linux/drivers/comedi/drivers/me4000.c
Ian Abbott fade5e5b0b comedi: comedi_8254: Replace comedi_8254_init() and comedi_8254_mm_init()
`comedi_8254_init()` and `comedi_8254_mm_init()` return `NULL` on
failure, but the failure is not necessarily due to lack of memory.
Change them to return an `ERR_PTR` value on failure and rename the
functions to make it obvious the API has changed.  `comedi_8254_init()`
has been replaced with `comedi_8254_io_alloc()`, and
`comedi_8254_mm_init()` has been replaced with `comedi_8254_mm_alloc()`.

Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Ian Abbott <abbotti@mev.co.uk>
Link: https://lore.kernel.org/r/20230913170712.111719-4-abbotti@mev.co.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-05 13:34:04 +02:00

1278 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* me4000.c
* Source code for the Meilhaus ME-4000 board family.
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 2000 David A. Schleef <ds@schleef.org>
*/
/*
* Driver: me4000
* Description: Meilhaus ME-4000 series boards
* Devices: [Meilhaus] ME-4650 (me4000), ME-4670i, ME-4680, ME-4680i,
* ME-4680is
* Author: gg (Guenter Gebhardt <g.gebhardt@meilhaus.com>)
* Updated: Mon, 18 Mar 2002 15:34:01 -0800
* Status: untested
*
* Supports:
* - Analog Input
* - Analog Output
* - Digital I/O
* - Counter
*
* Configuration Options: not applicable, uses PCI auto config
*
* The firmware required by these boards is available in the
* comedi_nonfree_firmware tarball available from
* https://www.comedi.org.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/comedi/comedi_pci.h>
#include <linux/comedi/comedi_8254.h>
#include "plx9052.h"
#define ME4000_FIRMWARE "me4000_firmware.bin"
/*
* ME4000 Register map and bit defines
*/
#define ME4000_AO_CHAN(x) ((x) * 0x18)
#define ME4000_AO_CTRL_REG(x) (0x00 + ME4000_AO_CHAN(x))
#define ME4000_AO_CTRL_MODE_0 BIT(0)
#define ME4000_AO_CTRL_MODE_1 BIT(1)
#define ME4000_AO_CTRL_STOP BIT(2)
#define ME4000_AO_CTRL_ENABLE_FIFO BIT(3)
#define ME4000_AO_CTRL_ENABLE_EX_TRIG BIT(4)
#define ME4000_AO_CTRL_EX_TRIG_EDGE BIT(5)
#define ME4000_AO_CTRL_IMMEDIATE_STOP BIT(7)
#define ME4000_AO_CTRL_ENABLE_DO BIT(8)
#define ME4000_AO_CTRL_ENABLE_IRQ BIT(9)
#define ME4000_AO_CTRL_RESET_IRQ BIT(10)
#define ME4000_AO_STATUS_REG(x) (0x04 + ME4000_AO_CHAN(x))
#define ME4000_AO_STATUS_FSM BIT(0)
#define ME4000_AO_STATUS_FF BIT(1)
#define ME4000_AO_STATUS_HF BIT(2)
#define ME4000_AO_STATUS_EF BIT(3)
#define ME4000_AO_FIFO_REG(x) (0x08 + ME4000_AO_CHAN(x))
#define ME4000_AO_SINGLE_REG(x) (0x0c + ME4000_AO_CHAN(x))
#define ME4000_AO_TIMER_REG(x) (0x10 + ME4000_AO_CHAN(x))
#define ME4000_AI_CTRL_REG 0x74
#define ME4000_AI_STATUS_REG 0x74
#define ME4000_AI_CTRL_MODE_0 BIT(0)
#define ME4000_AI_CTRL_MODE_1 BIT(1)
#define ME4000_AI_CTRL_MODE_2 BIT(2)
#define ME4000_AI_CTRL_SAMPLE_HOLD BIT(3)
#define ME4000_AI_CTRL_IMMEDIATE_STOP BIT(4)
#define ME4000_AI_CTRL_STOP BIT(5)
#define ME4000_AI_CTRL_CHANNEL_FIFO BIT(6)
#define ME4000_AI_CTRL_DATA_FIFO BIT(7)
#define ME4000_AI_CTRL_FULLSCALE BIT(8)
#define ME4000_AI_CTRL_OFFSET BIT(9)
#define ME4000_AI_CTRL_EX_TRIG_ANALOG BIT(10)
#define ME4000_AI_CTRL_EX_TRIG BIT(11)
#define ME4000_AI_CTRL_EX_TRIG_FALLING BIT(12)
#define ME4000_AI_CTRL_EX_IRQ BIT(13)
#define ME4000_AI_CTRL_EX_IRQ_RESET BIT(14)
#define ME4000_AI_CTRL_LE_IRQ BIT(15)
#define ME4000_AI_CTRL_LE_IRQ_RESET BIT(16)
#define ME4000_AI_CTRL_HF_IRQ BIT(17)
#define ME4000_AI_CTRL_HF_IRQ_RESET BIT(18)
#define ME4000_AI_CTRL_SC_IRQ BIT(19)
#define ME4000_AI_CTRL_SC_IRQ_RESET BIT(20)
#define ME4000_AI_CTRL_SC_RELOAD BIT(21)
#define ME4000_AI_STATUS_EF_CHANNEL BIT(22)
#define ME4000_AI_STATUS_HF_CHANNEL BIT(23)
#define ME4000_AI_STATUS_FF_CHANNEL BIT(24)
#define ME4000_AI_STATUS_EF_DATA BIT(25)
#define ME4000_AI_STATUS_HF_DATA BIT(26)
#define ME4000_AI_STATUS_FF_DATA BIT(27)
#define ME4000_AI_STATUS_LE BIT(28)
#define ME4000_AI_STATUS_FSM BIT(29)
#define ME4000_AI_CTRL_EX_TRIG_BOTH BIT(31)
#define ME4000_AI_CHANNEL_LIST_REG 0x78
#define ME4000_AI_LIST_INPUT_DIFFERENTIAL BIT(5)
#define ME4000_AI_LIST_RANGE(x) ((3 - ((x) & 3)) << 6)
#define ME4000_AI_LIST_LAST_ENTRY BIT(8)
#define ME4000_AI_DATA_REG 0x7c
#define ME4000_AI_CHAN_TIMER_REG 0x80
#define ME4000_AI_CHAN_PRE_TIMER_REG 0x84
#define ME4000_AI_SCAN_TIMER_LOW_REG 0x88
#define ME4000_AI_SCAN_TIMER_HIGH_REG 0x8c
#define ME4000_AI_SCAN_PRE_TIMER_LOW_REG 0x90
#define ME4000_AI_SCAN_PRE_TIMER_HIGH_REG 0x94
#define ME4000_AI_START_REG 0x98
#define ME4000_IRQ_STATUS_REG 0x9c
#define ME4000_IRQ_STATUS_EX BIT(0)
#define ME4000_IRQ_STATUS_LE BIT(1)
#define ME4000_IRQ_STATUS_AI_HF BIT(2)
#define ME4000_IRQ_STATUS_AO_0_HF BIT(3)
#define ME4000_IRQ_STATUS_AO_1_HF BIT(4)
#define ME4000_IRQ_STATUS_AO_2_HF BIT(5)
#define ME4000_IRQ_STATUS_AO_3_HF BIT(6)
#define ME4000_IRQ_STATUS_SC BIT(7)
#define ME4000_DIO_PORT_0_REG 0xa0
#define ME4000_DIO_PORT_1_REG 0xa4
#define ME4000_DIO_PORT_2_REG 0xa8
#define ME4000_DIO_PORT_3_REG 0xac
#define ME4000_DIO_DIR_REG 0xb0
#define ME4000_AO_LOADSETREG_XX 0xb4
#define ME4000_DIO_CTRL_REG 0xb8
#define ME4000_DIO_CTRL_MODE_0 BIT(0)
#define ME4000_DIO_CTRL_MODE_1 BIT(1)
#define ME4000_DIO_CTRL_MODE_2 BIT(2)
#define ME4000_DIO_CTRL_MODE_3 BIT(3)
#define ME4000_DIO_CTRL_MODE_4 BIT(4)
#define ME4000_DIO_CTRL_MODE_5 BIT(5)
#define ME4000_DIO_CTRL_MODE_6 BIT(6)
#define ME4000_DIO_CTRL_MODE_7 BIT(7)
#define ME4000_DIO_CTRL_FUNCTION_0 BIT(8)
#define ME4000_DIO_CTRL_FUNCTION_1 BIT(9)
#define ME4000_DIO_CTRL_FIFO_HIGH_0 BIT(10)
#define ME4000_DIO_CTRL_FIFO_HIGH_1 BIT(11)
#define ME4000_DIO_CTRL_FIFO_HIGH_2 BIT(12)
#define ME4000_DIO_CTRL_FIFO_HIGH_3 BIT(13)
#define ME4000_AO_DEMUX_ADJUST_REG 0xbc
#define ME4000_AO_DEMUX_ADJUST_VALUE 0x4c
#define ME4000_AI_SAMPLE_COUNTER_REG 0xc0
#define ME4000_AI_FIFO_COUNT 2048
#define ME4000_AI_MIN_TICKS 66
#define ME4000_AI_MIN_SAMPLE_TIME 2000
#define ME4000_AI_CHANNEL_LIST_COUNT 1024
struct me4000_private {
unsigned long plx_regbase;
unsigned int ai_ctrl_mode;
unsigned int ai_init_ticks;
unsigned int ai_scan_ticks;
unsigned int ai_chan_ticks;
};
enum me4000_boardid {
BOARD_ME4650,
BOARD_ME4660,
BOARD_ME4660I,
BOARD_ME4660S,
BOARD_ME4660IS,
BOARD_ME4670,
BOARD_ME4670I,
BOARD_ME4670S,
BOARD_ME4670IS,
BOARD_ME4680,
BOARD_ME4680I,
BOARD_ME4680S,
BOARD_ME4680IS,
};
struct me4000_board {
const char *name;
int ai_nchan;
unsigned int can_do_diff_ai:1;
unsigned int can_do_sh_ai:1; /* sample & hold (8 channels) */
unsigned int ex_trig_analog:1;
unsigned int has_ao:1;
unsigned int has_ao_fifo:1;
unsigned int has_counter:1;
};
static const struct me4000_board me4000_boards[] = {
[BOARD_ME4650] = {
.name = "ME-4650",
.ai_nchan = 16,
},
[BOARD_ME4660] = {
.name = "ME-4660",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.has_counter = 1,
},
[BOARD_ME4660I] = {
.name = "ME-4660i",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.has_counter = 1,
},
[BOARD_ME4660S] = {
.name = "ME-4660s",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.can_do_sh_ai = 1,
.has_counter = 1,
},
[BOARD_ME4660IS] = {
.name = "ME-4660is",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.can_do_sh_ai = 1,
.has_counter = 1,
},
[BOARD_ME4670] = {
.name = "ME-4670",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_counter = 1,
},
[BOARD_ME4670I] = {
.name = "ME-4670i",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_counter = 1,
},
[BOARD_ME4670S] = {
.name = "ME-4670s",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.can_do_sh_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_counter = 1,
},
[BOARD_ME4670IS] = {
.name = "ME-4670is",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.can_do_sh_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_counter = 1,
},
[BOARD_ME4680] = {
.name = "ME-4680",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_ao_fifo = 1,
.has_counter = 1,
},
[BOARD_ME4680I] = {
.name = "ME-4680i",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_ao_fifo = 1,
.has_counter = 1,
},
[BOARD_ME4680S] = {
.name = "ME-4680s",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.can_do_sh_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_ao_fifo = 1,
.has_counter = 1,
},
[BOARD_ME4680IS] = {
.name = "ME-4680is",
.ai_nchan = 32,
.can_do_diff_ai = 1,
.can_do_sh_ai = 1,
.ex_trig_analog = 1,
.has_ao = 1,
.has_ao_fifo = 1,
.has_counter = 1,
},
};
/*
* NOTE: the ranges here are inverted compared to the values
* written to the ME4000_AI_CHANNEL_LIST_REG,
*
* The ME4000_AI_LIST_RANGE() macro handles the inversion.
*/
static const struct comedi_lrange me4000_ai_range = {
4, {
UNI_RANGE(2.5),
UNI_RANGE(10),
BIP_RANGE(2.5),
BIP_RANGE(10)
}
};
static int me4000_xilinx_download(struct comedi_device *dev,
const u8 *data, size_t size,
unsigned long context)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct me4000_private *devpriv = dev->private;
unsigned long xilinx_iobase = pci_resource_start(pcidev, 5);
unsigned int file_length;
unsigned int val;
unsigned int i;
if (!xilinx_iobase)
return -ENODEV;
/*
* Set PLX local interrupt 2 polarity to high.
* Interrupt is thrown by init pin of xilinx.
*/
outl(PLX9052_INTCSR_LI2POL, devpriv->plx_regbase + PLX9052_INTCSR);
/* Set /CS and /WRITE of the Xilinx */
val = inl(devpriv->plx_regbase + PLX9052_CNTRL);
val |= PLX9052_CNTRL_UIO2_DATA;
outl(val, devpriv->plx_regbase + PLX9052_CNTRL);
/* Init Xilinx with CS1 */
inb(xilinx_iobase + 0xC8);
/* Wait until /INIT pin is set */
usleep_range(20, 1000);
val = inl(devpriv->plx_regbase + PLX9052_INTCSR);
if (!(val & PLX9052_INTCSR_LI2STAT)) {
dev_err(dev->class_dev, "Can't init Xilinx\n");
return -EIO;
}
/* Reset /CS and /WRITE of the Xilinx */
val = inl(devpriv->plx_regbase + PLX9052_CNTRL);
val &= ~PLX9052_CNTRL_UIO2_DATA;
outl(val, devpriv->plx_regbase + PLX9052_CNTRL);
/* Download Xilinx firmware */
file_length = (((unsigned int)data[0] & 0xff) << 24) +
(((unsigned int)data[1] & 0xff) << 16) +
(((unsigned int)data[2] & 0xff) << 8) +
((unsigned int)data[3] & 0xff);
usleep_range(10, 1000);
for (i = 0; i < file_length; i++) {
outb(data[16 + i], xilinx_iobase);
usleep_range(10, 1000);
/* Check if BUSY flag is low */
val = inl(devpriv->plx_regbase + PLX9052_CNTRL);
if (val & PLX9052_CNTRL_UIO1_DATA) {
dev_err(dev->class_dev,
"Xilinx is still busy (i = %d)\n", i);
return -EIO;
}
}
/* If done flag is high download was successful */
val = inl(devpriv->plx_regbase + PLX9052_CNTRL);
if (!(val & PLX9052_CNTRL_UIO0_DATA)) {
dev_err(dev->class_dev, "DONE flag is not set\n");
dev_err(dev->class_dev, "Download not successful\n");
return -EIO;
}
/* Set /CS and /WRITE */
val = inl(devpriv->plx_regbase + PLX9052_CNTRL);
val |= PLX9052_CNTRL_UIO2_DATA;
outl(val, devpriv->plx_regbase + PLX9052_CNTRL);
return 0;
}
static void me4000_ai_reset(struct comedi_device *dev)
{
unsigned int ctrl;
/* Stop any running conversion */
ctrl = inl(dev->iobase + ME4000_AI_CTRL_REG);
ctrl |= ME4000_AI_CTRL_STOP | ME4000_AI_CTRL_IMMEDIATE_STOP;
outl(ctrl, dev->iobase + ME4000_AI_CTRL_REG);
/* Clear the control register */
outl(0x0, dev->iobase + ME4000_AI_CTRL_REG);
}
static void me4000_reset(struct comedi_device *dev)
{
struct me4000_private *devpriv = dev->private;
unsigned int val;
int chan;
/* Disable interrupts on the PLX */
outl(0, devpriv->plx_regbase + PLX9052_INTCSR);
/* Software reset the PLX */
val = inl(devpriv->plx_regbase + PLX9052_CNTRL);
val |= PLX9052_CNTRL_PCI_RESET;
outl(val, devpriv->plx_regbase + PLX9052_CNTRL);
val &= ~PLX9052_CNTRL_PCI_RESET;
outl(val, devpriv->plx_regbase + PLX9052_CNTRL);
/* 0x8000 to the DACs means an output voltage of 0V */
for (chan = 0; chan < 4; chan++)
outl(0x8000, dev->iobase + ME4000_AO_SINGLE_REG(chan));
me4000_ai_reset(dev);
/* Set both stop bits in the analog output control register */
val = ME4000_AO_CTRL_IMMEDIATE_STOP | ME4000_AO_CTRL_STOP;
for (chan = 0; chan < 4; chan++)
outl(val, dev->iobase + ME4000_AO_CTRL_REG(chan));
/* Set the adustment register for AO demux */
outl(ME4000_AO_DEMUX_ADJUST_VALUE,
dev->iobase + ME4000_AO_DEMUX_ADJUST_REG);
/*
* Set digital I/O direction for port 0
* to output on isolated versions
*/
if (!(inl(dev->iobase + ME4000_DIO_DIR_REG) & 0x1))
outl(0x1, dev->iobase + ME4000_DIO_CTRL_REG);
}
static unsigned int me4000_ai_get_sample(struct comedi_device *dev,
struct comedi_subdevice *s)
{
unsigned int val;
/* read two's complement value and munge to offset binary */
val = inl(dev->iobase + ME4000_AI_DATA_REG);
return comedi_offset_munge(s, val);
}
static int me4000_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = inl(dev->iobase + ME4000_AI_STATUS_REG);
if (status & ME4000_AI_STATUS_EF_DATA)
return 0;
return -EBUSY;
}
static int me4000_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
unsigned int aref = CR_AREF(insn->chanspec);
unsigned int entry;
int ret = 0;
int i;
entry = chan | ME4000_AI_LIST_RANGE(range);
if (aref == AREF_DIFF) {
if (!(s->subdev_flags & SDF_DIFF)) {
dev_err(dev->class_dev,
"Differential inputs are not available\n");
return -EINVAL;
}
if (!comedi_range_is_bipolar(s, range)) {
dev_err(dev->class_dev,
"Range must be bipolar when aref = diff\n");
return -EINVAL;
}
if (chan >= (s->n_chan / 2)) {
dev_err(dev->class_dev,
"Analog input is not available\n");
return -EINVAL;
}
entry |= ME4000_AI_LIST_INPUT_DIFFERENTIAL;
}
entry |= ME4000_AI_LIST_LAST_ENTRY;
/* Enable channel list and data fifo for single acquisition mode */
outl(ME4000_AI_CTRL_CHANNEL_FIFO | ME4000_AI_CTRL_DATA_FIFO,
dev->iobase + ME4000_AI_CTRL_REG);
/* Generate channel list entry */
outl(entry, dev->iobase + ME4000_AI_CHANNEL_LIST_REG);
/* Set the timer to maximum sample rate */
outl(ME4000_AI_MIN_TICKS, dev->iobase + ME4000_AI_CHAN_TIMER_REG);
outl(ME4000_AI_MIN_TICKS, dev->iobase + ME4000_AI_CHAN_PRE_TIMER_REG);
for (i = 0; i < insn->n; i++) {
unsigned int val;
/* start conversion by dummy read */
inl(dev->iobase + ME4000_AI_START_REG);
ret = comedi_timeout(dev, s, insn, me4000_ai_eoc, 0);
if (ret)
break;
val = me4000_ai_get_sample(dev, s);
data[i] = comedi_offset_munge(s, val);
}
me4000_ai_reset(dev);
return ret ? ret : insn->n;
}
static int me4000_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s)
{
me4000_ai_reset(dev);
return 0;
}
static int me4000_ai_check_chanlist(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
unsigned int aref0 = CR_AREF(cmd->chanlist[0]);
int i;
for (i = 0; i < cmd->chanlist_len; i++) {
unsigned int chan = CR_CHAN(cmd->chanlist[i]);
unsigned int range = CR_RANGE(cmd->chanlist[i]);
unsigned int aref = CR_AREF(cmd->chanlist[i]);
if (aref != aref0) {
dev_dbg(dev->class_dev,
"Mode is not equal for all entries\n");
return -EINVAL;
}
if (aref == AREF_DIFF) {
if (!(s->subdev_flags & SDF_DIFF)) {
dev_err(dev->class_dev,
"Differential inputs are not available\n");
return -EINVAL;
}
if (chan >= (s->n_chan / 2)) {
dev_dbg(dev->class_dev,
"Channel number to high\n");
return -EINVAL;
}
if (!comedi_range_is_bipolar(s, range)) {
dev_dbg(dev->class_dev,
"Bipolar is not selected in differential mode\n");
return -EINVAL;
}
}
}
return 0;
}
static void me4000_ai_round_cmd_args(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
struct me4000_private *devpriv = dev->private;
int rest;
devpriv->ai_init_ticks = 0;
devpriv->ai_scan_ticks = 0;
devpriv->ai_chan_ticks = 0;
if (cmd->start_arg) {
devpriv->ai_init_ticks = (cmd->start_arg * 33) / 1000;
rest = (cmd->start_arg * 33) % 1000;
if ((cmd->flags & CMDF_ROUND_MASK) == CMDF_ROUND_NEAREST) {
if (rest > 33)
devpriv->ai_init_ticks++;
} else if ((cmd->flags & CMDF_ROUND_MASK) == CMDF_ROUND_UP) {
if (rest)
devpriv->ai_init_ticks++;
}
}
if (cmd->scan_begin_arg) {
devpriv->ai_scan_ticks = (cmd->scan_begin_arg * 33) / 1000;
rest = (cmd->scan_begin_arg * 33) % 1000;
if ((cmd->flags & CMDF_ROUND_MASK) == CMDF_ROUND_NEAREST) {
if (rest > 33)
devpriv->ai_scan_ticks++;
} else if ((cmd->flags & CMDF_ROUND_MASK) == CMDF_ROUND_UP) {
if (rest)
devpriv->ai_scan_ticks++;
}
}
if (cmd->convert_arg) {
devpriv->ai_chan_ticks = (cmd->convert_arg * 33) / 1000;
rest = (cmd->convert_arg * 33) % 1000;
if ((cmd->flags & CMDF_ROUND_MASK) == CMDF_ROUND_NEAREST) {
if (rest > 33)
devpriv->ai_chan_ticks++;
} else if ((cmd->flags & CMDF_ROUND_MASK) == CMDF_ROUND_UP) {
if (rest)
devpriv->ai_chan_ticks++;
}
}
}
static void me4000_ai_write_chanlist(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
int i;
for (i = 0; i < cmd->chanlist_len; i++) {
unsigned int chan = CR_CHAN(cmd->chanlist[i]);
unsigned int range = CR_RANGE(cmd->chanlist[i]);
unsigned int aref = CR_AREF(cmd->chanlist[i]);
unsigned int entry;
entry = chan | ME4000_AI_LIST_RANGE(range);
if (aref == AREF_DIFF)
entry |= ME4000_AI_LIST_INPUT_DIFFERENTIAL;
if (i == (cmd->chanlist_len - 1))
entry |= ME4000_AI_LIST_LAST_ENTRY;
outl(entry, dev->iobase + ME4000_AI_CHANNEL_LIST_REG);
}
}
static int me4000_ai_do_cmd(struct comedi_device *dev,
struct comedi_subdevice *s)
{
struct me4000_private *devpriv = dev->private;
struct comedi_cmd *cmd = &s->async->cmd;
unsigned int ctrl;
/* Write timer arguments */
outl(devpriv->ai_init_ticks - 1,
dev->iobase + ME4000_AI_SCAN_PRE_TIMER_LOW_REG);
outl(0x0, dev->iobase + ME4000_AI_SCAN_PRE_TIMER_HIGH_REG);
if (devpriv->ai_scan_ticks) {
outl(devpriv->ai_scan_ticks - 1,
dev->iobase + ME4000_AI_SCAN_TIMER_LOW_REG);
outl(0x0, dev->iobase + ME4000_AI_SCAN_TIMER_HIGH_REG);
}
outl(devpriv->ai_chan_ticks - 1,
dev->iobase + ME4000_AI_CHAN_PRE_TIMER_REG);
outl(devpriv->ai_chan_ticks - 1,
dev->iobase + ME4000_AI_CHAN_TIMER_REG);
/* Start sources */
ctrl = devpriv->ai_ctrl_mode |
ME4000_AI_CTRL_CHANNEL_FIFO |
ME4000_AI_CTRL_DATA_FIFO;
/* Stop triggers */
if (cmd->stop_src == TRIG_COUNT) {
outl(cmd->chanlist_len * cmd->stop_arg,
dev->iobase + ME4000_AI_SAMPLE_COUNTER_REG);
ctrl |= ME4000_AI_CTRL_SC_IRQ;
} else if (cmd->stop_src == TRIG_NONE &&
cmd->scan_end_src == TRIG_COUNT) {
outl(cmd->scan_end_arg,
dev->iobase + ME4000_AI_SAMPLE_COUNTER_REG);
ctrl |= ME4000_AI_CTRL_SC_IRQ;
}
ctrl |= ME4000_AI_CTRL_HF_IRQ;
/* Write the setup to the control register */
outl(ctrl, dev->iobase + ME4000_AI_CTRL_REG);
/* Write the channel list */
me4000_ai_write_chanlist(dev, s, cmd);
/* Start acquistion by dummy read */
inl(dev->iobase + ME4000_AI_START_REG);
return 0;
}
static int me4000_ai_do_cmd_test(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
struct me4000_private *devpriv = dev->private;
int err = 0;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_FOLLOW | TRIG_TIMER | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->convert_src,
TRIG_TIMER | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_end_src,
TRIG_NONE | TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_NONE | TRIG_COUNT);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->start_src);
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->convert_src);
err |= comedi_check_trigger_is_unique(cmd->scan_end_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (cmd->start_src == TRIG_NOW &&
cmd->scan_begin_src == TRIG_TIMER &&
cmd->convert_src == TRIG_TIMER) {
devpriv->ai_ctrl_mode = ME4000_AI_CTRL_MODE_0;
} else if (cmd->start_src == TRIG_NOW &&
cmd->scan_begin_src == TRIG_FOLLOW &&
cmd->convert_src == TRIG_TIMER) {
devpriv->ai_ctrl_mode = ME4000_AI_CTRL_MODE_0;
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_TIMER &&
cmd->convert_src == TRIG_TIMER) {
devpriv->ai_ctrl_mode = ME4000_AI_CTRL_MODE_1;
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_FOLLOW &&
cmd->convert_src == TRIG_TIMER) {
devpriv->ai_ctrl_mode = ME4000_AI_CTRL_MODE_1;
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_EXT &&
cmd->convert_src == TRIG_TIMER) {
devpriv->ai_ctrl_mode = ME4000_AI_CTRL_MODE_2;
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_EXT &&
cmd->convert_src == TRIG_EXT) {
devpriv->ai_ctrl_mode = ME4000_AI_CTRL_MODE_0 |
ME4000_AI_CTRL_MODE_1;
} else {
err |= -EINVAL;
}
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->chanlist_len < 1) {
cmd->chanlist_len = 1;
err |= -EINVAL;
}
/* Round the timer arguments */
me4000_ai_round_cmd_args(dev, s, cmd);
if (devpriv->ai_init_ticks < 66) {
cmd->start_arg = 2000;
err |= -EINVAL;
}
if (devpriv->ai_scan_ticks && devpriv->ai_scan_ticks < 67) {
cmd->scan_begin_arg = 2031;
err |= -EINVAL;
}
if (devpriv->ai_chan_ticks < 66) {
cmd->convert_arg = 2000;
err |= -EINVAL;
}
if (cmd->stop_src == TRIG_COUNT)
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
else /* TRIG_NONE */
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
/*
* Stage 4. Check for argument conflicts.
*/
if (cmd->start_src == TRIG_NOW &&
cmd->scan_begin_src == TRIG_TIMER &&
cmd->convert_src == TRIG_TIMER) {
/* Check timer arguments */
if (devpriv->ai_init_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid start arg\n");
cmd->start_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_chan_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid convert arg\n");
cmd->convert_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_scan_ticks <=
cmd->chanlist_len * devpriv->ai_chan_ticks) {
dev_err(dev->class_dev, "Invalid scan end arg\n");
/* At least one tick more */
cmd->scan_end_arg = 2000 * cmd->chanlist_len + 31;
err++;
}
} else if (cmd->start_src == TRIG_NOW &&
cmd->scan_begin_src == TRIG_FOLLOW &&
cmd->convert_src == TRIG_TIMER) {
/* Check timer arguments */
if (devpriv->ai_init_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid start arg\n");
cmd->start_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_chan_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid convert arg\n");
cmd->convert_arg = 2000; /* 66 ticks at least */
err++;
}
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_TIMER &&
cmd->convert_src == TRIG_TIMER) {
/* Check timer arguments */
if (devpriv->ai_init_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid start arg\n");
cmd->start_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_chan_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid convert arg\n");
cmd->convert_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_scan_ticks <=
cmd->chanlist_len * devpriv->ai_chan_ticks) {
dev_err(dev->class_dev, "Invalid scan end arg\n");
/* At least one tick more */
cmd->scan_end_arg = 2000 * cmd->chanlist_len + 31;
err++;
}
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_FOLLOW &&
cmd->convert_src == TRIG_TIMER) {
/* Check timer arguments */
if (devpriv->ai_init_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid start arg\n");
cmd->start_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_chan_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid convert arg\n");
cmd->convert_arg = 2000; /* 66 ticks at least */
err++;
}
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_EXT &&
cmd->convert_src == TRIG_TIMER) {
/* Check timer arguments */
if (devpriv->ai_init_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid start arg\n");
cmd->start_arg = 2000; /* 66 ticks at least */
err++;
}
if (devpriv->ai_chan_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid convert arg\n");
cmd->convert_arg = 2000; /* 66 ticks at least */
err++;
}
} else if (cmd->start_src == TRIG_EXT &&
cmd->scan_begin_src == TRIG_EXT &&
cmd->convert_src == TRIG_EXT) {
/* Check timer arguments */
if (devpriv->ai_init_ticks < ME4000_AI_MIN_TICKS) {
dev_err(dev->class_dev, "Invalid start arg\n");
cmd->start_arg = 2000; /* 66 ticks at least */
err++;
}
}
if (cmd->scan_end_src == TRIG_COUNT) {
if (cmd->scan_end_arg == 0) {
dev_err(dev->class_dev, "Invalid scan end arg\n");
cmd->scan_end_arg = 1;
err++;
}
}
if (err)
return 4;
/* Step 5: check channel list if it exists */
if (cmd->chanlist && cmd->chanlist_len > 0)
err |= me4000_ai_check_chanlist(dev, s, cmd);
if (err)
return 5;
return 0;
}
static irqreturn_t me4000_ai_isr(int irq, void *dev_id)
{
unsigned int tmp;
struct comedi_device *dev = dev_id;
struct comedi_subdevice *s = dev->read_subdev;
int i;
int c = 0;
unsigned short lval;
if (!dev->attached)
return IRQ_NONE;
if (inl(dev->iobase + ME4000_IRQ_STATUS_REG) &
ME4000_IRQ_STATUS_AI_HF) {
/* Read status register to find out what happened */
tmp = inl(dev->iobase + ME4000_AI_STATUS_REG);
if (!(tmp & ME4000_AI_STATUS_FF_DATA) &&
!(tmp & ME4000_AI_STATUS_HF_DATA) &&
(tmp & ME4000_AI_STATUS_EF_DATA)) {
dev_err(dev->class_dev, "FIFO overflow\n");
s->async->events |= COMEDI_CB_ERROR;
c = ME4000_AI_FIFO_COUNT;
} else if ((tmp & ME4000_AI_STATUS_FF_DATA) &&
!(tmp & ME4000_AI_STATUS_HF_DATA) &&
(tmp & ME4000_AI_STATUS_EF_DATA)) {
c = ME4000_AI_FIFO_COUNT / 2;
} else {
dev_err(dev->class_dev, "Undefined FIFO state\n");
s->async->events |= COMEDI_CB_ERROR;
c = 0;
}
for (i = 0; i < c; i++) {
lval = me4000_ai_get_sample(dev, s);
if (!comedi_buf_write_samples(s, &lval, 1))
break;
}
/* Work is done, so reset the interrupt */
tmp |= ME4000_AI_CTRL_HF_IRQ_RESET;
outl(tmp, dev->iobase + ME4000_AI_CTRL_REG);
tmp &= ~ME4000_AI_CTRL_HF_IRQ_RESET;
outl(tmp, dev->iobase + ME4000_AI_CTRL_REG);
}
if (inl(dev->iobase + ME4000_IRQ_STATUS_REG) &
ME4000_IRQ_STATUS_SC) {
/* Acquisition is complete */
s->async->events |= COMEDI_CB_EOA;
/* Poll data until fifo empty */
while (inl(dev->iobase + ME4000_AI_STATUS_REG) &
ME4000_AI_STATUS_EF_DATA) {
lval = me4000_ai_get_sample(dev, s);
if (!comedi_buf_write_samples(s, &lval, 1))
break;
}
/* Work is done, so reset the interrupt */
tmp = inl(dev->iobase + ME4000_AI_CTRL_REG);
tmp |= ME4000_AI_CTRL_SC_IRQ_RESET;
outl(tmp, dev->iobase + ME4000_AI_CTRL_REG);
tmp &= ~ME4000_AI_CTRL_SC_IRQ_RESET;
outl(tmp, dev->iobase + ME4000_AI_CTRL_REG);
}
comedi_handle_events(dev, s);
return IRQ_HANDLED;
}
static int me4000_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int tmp;
/* Stop any running conversion */
tmp = inl(dev->iobase + ME4000_AO_CTRL_REG(chan));
tmp |= ME4000_AO_CTRL_IMMEDIATE_STOP;
outl(tmp, dev->iobase + ME4000_AO_CTRL_REG(chan));
/* Clear control register and set to single mode */
outl(0x0, dev->iobase + ME4000_AO_CTRL_REG(chan));
/* Write data value */
outl(data[0], dev->iobase + ME4000_AO_SINGLE_REG(chan));
/* Store in the mirror */
s->readback[chan] = data[0];
return 1;
}
static int me4000_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
if (comedi_dio_update_state(s, data)) {
outl((s->state >> 0) & 0xFF,
dev->iobase + ME4000_DIO_PORT_0_REG);
outl((s->state >> 8) & 0xFF,
dev->iobase + ME4000_DIO_PORT_1_REG);
outl((s->state >> 16) & 0xFF,
dev->iobase + ME4000_DIO_PORT_2_REG);
outl((s->state >> 24) & 0xFF,
dev->iobase + ME4000_DIO_PORT_3_REG);
}
data[1] = ((inl(dev->iobase + ME4000_DIO_PORT_0_REG) & 0xFF) << 0) |
((inl(dev->iobase + ME4000_DIO_PORT_1_REG) & 0xFF) << 8) |
((inl(dev->iobase + ME4000_DIO_PORT_2_REG) & 0xFF) << 16) |
((inl(dev->iobase + ME4000_DIO_PORT_3_REG) & 0xFF) << 24);
return insn->n;
}
static int me4000_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int mask;
unsigned int tmp;
int ret;
if (chan < 8)
mask = 0x000000ff;
else if (chan < 16)
mask = 0x0000ff00;
else if (chan < 24)
mask = 0x00ff0000;
else
mask = 0xff000000;
ret = comedi_dio_insn_config(dev, s, insn, data, mask);
if (ret)
return ret;
tmp = inl(dev->iobase + ME4000_DIO_CTRL_REG);
tmp &= ~(ME4000_DIO_CTRL_MODE_0 | ME4000_DIO_CTRL_MODE_1 |
ME4000_DIO_CTRL_MODE_2 | ME4000_DIO_CTRL_MODE_3 |
ME4000_DIO_CTRL_MODE_4 | ME4000_DIO_CTRL_MODE_5 |
ME4000_DIO_CTRL_MODE_6 | ME4000_DIO_CTRL_MODE_7);
if (s->io_bits & 0x000000ff)
tmp |= ME4000_DIO_CTRL_MODE_0;
if (s->io_bits & 0x0000ff00)
tmp |= ME4000_DIO_CTRL_MODE_2;
if (s->io_bits & 0x00ff0000)
tmp |= ME4000_DIO_CTRL_MODE_4;
if (s->io_bits & 0xff000000)
tmp |= ME4000_DIO_CTRL_MODE_6;
/*
* Check for optoisolated ME-4000 version.
* If one the first port is a fixed output
* port and the second is a fixed input port.
*/
if (inl(dev->iobase + ME4000_DIO_DIR_REG)) {
s->io_bits |= 0x000000ff;
s->io_bits &= ~0x0000ff00;
tmp |= ME4000_DIO_CTRL_MODE_0;
tmp &= ~(ME4000_DIO_CTRL_MODE_2 | ME4000_DIO_CTRL_MODE_3);
}
outl(tmp, dev->iobase + ME4000_DIO_CTRL_REG);
return insn->n;
}
static int me4000_auto_attach(struct comedi_device *dev,
unsigned long context)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
const struct me4000_board *board = NULL;
struct me4000_private *devpriv;
struct comedi_subdevice *s;
int result;
if (context < ARRAY_SIZE(me4000_boards))
board = &me4000_boards[context];
if (!board)
return -ENODEV;
dev->board_ptr = board;
dev->board_name = board->name;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
result = comedi_pci_enable(dev);
if (result)
return result;
devpriv->plx_regbase = pci_resource_start(pcidev, 1);
dev->iobase = pci_resource_start(pcidev, 2);
if (!devpriv->plx_regbase || !dev->iobase)
return -ENODEV;
result = comedi_load_firmware(dev, &pcidev->dev, ME4000_FIRMWARE,
me4000_xilinx_download, 0);
if (result < 0)
return result;
me4000_reset(dev);
if (pcidev->irq > 0) {
result = request_irq(pcidev->irq, me4000_ai_isr, IRQF_SHARED,
dev->board_name, dev);
if (result == 0) {
dev->irq = pcidev->irq;
/* Enable interrupts on the PLX */
outl(PLX9052_INTCSR_LI1ENAB | PLX9052_INTCSR_LI1POL |
PLX9052_INTCSR_PCIENAB,
devpriv->plx_regbase + PLX9052_INTCSR);
}
}
result = comedi_alloc_subdevices(dev, 4);
if (result)
return result;
/* Analog Input subdevice */
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_GROUND;
if (board->can_do_diff_ai)
s->subdev_flags |= SDF_DIFF;
s->n_chan = board->ai_nchan;
s->maxdata = 0xffff;
s->len_chanlist = ME4000_AI_CHANNEL_LIST_COUNT;
s->range_table = &me4000_ai_range;
s->insn_read = me4000_ai_insn_read;
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->cancel = me4000_ai_cancel;
s->do_cmdtest = me4000_ai_do_cmd_test;
s->do_cmd = me4000_ai_do_cmd;
}
/* Analog Output subdevice */
s = &dev->subdevices[1];
if (board->has_ao) {
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE | SDF_COMMON | SDF_GROUND;
s->n_chan = 4;
s->maxdata = 0xffff;
s->range_table = &range_bipolar10;
s->insn_write = me4000_ao_insn_write;
result = comedi_alloc_subdev_readback(s);
if (result)
return result;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* Digital I/O subdevice */
s = &dev->subdevices[2];
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 32;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = me4000_dio_insn_bits;
s->insn_config = me4000_dio_insn_config;
/*
* Check for optoisolated ME-4000 version. If one the first
* port is a fixed output port and the second is a fixed input port.
*/
if (!inl(dev->iobase + ME4000_DIO_DIR_REG)) {
s->io_bits |= 0xFF;
outl(ME4000_DIO_CTRL_MODE_0,
dev->iobase + ME4000_DIO_DIR_REG);
}
/* Counter subdevice (8254) */
s = &dev->subdevices[3];
if (board->has_counter) {
unsigned long timer_base = pci_resource_start(pcidev, 3);
if (!timer_base)
return -ENODEV;
dev->pacer = comedi_8254_io_alloc(timer_base, 0, I8254_IO8, 0);
if (IS_ERR(dev->pacer))
return PTR_ERR(dev->pacer);
comedi_8254_subdevice_init(s, dev->pacer);
} else {
s->type = COMEDI_SUBD_UNUSED;
}
return 0;
}
static void me4000_detach(struct comedi_device *dev)
{
if (dev->irq) {
struct me4000_private *devpriv = dev->private;
/* Disable interrupts on the PLX */
outl(0, devpriv->plx_regbase + PLX9052_INTCSR);
}
comedi_pci_detach(dev);
}
static struct comedi_driver me4000_driver = {
.driver_name = "me4000",
.module = THIS_MODULE,
.auto_attach = me4000_auto_attach,
.detach = me4000_detach,
};
static int me4000_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
return comedi_pci_auto_config(dev, &me4000_driver, id->driver_data);
}
static const struct pci_device_id me4000_pci_table[] = {
{ PCI_VDEVICE(MEILHAUS, 0x4650), BOARD_ME4650 },
{ PCI_VDEVICE(MEILHAUS, 0x4660), BOARD_ME4660 },
{ PCI_VDEVICE(MEILHAUS, 0x4661), BOARD_ME4660I },
{ PCI_VDEVICE(MEILHAUS, 0x4662), BOARD_ME4660S },
{ PCI_VDEVICE(MEILHAUS, 0x4663), BOARD_ME4660IS },
{ PCI_VDEVICE(MEILHAUS, 0x4670), BOARD_ME4670 },
{ PCI_VDEVICE(MEILHAUS, 0x4671), BOARD_ME4670I },
{ PCI_VDEVICE(MEILHAUS, 0x4672), BOARD_ME4670S },
{ PCI_VDEVICE(MEILHAUS, 0x4673), BOARD_ME4670IS },
{ PCI_VDEVICE(MEILHAUS, 0x4680), BOARD_ME4680 },
{ PCI_VDEVICE(MEILHAUS, 0x4681), BOARD_ME4680I },
{ PCI_VDEVICE(MEILHAUS, 0x4682), BOARD_ME4680S },
{ PCI_VDEVICE(MEILHAUS, 0x4683), BOARD_ME4680IS },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, me4000_pci_table);
static struct pci_driver me4000_pci_driver = {
.name = "me4000",
.id_table = me4000_pci_table,
.probe = me4000_pci_probe,
.remove = comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(me4000_driver, me4000_pci_driver);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi driver for Meilhaus ME-4000 series boards");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(ME4000_FIRMWARE);