAB_ALIGNMENT,
0, NULL);
if (!amd_iommu_irq_cache)
goto out;
for_each_pci_segment(pci_seg) {
if (alloc_irq_lookup_table(pci_seg))
goto out;
}
}
ret = init_memory_definitions(ivrs_base);
if (ret)
goto out;
/* init the device table */
init_device_table();
out:
/* Don't leak any ACPI memory */
acpi_put_table(ivrs_base);
return ret;
}
static int amd_iommu_enable_interrupts(void)
{
struct amd_iommu *iommu;
int ret = 0;
for_each_iommu(iommu) {
ret = iommu_init_irq(iommu);
if (ret)
goto out;
}
/*
* Interrupt handler is ready to process interrupts. Enable
* PPR and GA log interrupt for all IOMMUs.
*/
enable_iommus_vapic();
enable_iommus_ppr();
out:
return ret;
}
static bool __init detect_ivrs(void)
{
struct acpi_table_header *ivrs_base;
acpi_status status;
int i;
status = acpi_get_table("IVRS", 0, &ivrs_base);
if (status == AE_NOT_FOUND)
return false;
else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("IVRS table error: %s\n", err);
return false;
}
acpi_put_table(ivrs_base);
if (amd_iommu_force_enable)
goto out;
/* Don't use IOMMU if there is Stoney Ridge graphics */
for (i = 0; i < 32; i++) {
u32 pci_id;
pci_id = read_pci_config(0, i, 0, 0);
if ((pci_id & 0xffff) == 0x1002 && (pci_id >> 16) == 0x98e4) {
pr_info("Disable IOMMU on Stoney Ridge\n");
return false;
}
}
out:
/* Make sure ACS will be enabled during PCI probe */
pci_request_acs();
return true;
}
static void iommu_snp_enable(void)
{
#ifdef CONFIG_KVM_AMD_SEV
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return;
/*
* The SNP support requires that IOMMU must be enabled, and is
* configured with V1 page table (DTE[Mode] = 0 is not supported).
*/
if (no_iommu || iommu_default_passthrough()) {
pr_warn("SNP: IOMMU disabled or configured in passthrough mode, SNP cannot be supported.\n");
goto disable_snp;
}
if (amd_iommu_pgtable != AMD_IOMMU_V1) {
pr_warn("SNP: IOMMU is configured with V2 page table mode, SNP cannot be supported.\n");
goto disable_snp;
}
amd_iommu_snp_en = check_feature(FEATURE_SNP);
if (!amd_iommu_snp_en) {
pr_warn("SNP: IOMMU SNP feature not enabled, SNP cannot be supported.\n");
goto disable_snp;
}
pr_info("IOMMU SNP support enabled.\n");
return;
disable_snp:
cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
#endif
}
/****************************************************************************
*
* AMD IOMMU Initialization State Machine
*
****************************************************************************/
static int __init state_next(void)
{
int ret = 0;
switch (init_state) {
case IOMMU_START_STATE:
if (!detect_ivrs()) {
init_state = IOMMU_NOT_FOUND;
ret = -ENODEV;
} else {
init_state = IOMMU_IVRS_DETECTED;
}
break;
case IOMMU_IVRS_DETECTED:
if (amd_iommu_disabled) {
init_state = IOMMU_CMDLINE_DISABLED;
ret = -EINVAL;
} else {
ret = early_amd_iommu_init();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
}
break;
case IOMMU_ACPI_FINISHED:
early_enable_iommus();
x86_platform.iommu_shutdown = disable_iommus;
init_state = IOMMU_ENABLED;
break;
case IOMMU_ENABLED:
register_syscore_ops(&amd_iommu_syscore_ops);
iommu_snp_enable();
ret = amd_iommu_init_pci();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
break;
case IOMMU_PCI_INIT:
ret = amd_iommu_enable_interrupts();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
break;
case IOMMU_INTERRUPTS_EN:
init_state = IOMMU_INITIALIZED;
break;
case IOMMU_INITIALIZED:
/* Nothing to do */
break;
case IOMMU_NOT_FOUND:
case IOMMU_INIT_ERROR:
case IOMMU_CMDLINE_DISABLED:
/* Error states => do nothing */
ret = -EINVAL;
break;
default:
/* Unknown state */
BUG();
}
if (ret) {
free_dma_resources();
if (!irq_remapping_enabled) {
disable_iommus();
free_iommu_resources();
} else {
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
for_each_pci_segment(pci_seg)
uninit_device_table_dma(pci_seg);
for_each_iommu(iommu)
amd_iommu_flush_all_caches(iommu);
}
}
return ret;
}
static int __init iommu_go_to_state(enum iommu_init_state state)
{
int ret = -EINVAL;
while (init_state != state) {
if (init_state == IOMMU_NOT_FOUND ||
init_state == IOMMU_INIT_ERROR ||
init_state == IOMMU_CMDLINE_DISABLED)
break;
ret = state_next();
}
return ret;
}
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
int ret;
amd_iommu_irq_remap = true;
ret = iommu_go_to_state(IOMMU_ACPI_FINISHED);
if (ret) {
amd_iommu_irq_remap = false;
return ret;
}
return amd_iommu_irq_remap ? 0 : -ENODEV;
}
int __init amd_iommu_enable(void)
{
int ret;
ret = iommu_go_to_state(IOMMU_ENABLED);
if (ret)
return ret;
irq_remapping_enabled = 1;
return amd_iommu_xt_mode;
}
void amd_iommu_disable(void)
{
amd_iommu_suspend();
}
int amd_iommu_reenable(int mode)
{
amd_iommu_resume();
return 0;
}
int amd_iommu_enable_faulting(unsigned int cpu)
{
/* We enable MSI later when PCI is initialized */
return 0;
}
#endif
/*
* This is the core init function for AMD IOMMU hardware in the system.
* This function is called from the generic x86 DMA layer initialization
* code.
*/
static int __init amd_iommu_init(void)
{
struct amd_iommu *iommu;
int ret;
ret = iommu_go_to_state(IOMMU_INITIALIZED);
#ifdef CONFIG_GART_IOMMU
if (ret && list_empty(&amd_iommu_list)) {
/*
* We failed to initialize the AMD IOMMU - try fallback
* to GART if possible.
*/
gart_iommu_init();
}
#endif
for_each_iommu(iommu)
amd_iommu_debugfs_setup(iommu);
return ret;
}
static bool amd_iommu_sme_check(void)
{
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) ||
(boot_cpu_data.x86 != 0x17))
return true;
/* For Fam17h, a specific level of support is required */
if (boot_cpu_data.microcode >= 0x08001205)
return true;
if ((boot_cpu_data.microcode >= 0x08001126) &&
(boot_cpu_data.microcode <= 0x080011ff))
return true;
pr_notice("IOMMU not currently supported when SME is active\n");
return false;
}
/****************************************************************************
*
* Early detect code. This code runs at IOMMU detection time in the DMA
* layer. It just looks if there is an IVRS ACPI table to detect AMD
* IOMMUs
*
****************************************************************************/
int __init amd_iommu_detect(void)
{
int ret;
if (no_iommu || (iommu_detected && !gart_iommu_aperture))
return -ENODEV;
if (!amd_iommu_sme_check())
return -ENODEV;
ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
if (ret)
return ret;
amd_iommu_detected = true;
iommu_detected = 1;
x86_init.iommu.iommu_init = amd_iommu_init;
return 1;
}
/****************************************************************************
*
* Parsing functions for the AMD IOMMU specific kernel command line
* options.
*
****************************************************************************/
static int __init parse_amd_iommu_dump(char *str)
{
amd_iommu_dump = true;
return 1;
}
static int __init parse_amd_iommu_intr(char *str)
{
for (; *str; ++str) {
if (strncmp(str, "legacy", 6) == 0) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
break;
}
if (strncmp(str, "vapic", 5) == 0) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
break;
}
}
return 1;
}
static int __init parse_amd_iommu_options(char *str)
{
if (!str)
return -EINVAL;
while (*str) {
if (strncmp(str, "fullflush", 9) == 0) {
pr_warn("amd_iommu=fullflush deprecated; use iommu.strict=1 instead\n");
iommu_set_dma_strict();
} else if (strncmp(str, "force_enable", 12) == 0) {
amd_iommu_force_enable = true;
} else if (strncmp(str, "off", 3) == 0) {
amd_iommu_disabled = true;
} else if (strncmp(str, "force_isolation", 15) == 0) {
amd_iommu_force_isolation = true;
} else if (strncmp(str, "pgtbl_v1", 8) == 0) {
amd_iommu_pgtable = AMD_IOMMU_V1;
} else if (strncmp(str, "pgtbl_v2", 8) == 0) {
amd_iommu_pgtable = AMD_IOMMU_V2;
} else if (strncmp(str, "irtcachedis", 11) == 0) {
amd_iommu_irtcachedis = true;
} else if (strncmp(str, "nohugepages", 11) == 0) {
pr_info("Restricting V1 page-sizes to 4KiB");
amd_iommu_pgsize_bitmap = AMD_IOMMU_PGSIZES_4K;
} else if (strncmp(str, "v2_pgsizes_only", 15) == 0) {
pr_info("Restricting V1 page-sizes to 4KiB/2MiB/1GiB");
amd_iommu_pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
} else {
pr_notice("Unknown option - '%s'\n", str);
}
str += strcspn(str, ",");
while (*str == ',')
str++;
}
return 1;
}
static int __init parse_ivrs_ioapic(char *str)
{
u32 seg = 0, bus, dev, fn;
int id, i;
u32 devid;
if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5)
goto found;
if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) {
pr_warn("ivrs_ioapic%s option format deprecated; use ivrs_ioapic=%d@%04x:%02x:%02x.%d instead\n",
str, id, seg, bus, dev, fn);
goto found;
}
pr_err("Invalid command line: ivrs_ioapic%s\n", str);
return 1;
found:
if (early_ioapic_map_size == EARLY_MAP_SIZE) {
pr_err("Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
str);
return 1;
}
devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn);
cmdline_maps = true;
i = early_ioapic_map_size++;
early_ioapic_map[i].id = id;
early_ioapic_map[i].devid = devid;
early_ioapic_map[i].cmd_line = true;
return 1;
}
static int __init parse_ivrs_hpet(char *str)
{
u32 seg = 0, bus, dev, fn;
int id, i;
u32 devid;
if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5)
goto found;
if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) {
pr_warn("ivrs_hpet%s option format deprecated; use ivrs_hpet=%d@%04x:%02x:%02x.%d instead\n",
str, id, seg, bus, dev, fn);
goto found;
}
pr_err("Invalid command line: ivrs_hpet%s\n", str);
return 1;
found:
if (early_hpet_map_size == EARLY_MAP_SIZE) {
pr_err("Early HPET map overflow - ignoring ivrs_hpet%s\n",
str);
return 1;
}
devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn);
cmdline_maps = true;
i = early_hpet_map_size++;
early_hpet_map[i].id = id;
early_hpet_map[i].devid = devid;
early_hpet_map[i].cmd_line = true;
return 1;
}
#define ACPIID_LEN (ACPIHID_UID_LEN + ACPIHID_HID_LEN)
static int __init parse_ivrs_acpihid(char *str)
{
u32 seg = 0, bus, dev, fn;
char *hid, *uid, *p, *addr;
char acpiid[ACPIID_LEN] = {0};
int i;
addr = strchr(str, '@');
if (!addr) {
addr = strchr(str, '=');
if (!addr)
goto not_found;
++addr;
if (strlen(addr) > ACPIID_LEN)
goto not_found;
if (sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid) == 4 ||
sscanf(str, "[%x:%x:%x.%x]=%s", &seg, &bus, &dev, &fn, acpiid) == 5) {
pr_warn("ivrs_acpihid%s option format deprecated; use ivrs_acpihid=%s@%04x:%02x:%02x.%d instead\n",
str, acpiid, seg, bus, dev, fn);
goto found;
}
goto not_found;
}
/* We have the '@', make it the terminator to get just the acpiid */
*addr++ = 0;
if (strlen(str) > ACPIID_LEN + 1)
goto not_found;
if (sscanf(str, "=%s", acpiid) != 1)
goto not_found;
if (sscanf(addr, "%x:%x.%x", &bus, &dev, &fn) == 3 ||
sscanf(addr, "%x:%x:%x.%x", &seg, &bus, &dev, &fn) == 4)
goto found;
not_found:
pr_err("Invalid command line: ivrs_acpihid%s\n", str);
return 1;
found:
p = acpiid;
hid = strsep(&p, ":");
uid = p;
if (!hid || !(*hid) || !uid) {
pr_err("Invalid command line: hid or uid\n");
return 1;
}
/*
* Ignore leading zeroes after ':', so e.g., AMDI0095:00
* will match AMDI0095:0 in the second strcmp in acpi_dev_hid_uid_match
*/
while (*uid == '0' && *(uid + 1))
uid++;
i = early_acpihid_map_size++;
memcpy(early_acpihid_map[i].hid, hid, strlen(hid));
memcpy(early_acpihid_map[i].uid, uid, strlen(uid));
early_acpihid_map[i].devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn);
early_acpihid_map[i].cmd_line = true;
return 1;
}
__setup("amd_iommu_dump", parse_amd_iommu_dump);
__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_intr=", parse_amd_iommu_intr);
__setup("ivrs_ioapic", parse_ivrs_ioapic);
__setup("ivrs_hpet", parse_ivrs_hpet);
__setup("ivrs_acpihid", parse_ivrs_acpihid);
bool amd_iommu_pasid_supported(void)
{
/* CPU page table size should match IOMMU guest page table size */
if (cpu_feature_enabled(X86_FEATURE_LA57) &&
amd_iommu_gpt_level != PAGE_MODE_5_LEVEL)
return false;
/*
* Since DTE[Mode]=0 is prohibited on SNP-enabled system
* (i.e. EFR[SNPSup]=1), IOMMUv2 page table cannot be used without
* setting up IOMMUv1 page table.
*/
return amd_iommu_gt_ppr_supported() && !amd_iommu_snp_en;
}
struct amd_iommu *get_amd_iommu(unsigned int idx)
{
unsigned int i = 0;
struct amd_iommu *iommu;
for_each_iommu(iommu)
if (i++ == idx)
return iommu;
return NULL;
}
/****************************************************************************
*
* IOMMU EFR Performance Counter support functionality. This code allows
* access to the IOMMU PC functionality.
*
****************************************************************************/
u8 amd_iommu_pc_get_max_banks(unsigned int idx)
{
struct amd_iommu *iommu = get_amd_iommu(idx);
if (iommu)
return iommu->max_banks;
return 0;
}
bool amd_iommu_pc_supported(void)
{
return amd_iommu_pc_present;
}
u8 amd_iommu_pc_get_max_counters(unsigned int idx)
{
struct amd_iommu *iommu = get_amd_iommu(idx);
if (iommu)
return iommu->max_counters;
return 0;
}
static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr,
u8 fxn, u64 *value, bool is_write)
{
u32 offset;
u32 max_offset_lim;
/* Make sure the IOMMU PC resource is available */
if (!amd_iommu_pc_present)
return -ENODEV;
/* Check for valid iommu and pc register indexing */
if (WARN_ON(!iommu || (fxn > 0x28) || (fxn & 7)))
return -ENODEV;
offset = (u32)(((0x40 | bank) << 12) | (cntr << 8) | fxn);
/* Limit the offset to the hw defined mmio region aperture */
max_offset_lim = (u32)(((0x40 | iommu->max_banks) << 12) |
(iommu->max_counters << 8) | 0x28);
if ((offset < MMIO_CNTR_REG_OFFSET) ||
(offset > max_offset_lim))
return -EINVAL;
if (is_write) {
u64 val = *value & GENMASK_ULL(47, 0);
writel((u32)val, iommu->mmio_base + offset);
writel((val >> 32), iommu->mmio_base + offset + 4);
} else {
*value = readl(iommu->mmio_base + offset + 4);
*value <<= 32;
*value |= readl(iommu->mmio_base + offset);
*value &= GENMASK_ULL(47, 0);
}
return 0;
}
int amd_iommu_pc_get_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
{
if (!iommu)
return -EINVAL;
return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, false);
}
int amd_iommu_pc_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
{
if (!iommu)
return -EINVAL;
return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, true);
}
#ifdef CONFIG_KVM_AMD_SEV
static int iommu_page_make_shared(void *page)
{
unsigned long paddr, pfn;
paddr = iommu_virt_to_phys(page);
/* Cbit maybe set in the paddr */
pfn = __sme_clr(paddr) >> PAGE_SHIFT;
if (!(pfn % PTRS_PER_PMD)) {
int ret, level;
bool assigned;
ret = snp_lookup_rmpentry(pfn, &assigned, &level);
if (ret) {
pr_warn("IOMMU PFN %lx RMP lookup failed, ret %d\n", pfn, ret);
return ret;
}
if (!assigned) {
pr_warn("IOMMU PFN %lx not assigned in RMP table\n", pfn);
return -EINVAL;
}
if (level > PG_LEVEL_4K) {
ret = psmash(pfn);
if (!ret)
goto done;
pr_warn("PSMASH failed for IOMMU PFN %lx huge RMP entry, ret: %d, level: %d\n",
pfn, ret, level);
return ret;
}
}
done:
return rmp_make_shared(pfn, PG_LEVEL_4K);
}
static int iommu_make_shared(void *va, size_t size)
{
void *page;
int ret;
if (!va)
return 0;
for (page = va; page < (va + size); page += PAGE_SIZE) {
ret = iommu_page_make_shared(page);
if (ret)
return ret;
}
return 0;
}
int amd_iommu_snp_disable(void)
{
struct amd_iommu *iommu;
int ret;
if (!amd_iommu_snp_en)
return 0;
for_each_iommu(iommu) {
ret = iommu_make_shared(iommu->evt_buf, EVT_BUFFER_SIZE);
if (ret)
return ret;
ret = iommu_make_shared(iommu->ppr_log, PPR_LOG_SIZE);
if (ret)
return ret;
ret = iommu_make_shared((void *)iommu->cmd_sem, PAGE_SIZE);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(amd_iommu_snp_disable);
#endif