linux/drivers/gpio/gpio-realtek-otto.c
Sander Vanheule ee0175b3b4 gpio: realtek-otto: switch to 32-bit I/O
By using 16-bit I/O on the GPIO peripheral, which is apparently not safe
on MIPS, the IMR can end up containing garbage. This then results in
interrupt triggers for lines that don't have an interrupt handler
associated. The irq_desc lookup fails, and the ISR will not be cleared,
keeping the CPU busy until reboot, or until another IMR operation
restores the correct value. This situation appears to happen very
rarely, for < 0.5% of IMR writes.

Instead of using 8-bit or 16-bit I/O operations on the 32-bit memory
mapped peripheral registers, switch to using 32-bit I/O only, operating
on the entire bank for all single bit line settings. For 2-bit line
settings, with 16-bit port values, stick to manual (un)packing.

This issue has been seen on RTL8382M (HPE 1920-16G), RTL8391M (Netgear
GS728TP v2), and RTL8393M (D-Link DGS-1210-52 F3, Zyxel GS1900-48).

Reported-by: Luiz Angelo Daros de Luca <luizluca@gmail.com> # DGS-1210-52
Reported-by: Birger Koblitz <mail@birger-koblitz.de> # GS728TP
Reported-by: Jan Hoffmann <jan@3e8.eu> # 1920-16G
Fixes: 0d82fb1127 ("gpio: Add Realtek Otto GPIO support")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Cc: Paul Cercueil <paul@crapouillou.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Bartosz Golaszewski <brgl@bgdev.pl>
2022-08-31 17:46:30 +02:00

460 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/gpio/driver.h>
#include <linux/cpumask.h>
#include <linux/irq.h>
#include <linux/minmax.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
/*
* Total register block size is 0x1C for one bank of four ports (A, B, C, D).
* An optional second bank, with ports E, F, G, and H, may be present, starting
* at register offset 0x1C.
*/
/*
* Pin select: (0) "normal", (1) "dedicate peripheral"
* Not used on RTL8380/RTL8390, peripheral selection is managed by control bits
* in the peripheral registers.
*/
#define REALTEK_GPIO_REG_CNR 0x00
/* Clear bit (0) for input, set bit (1) for output */
#define REALTEK_GPIO_REG_DIR 0x08
#define REALTEK_GPIO_REG_DATA 0x0C
/* Read bit for IRQ status, write 1 to clear IRQ */
#define REALTEK_GPIO_REG_ISR 0x10
/* Two bits per GPIO in IMR registers */
#define REALTEK_GPIO_REG_IMR 0x14
#define REALTEK_GPIO_REG_IMR_AB 0x14
#define REALTEK_GPIO_REG_IMR_CD 0x18
#define REALTEK_GPIO_IMR_LINE_MASK GENMASK(1, 0)
#define REALTEK_GPIO_IRQ_EDGE_FALLING 1
#define REALTEK_GPIO_IRQ_EDGE_RISING 2
#define REALTEK_GPIO_IRQ_EDGE_BOTH 3
#define REALTEK_GPIO_MAX 32
#define REALTEK_GPIO_PORTS_PER_BANK 4
/**
* realtek_gpio_ctrl - Realtek Otto GPIO driver data
*
* @gc: Associated gpio_chip instance
* @base: Base address of the register block for a GPIO bank
* @lock: Lock for accessing the IRQ registers and values
* @intr_mask: Mask for interrupts lines
* @intr_type: Interrupt type selection
* @bank_read: Read a bank setting as a single 32-bit value
* @bank_write: Write a bank setting as a single 32-bit value
* @imr_line_pos: Bit shift of an IRQ line's IMR value.
*
* The DIR, DATA, and ISR registers consist of four 8-bit port values, packed
* into a single 32-bit register. Use @bank_read (@bank_write) to get (assign)
* a value from (to) these registers. The IMR register consists of four 16-bit
* port values, packed into two 32-bit registers. Use @imr_line_pos to get the
* bit shift of the 2-bit field for a line's IMR settings. Shifts larger than
* 32 overflow into the second register.
*
* Because the interrupt mask register (IMR) combines the function of IRQ type
* selection and masking, two extra values are stored. @intr_mask is used to
* mask/unmask the interrupts for a GPIO line, and @intr_type is used to store
* the selected interrupt types. The logical AND of these values is written to
* IMR on changes.
*/
struct realtek_gpio_ctrl {
struct gpio_chip gc;
void __iomem *base;
void __iomem *cpumask_base;
struct cpumask cpu_irq_maskable;
raw_spinlock_t lock;
u8 intr_mask[REALTEK_GPIO_MAX];
u8 intr_type[REALTEK_GPIO_MAX];
u32 (*bank_read)(void __iomem *reg);
void (*bank_write)(void __iomem *reg, u32 value);
unsigned int (*line_imr_pos)(unsigned int line);
};
/* Expand with more flags as devices with other quirks are added */
enum realtek_gpio_flags {
/*
* Allow disabling interrupts, for cases where the port order is
* unknown. This may result in a port mismatch between ISR and IMR.
* An interrupt would appear to come from a different line than the
* line the IRQ handler was assigned to, causing uncaught interrupts.
*/
GPIO_INTERRUPTS_DISABLED = BIT(0),
/*
* Port order is reversed, meaning DCBA register layout for 1-bit
* fields, and [BA, DC] for 2-bit fields.
*/
GPIO_PORTS_REVERSED = BIT(1),
/*
* Interrupts can be enabled per cpu. This requires a secondary IO
* range, where the per-cpu enable masks are located.
*/
GPIO_INTERRUPTS_PER_CPU = BIT(2),
};
static struct realtek_gpio_ctrl *irq_data_to_ctrl(struct irq_data *data)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(data);
return container_of(gc, struct realtek_gpio_ctrl, gc);
}
/*
* Normal port order register access
*
* Port information is stored with the first port at offset 0, followed by the
* second, etc. Most registers store one bit per GPIO and use a u8 value per
* port. The two interrupt mask registers store two bits per GPIO, so use u16
* values.
*/
static u32 realtek_gpio_bank_read_swapped(void __iomem *reg)
{
return ioread32be(reg);
}
static void realtek_gpio_bank_write_swapped(void __iomem *reg, u32 value)
{
iowrite32be(value, reg);
}
static unsigned int realtek_gpio_line_imr_pos_swapped(unsigned int line)
{
unsigned int port_pin = line % 8;
unsigned int port = line / 8;
return 2 * (8 * (port ^ 1) + port_pin);
}
/*
* Reversed port order register access
*
* For registers with one bit per GPIO, all ports are stored as u8-s in one
* register in reversed order. The two interrupt mask registers store two bits
* per GPIO, so use u16 values. The first register contains ports 1 and 0, the
* second ports 3 and 2.
*/
static u32 realtek_gpio_bank_read(void __iomem *reg)
{
return ioread32(reg);
}
static void realtek_gpio_bank_write(void __iomem *reg, u32 value)
{
iowrite32(value, reg);
}
static unsigned int realtek_gpio_line_imr_pos(unsigned int line)
{
return 2 * line;
}
static void realtek_gpio_clear_isr(struct realtek_gpio_ctrl *ctrl, u32 mask)
{
ctrl->bank_write(ctrl->base + REALTEK_GPIO_REG_ISR, mask);
}
static u32 realtek_gpio_read_isr(struct realtek_gpio_ctrl *ctrl)
{
return ctrl->bank_read(ctrl->base + REALTEK_GPIO_REG_ISR);
}
/* Set the rising and falling edge mask bits for a GPIO pin */
static void realtek_gpio_update_line_imr(struct realtek_gpio_ctrl *ctrl, unsigned int line)
{
void __iomem *reg = ctrl->base + REALTEK_GPIO_REG_IMR;
unsigned int line_shift = ctrl->line_imr_pos(line);
unsigned int shift = line_shift % 32;
u32 irq_type = ctrl->intr_type[line];
u32 irq_mask = ctrl->intr_mask[line];
u32 reg_val;
reg += 4 * (line_shift / 32);
reg_val = ioread32(reg);
reg_val &= ~(REALTEK_GPIO_IMR_LINE_MASK << shift);
reg_val |= (irq_type & irq_mask & REALTEK_GPIO_IMR_LINE_MASK) << shift;
iowrite32(reg_val, reg);
}
static void realtek_gpio_irq_ack(struct irq_data *data)
{
struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
irq_hw_number_t line = irqd_to_hwirq(data);
realtek_gpio_clear_isr(ctrl, BIT(line));
}
static void realtek_gpio_irq_unmask(struct irq_data *data)
{
struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
unsigned int line = irqd_to_hwirq(data);
unsigned long flags;
gpiochip_enable_irq(&ctrl->gc, line);
raw_spin_lock_irqsave(&ctrl->lock, flags);
ctrl->intr_mask[line] = REALTEK_GPIO_IMR_LINE_MASK;
realtek_gpio_update_line_imr(ctrl, line);
raw_spin_unlock_irqrestore(&ctrl->lock, flags);
}
static void realtek_gpio_irq_mask(struct irq_data *data)
{
struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
unsigned int line = irqd_to_hwirq(data);
unsigned long flags;
raw_spin_lock_irqsave(&ctrl->lock, flags);
ctrl->intr_mask[line] = 0;
realtek_gpio_update_line_imr(ctrl, line);
raw_spin_unlock_irqrestore(&ctrl->lock, flags);
gpiochip_disable_irq(&ctrl->gc, line);
}
static int realtek_gpio_irq_set_type(struct irq_data *data, unsigned int flow_type)
{
struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
unsigned int line = irqd_to_hwirq(data);
unsigned long flags;
u8 type;
switch (flow_type & IRQ_TYPE_SENSE_MASK) {
case IRQ_TYPE_EDGE_FALLING:
type = REALTEK_GPIO_IRQ_EDGE_FALLING;
break;
case IRQ_TYPE_EDGE_RISING:
type = REALTEK_GPIO_IRQ_EDGE_RISING;
break;
case IRQ_TYPE_EDGE_BOTH:
type = REALTEK_GPIO_IRQ_EDGE_BOTH;
break;
default:
return -EINVAL;
}
irq_set_handler_locked(data, handle_edge_irq);
raw_spin_lock_irqsave(&ctrl->lock, flags);
ctrl->intr_type[line] = type;
realtek_gpio_update_line_imr(ctrl, line);
raw_spin_unlock_irqrestore(&ctrl->lock, flags);
return 0;
}
static void realtek_gpio_irq_handler(struct irq_desc *desc)
{
struct gpio_chip *gc = irq_desc_get_handler_data(desc);
struct realtek_gpio_ctrl *ctrl = gpiochip_get_data(gc);
struct irq_chip *irq_chip = irq_desc_get_chip(desc);
unsigned long status;
int offset;
chained_irq_enter(irq_chip, desc);
status = realtek_gpio_read_isr(ctrl);
for_each_set_bit(offset, &status, gc->ngpio)
generic_handle_domain_irq(gc->irq.domain, offset);
chained_irq_exit(irq_chip, desc);
}
static inline void __iomem *realtek_gpio_irq_cpu_mask(struct realtek_gpio_ctrl *ctrl, int cpu)
{
return ctrl->cpumask_base + REALTEK_GPIO_PORTS_PER_BANK * cpu;
}
static int realtek_gpio_irq_set_affinity(struct irq_data *data,
const struct cpumask *dest, bool force)
{
struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data);
unsigned int line = irqd_to_hwirq(data);
void __iomem *irq_cpu_mask;
unsigned long flags;
int cpu;
u32 v;
if (!ctrl->cpumask_base)
return -ENXIO;
raw_spin_lock_irqsave(&ctrl->lock, flags);
for_each_cpu(cpu, &ctrl->cpu_irq_maskable) {
irq_cpu_mask = realtek_gpio_irq_cpu_mask(ctrl, cpu);
v = ctrl->bank_read(irq_cpu_mask);
if (cpumask_test_cpu(cpu, dest))
v |= BIT(line);
else
v &= ~BIT(line);
ctrl->bank_write(irq_cpu_mask, v);
}
raw_spin_unlock_irqrestore(&ctrl->lock, flags);
irq_data_update_effective_affinity(data, dest);
return 0;
}
static int realtek_gpio_irq_init(struct gpio_chip *gc)
{
struct realtek_gpio_ctrl *ctrl = gpiochip_get_data(gc);
u32 mask_all = GENMASK(gc->ngpio - 1, 0);
unsigned int line;
int cpu;
for (line = 0; line < gc->ngpio; line++)
realtek_gpio_update_line_imr(ctrl, line);
realtek_gpio_clear_isr(ctrl, mask_all);
for_each_cpu(cpu, &ctrl->cpu_irq_maskable)
ctrl->bank_write(realtek_gpio_irq_cpu_mask(ctrl, cpu), mask_all);
return 0;
}
static const struct irq_chip realtek_gpio_irq_chip = {
.name = "realtek-otto-gpio",
.irq_ack = realtek_gpio_irq_ack,
.irq_mask = realtek_gpio_irq_mask,
.irq_unmask = realtek_gpio_irq_unmask,
.irq_set_type = realtek_gpio_irq_set_type,
.irq_set_affinity = realtek_gpio_irq_set_affinity,
.flags = IRQCHIP_IMMUTABLE,
GPIOCHIP_IRQ_RESOURCE_HELPERS,
};
static const struct of_device_id realtek_gpio_of_match[] = {
{
.compatible = "realtek,otto-gpio",
.data = (void *)GPIO_INTERRUPTS_DISABLED,
},
{
.compatible = "realtek,rtl8380-gpio",
},
{
.compatible = "realtek,rtl8390-gpio",
},
{
.compatible = "realtek,rtl9300-gpio",
.data = (void *)(GPIO_PORTS_REVERSED | GPIO_INTERRUPTS_PER_CPU)
},
{
.compatible = "realtek,rtl9310-gpio",
},
{}
};
MODULE_DEVICE_TABLE(of, realtek_gpio_of_match);
static int realtek_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
unsigned long bgpio_flags;
unsigned int dev_flags;
struct gpio_irq_chip *girq;
struct realtek_gpio_ctrl *ctrl;
struct resource *res;
u32 ngpios;
unsigned int nr_cpus;
int cpu, err, irq;
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
dev_flags = (unsigned int) device_get_match_data(dev);
ngpios = REALTEK_GPIO_MAX;
device_property_read_u32(dev, "ngpios", &ngpios);
if (ngpios > REALTEK_GPIO_MAX) {
dev_err(&pdev->dev, "invalid ngpios (max. %d)\n",
REALTEK_GPIO_MAX);
return -EINVAL;
}
ctrl->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctrl->base))
return PTR_ERR(ctrl->base);
raw_spin_lock_init(&ctrl->lock);
if (dev_flags & GPIO_PORTS_REVERSED) {
bgpio_flags = 0;
ctrl->bank_read = realtek_gpio_bank_read;
ctrl->bank_write = realtek_gpio_bank_write;
ctrl->line_imr_pos = realtek_gpio_line_imr_pos;
} else {
bgpio_flags = BGPIOF_BIG_ENDIAN_BYTE_ORDER;
ctrl->bank_read = realtek_gpio_bank_read_swapped;
ctrl->bank_write = realtek_gpio_bank_write_swapped;
ctrl->line_imr_pos = realtek_gpio_line_imr_pos_swapped;
}
err = bgpio_init(&ctrl->gc, dev, 4,
ctrl->base + REALTEK_GPIO_REG_DATA, NULL, NULL,
ctrl->base + REALTEK_GPIO_REG_DIR, NULL,
bgpio_flags);
if (err) {
dev_err(dev, "unable to init generic GPIO");
return err;
}
ctrl->gc.ngpio = ngpios;
ctrl->gc.owner = THIS_MODULE;
irq = platform_get_irq_optional(pdev, 0);
if (!(dev_flags & GPIO_INTERRUPTS_DISABLED) && irq > 0) {
girq = &ctrl->gc.irq;
gpio_irq_chip_set_chip(girq, &realtek_gpio_irq_chip);
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
girq->parent_handler = realtek_gpio_irq_handler;
girq->num_parents = 1;
girq->parents = devm_kcalloc(dev, girq->num_parents,
sizeof(*girq->parents), GFP_KERNEL);
if (!girq->parents)
return -ENOMEM;
girq->parents[0] = irq;
girq->init_hw = realtek_gpio_irq_init;
}
cpumask_clear(&ctrl->cpu_irq_maskable);
if ((dev_flags & GPIO_INTERRUPTS_PER_CPU) && irq > 0) {
ctrl->cpumask_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
if (IS_ERR(ctrl->cpumask_base))
return dev_err_probe(dev, PTR_ERR(ctrl->cpumask_base),
"missing CPU IRQ mask registers");
nr_cpus = resource_size(res) / REALTEK_GPIO_PORTS_PER_BANK;
nr_cpus = min(nr_cpus, num_present_cpus());
for (cpu = 0; cpu < nr_cpus; cpu++)
cpumask_set_cpu(cpu, &ctrl->cpu_irq_maskable);
}
return devm_gpiochip_add_data(dev, &ctrl->gc, ctrl);
}
static struct platform_driver realtek_gpio_driver = {
.driver = {
.name = "realtek-otto-gpio",
.of_match_table = realtek_gpio_of_match,
},
.probe = realtek_gpio_probe,
};
module_platform_driver(realtek_gpio_driver);
MODULE_DESCRIPTION("Realtek Otto GPIO support");
MODULE_AUTHOR("Sander Vanheule <sander@svanheule.net>");
MODULE_LICENSE("GPL v2");