mirror of
https://github.com/torvalds/linux.git
synced 2024-11-12 23:23:03 +00:00
368990a7fe
The recent adding of multicall debug mixed up the referencing of
the debug data. A __percpu tagged pointer can't be initialized with a
plain pointer, so use another percpu variable for the pointer and set
it on each new cpu via a function.
Fixes: 942d917cb9
("xen: make multicall debug boot time selectable")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202407151106.5s7Mnfpz-lkp@intel.com/
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
298 lines
7.2 KiB
C
298 lines
7.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Xen hypercall batching.
|
|
*
|
|
* Xen allows multiple hypercalls to be issued at once, using the
|
|
* multicall interface. This allows the cost of trapping into the
|
|
* hypervisor to be amortized over several calls.
|
|
*
|
|
* This file implements a simple interface for multicalls. There's a
|
|
* per-cpu buffer of outstanding multicalls. When you want to queue a
|
|
* multicall for issuing, you can allocate a multicall slot for the
|
|
* call and its arguments, along with storage for space which is
|
|
* pointed to by the arguments (for passing pointers to structures,
|
|
* etc). When the multicall is actually issued, all the space for the
|
|
* commands and allocated memory is freed for reuse.
|
|
*
|
|
* Multicalls are flushed whenever any of the buffers get full, or
|
|
* when explicitly requested. There's no way to get per-multicall
|
|
* return results back. It will BUG if any of the multicalls fail.
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/printk.h>
|
|
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include "xen-ops.h"
|
|
|
|
#define MC_BATCH 32
|
|
|
|
#define MC_ARGS (MC_BATCH * 16)
|
|
|
|
|
|
struct mc_buffer {
|
|
unsigned mcidx, argidx, cbidx;
|
|
struct multicall_entry entries[MC_BATCH];
|
|
unsigned char args[MC_ARGS];
|
|
struct callback {
|
|
void (*fn)(void *);
|
|
void *data;
|
|
} callbacks[MC_BATCH];
|
|
};
|
|
|
|
struct mc_debug_data {
|
|
struct multicall_entry entries[MC_BATCH];
|
|
void *caller[MC_BATCH];
|
|
size_t argsz[MC_BATCH];
|
|
unsigned long *args[MC_BATCH];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
|
|
static struct mc_debug_data mc_debug_data_early __initdata;
|
|
static DEFINE_PER_CPU(struct mc_debug_data *, mc_debug_data) =
|
|
&mc_debug_data_early;
|
|
static struct mc_debug_data __percpu *mc_debug_data_ptr;
|
|
DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
|
|
|
|
static struct static_key mc_debug __ro_after_init;
|
|
static bool mc_debug_enabled __initdata;
|
|
|
|
static int __init xen_parse_mc_debug(char *arg)
|
|
{
|
|
mc_debug_enabled = true;
|
|
static_key_slow_inc(&mc_debug);
|
|
|
|
return 0;
|
|
}
|
|
early_param("xen_mc_debug", xen_parse_mc_debug);
|
|
|
|
void mc_percpu_init(unsigned int cpu)
|
|
{
|
|
per_cpu(mc_debug_data, cpu) = per_cpu_ptr(mc_debug_data_ptr, cpu);
|
|
}
|
|
|
|
static int __init mc_debug_enable(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!mc_debug_enabled)
|
|
return 0;
|
|
|
|
mc_debug_data_ptr = alloc_percpu(struct mc_debug_data);
|
|
if (!mc_debug_data_ptr) {
|
|
pr_err("xen_mc_debug inactive\n");
|
|
static_key_slow_dec(&mc_debug);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Be careful when switching to percpu debug data. */
|
|
local_irq_save(flags);
|
|
xen_mc_flush();
|
|
mc_percpu_init(0);
|
|
local_irq_restore(flags);
|
|
|
|
pr_info("xen_mc_debug active\n");
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(mc_debug_enable);
|
|
|
|
/* Number of parameters of hypercalls used via multicalls. */
|
|
static const uint8_t hpcpars[] = {
|
|
[__HYPERVISOR_mmu_update] = 4,
|
|
[__HYPERVISOR_stack_switch] = 2,
|
|
[__HYPERVISOR_fpu_taskswitch] = 1,
|
|
[__HYPERVISOR_update_descriptor] = 2,
|
|
[__HYPERVISOR_update_va_mapping] = 3,
|
|
[__HYPERVISOR_mmuext_op] = 4,
|
|
};
|
|
|
|
static void print_debug_data(struct mc_buffer *b, struct mc_debug_data *mcdb,
|
|
int idx)
|
|
{
|
|
unsigned int arg;
|
|
unsigned int opidx = mcdb->entries[idx].op & 0xff;
|
|
unsigned int pars = 0;
|
|
|
|
pr_err(" call %2d: op=%lu result=%ld caller=%pS ", idx + 1,
|
|
mcdb->entries[idx].op, b->entries[idx].result,
|
|
mcdb->caller[idx]);
|
|
if (opidx < ARRAY_SIZE(hpcpars))
|
|
pars = hpcpars[opidx];
|
|
if (pars) {
|
|
pr_cont("pars=");
|
|
for (arg = 0; arg < pars; arg++)
|
|
pr_cont("%lx ", mcdb->entries[idx].args[arg]);
|
|
}
|
|
if (mcdb->argsz[idx]) {
|
|
pr_cont("args=");
|
|
for (arg = 0; arg < mcdb->argsz[idx] / 8; arg++)
|
|
pr_cont("%lx ", mcdb->args[idx][arg]);
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
|
|
void xen_mc_flush(void)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct multicall_entry *mc;
|
|
struct mc_debug_data *mcdb = NULL;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
BUG_ON(preemptible());
|
|
|
|
/* Disable interrupts in case someone comes in and queues
|
|
something in the middle */
|
|
local_irq_save(flags);
|
|
|
|
trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx);
|
|
|
|
if (static_key_false(&mc_debug)) {
|
|
mcdb = __this_cpu_read(mc_debug_data);
|
|
memcpy(mcdb->entries, b->entries,
|
|
b->mcidx * sizeof(struct multicall_entry));
|
|
}
|
|
|
|
switch (b->mcidx) {
|
|
case 0:
|
|
/* no-op */
|
|
BUG_ON(b->argidx != 0);
|
|
break;
|
|
|
|
case 1:
|
|
/* Singleton multicall - bypass multicall machinery
|
|
and just do the call directly. */
|
|
mc = &b->entries[0];
|
|
|
|
mc->result = xen_single_call(mc->op, mc->args[0], mc->args[1],
|
|
mc->args[2], mc->args[3],
|
|
mc->args[4]);
|
|
ret = mc->result < 0;
|
|
break;
|
|
|
|
default:
|
|
if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
|
|
BUG();
|
|
for (i = 0; i < b->mcidx; i++)
|
|
if (b->entries[i].result < 0)
|
|
ret++;
|
|
}
|
|
|
|
if (WARN_ON(ret)) {
|
|
pr_err("%d of %d multicall(s) failed: cpu %d\n",
|
|
ret, b->mcidx, smp_processor_id());
|
|
for (i = 0; i < b->mcidx; i++) {
|
|
if (static_key_false(&mc_debug)) {
|
|
print_debug_data(b, mcdb, i);
|
|
} else if (b->entries[i].result < 0) {
|
|
pr_err(" call %2d: op=%lu arg=[%lx] result=%ld\n",
|
|
i + 1,
|
|
b->entries[i].op,
|
|
b->entries[i].args[0],
|
|
b->entries[i].result);
|
|
}
|
|
}
|
|
}
|
|
|
|
b->mcidx = 0;
|
|
b->argidx = 0;
|
|
|
|
for (i = 0; i < b->cbidx; i++) {
|
|
struct callback *cb = &b->callbacks[i];
|
|
|
|
(*cb->fn)(cb->data);
|
|
}
|
|
b->cbidx = 0;
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
struct multicall_space __xen_mc_entry(size_t args)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct multicall_space ret;
|
|
unsigned argidx = roundup(b->argidx, sizeof(u64));
|
|
|
|
trace_xen_mc_entry_alloc(args);
|
|
|
|
BUG_ON(preemptible());
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
|
|
if (unlikely(b->mcidx == MC_BATCH ||
|
|
(argidx + args) >= MC_ARGS)) {
|
|
trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ?
|
|
XEN_MC_FL_BATCH : XEN_MC_FL_ARGS);
|
|
xen_mc_flush();
|
|
argidx = roundup(b->argidx, sizeof(u64));
|
|
}
|
|
|
|
ret.mc = &b->entries[b->mcidx];
|
|
if (static_key_false(&mc_debug)) {
|
|
struct mc_debug_data *mcdb = __this_cpu_read(mc_debug_data);
|
|
|
|
mcdb->caller[b->mcidx] = __builtin_return_address(0);
|
|
mcdb->argsz[b->mcidx] = args;
|
|
mcdb->args[b->mcidx] = (unsigned long *)(&b->args[argidx]);
|
|
}
|
|
b->mcidx++;
|
|
ret.args = &b->args[argidx];
|
|
b->argidx = argidx + args;
|
|
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
return ret;
|
|
}
|
|
|
|
struct multicall_space xen_mc_extend_args(unsigned long op, size_t size)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct multicall_space ret = { NULL, NULL };
|
|
|
|
BUG_ON(preemptible());
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
|
|
if (unlikely(b->mcidx == 0 ||
|
|
b->entries[b->mcidx - 1].op != op)) {
|
|
trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely((b->argidx + size) >= MC_ARGS)) {
|
|
trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE);
|
|
goto out;
|
|
}
|
|
|
|
ret.mc = &b->entries[b->mcidx - 1];
|
|
ret.args = &b->args[b->argidx];
|
|
b->argidx += size;
|
|
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
|
|
trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void xen_mc_callback(void (*fn)(void *), void *data)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct callback *cb;
|
|
|
|
if (b->cbidx == MC_BATCH) {
|
|
trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK);
|
|
xen_mc_flush();
|
|
}
|
|
|
|
trace_xen_mc_callback(fn, data);
|
|
|
|
cb = &b->callbacks[b->cbidx++];
|
|
cb->fn = fn;
|
|
cb->data = data;
|
|
}
|