linux/arch/x86/kernel/machine_kexec_64.c
Tao Liu 5760929f65 x86/kexec: Add EFI config table identity mapping for kexec kernel
A kexec kernel boot failure is sometimes observed on AMD CPUs due to an
unmapped EFI config table array.  This can be seen when "nogbpages" is on
the kernel command line, and has been observed as a full BIOS reboot rather
than a successful kexec.

This was also the cause of reported regressions attributed to Commit
7143c5f4cf20 ("x86/mm/ident_map: Use gbpages only where full GB page should
be mapped.") which was subsequently reverted.

To avoid this page fault, explicitly include the EFI config table array in
the kexec identity map.

Further explanation:

The following 2 commits caused the EFI config table array to be
accessed when enabling sev at kernel startup.

    commit ec1c66af3a ("x86/compressed/64: Detect/setup SEV/SME features
                          earlier during boot")
    commit c01fce9cef ("x86/compressed: Add SEV-SNP feature
                          detection/setup")

This is in the code that examines whether SEV should be enabled or not, so
it can even affect systems that are not SEV capable.

This may result in a page fault if the EFI config table array's address is
unmapped. Since the page fault occurs before the new kernel establishes its
own identity map and page fault routines, it is unrecoverable and kexec
fails.

Most often, this problem is not seen because the EFI config table array
gets included in the map by the luck of being placed at a memory address
close enough to other memory areas that *are* included in the map created
by kexec.

Both the "nogbpages" command line option and the "use gpbages only where
full GB page should be mapped" change greatly reduce the chance of being
included in the map by luck, which is why the problem appears.

Signed-off-by: Tao Liu <ltao@redhat.com>
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavin Joseph <me@pavinjoseph.com>
Tested-by: Sarah Brofeldt <srhb@dbc.dk>
Tested-by: Eric Hagberg <ehagberg@gmail.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/all/20240717213121.3064030-2-steve.wahl@hpe.com
2024-08-05 16:09:31 +02:00

626 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* handle transition of Linux booting another kernel
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
*/
#define pr_fmt(fmt) "kexec: " fmt
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
#include <linux/gfp.h>
#include <linux/reboot.h>
#include <linux/numa.h>
#include <linux/ftrace.h>
#include <linux/io.h>
#include <linux/suspend.h>
#include <linux/vmalloc.h>
#include <linux/efi.h>
#include <linux/cc_platform.h>
#include <asm/init.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/io_apic.h>
#include <asm/debugreg.h>
#include <asm/kexec-bzimage64.h>
#include <asm/setup.h>
#include <asm/set_memory.h>
#include <asm/cpu.h>
#include <asm/efi.h>
#ifdef CONFIG_ACPI
/*
* Used while adding mapping for ACPI tables.
* Can be reused when other iomem regions need be mapped
*/
struct init_pgtable_data {
struct x86_mapping_info *info;
pgd_t *level4p;
};
static int mem_region_callback(struct resource *res, void *arg)
{
struct init_pgtable_data *data = arg;
return kernel_ident_mapping_init(data->info, data->level4p,
res->start, res->end + 1);
}
static int
map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
{
struct init_pgtable_data data;
unsigned long flags;
int ret;
data.info = info;
data.level4p = level4p;
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
&data, mem_region_callback);
if (ret && ret != -EINVAL)
return ret;
/* ACPI tables could be located in ACPI Non-volatile Storage region */
ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
&data, mem_region_callback);
if (ret && ret != -EINVAL)
return ret;
return 0;
}
#else
static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
#endif
#ifdef CONFIG_KEXEC_FILE
const struct kexec_file_ops * const kexec_file_loaders[] = {
&kexec_bzImage64_ops,
NULL
};
#endif
static int
map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
{
#ifdef CONFIG_EFI
unsigned long mstart, mend;
void *kaddr;
int ret;
if (!efi_enabled(EFI_BOOT))
return 0;
mstart = (boot_params.efi_info.efi_systab |
((u64)boot_params.efi_info.efi_systab_hi<<32));
if (efi_enabled(EFI_64BIT))
mend = mstart + sizeof(efi_system_table_64_t);
else
mend = mstart + sizeof(efi_system_table_32_t);
if (!mstart)
return 0;
ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
if (ret)
return ret;
kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
if (!kaddr) {
pr_err("Could not map UEFI system table\n");
return -ENOMEM;
}
mstart = efi_config_table;
if (efi_enabled(EFI_64BIT)) {
efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
} else {
efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
}
memunmap(kaddr);
return kernel_ident_mapping_init(info, level4p, mstart, mend);
#endif
return 0;
}
static void free_transition_pgtable(struct kimage *image)
{
free_page((unsigned long)image->arch.p4d);
image->arch.p4d = NULL;
free_page((unsigned long)image->arch.pud);
image->arch.pud = NULL;
free_page((unsigned long)image->arch.pmd);
image->arch.pmd = NULL;
free_page((unsigned long)image->arch.pte);
image->arch.pte = NULL;
}
static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
unsigned long vaddr, paddr;
int result = -ENOMEM;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
vaddr = (unsigned long)relocate_kernel;
paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
pgd += pgd_index(vaddr);
if (!pgd_present(*pgd)) {
p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
if (!p4d)
goto err;
image->arch.p4d = p4d;
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
}
p4d = p4d_offset(pgd, vaddr);
if (!p4d_present(*p4d)) {
pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
if (!pud)
goto err;
image->arch.pud = pud;
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
}
pud = pud_offset(p4d, vaddr);
if (!pud_present(*pud)) {
pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
if (!pmd)
goto err;
image->arch.pmd = pmd;
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
}
pmd = pmd_offset(pud, vaddr);
if (!pmd_present(*pmd)) {
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
if (!pte)
goto err;
image->arch.pte = pte;
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
}
pte = pte_offset_kernel(pmd, vaddr);
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
prot = PAGE_KERNEL_EXEC;
set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
return 0;
err:
return result;
}
static void *alloc_pgt_page(void *data)
{
struct kimage *image = (struct kimage *)data;
struct page *page;
void *p = NULL;
page = kimage_alloc_control_pages(image, 0);
if (page) {
p = page_address(page);
clear_page(p);
}
return p;
}
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
struct x86_mapping_info info = {
.alloc_pgt_page = alloc_pgt_page,
.context = image,
.page_flag = __PAGE_KERNEL_LARGE_EXEC,
.kernpg_flag = _KERNPG_TABLE_NOENC,
};
unsigned long mstart, mend;
pgd_t *level4p;
int result;
int i;
level4p = (pgd_t *)__va(start_pgtable);
clear_page(level4p);
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
info.page_flag |= _PAGE_ENC;
info.kernpg_flag |= _PAGE_ENC;
}
if (direct_gbpages)
info.direct_gbpages = true;
for (i = 0; i < nr_pfn_mapped; i++) {
mstart = pfn_mapped[i].start << PAGE_SHIFT;
mend = pfn_mapped[i].end << PAGE_SHIFT;
result = kernel_ident_mapping_init(&info,
level4p, mstart, mend);
if (result)
return result;
}
/*
* segments's mem ranges could be outside 0 ~ max_pfn,
* for example when jump back to original kernel from kexeced kernel.
* or first kernel is booted with user mem map, and second kernel
* could be loaded out of that range.
*/
for (i = 0; i < image->nr_segments; i++) {
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
result = kernel_ident_mapping_init(&info,
level4p, mstart, mend);
if (result)
return result;
}
/*
* Prepare EFI systab and ACPI tables for kexec kernel since they are
* not covered by pfn_mapped.
*/
result = map_efi_systab(&info, level4p);
if (result)
return result;
result = map_acpi_tables(&info, level4p);
if (result)
return result;
return init_transition_pgtable(image, level4p);
}
static void load_segments(void)
{
__asm__ __volatile__ (
"\tmovl %0,%%ds\n"
"\tmovl %0,%%es\n"
"\tmovl %0,%%ss\n"
"\tmovl %0,%%fs\n"
"\tmovl %0,%%gs\n"
: : "a" (__KERNEL_DS) : "memory"
);
}
int machine_kexec_prepare(struct kimage *image)
{
unsigned long start_pgtable;
int result;
/* Calculate the offsets */
start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
/* Setup the identity mapped 64bit page table */
result = init_pgtable(image, start_pgtable);
if (result)
return result;
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
free_transition_pgtable(image);
}
/*
* Do not allocate memory (or fail in any way) in machine_kexec().
* We are past the point of no return, committed to rebooting now.
*/
void machine_kexec(struct kimage *image)
{
unsigned long page_list[PAGES_NR];
unsigned int host_mem_enc_active;
int save_ftrace_enabled;
void *control_page;
/*
* This must be done before load_segments() since if call depth tracking
* is used then GS must be valid to make any function calls.
*/
host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
save_processor_state();
#endif
save_ftrace_enabled = __ftrace_enabled_save();
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
hw_breakpoint_disable();
cet_disable();
if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
/*
* We need to put APICs in legacy mode so that we can
* get timer interrupts in second kernel. kexec/kdump
* paths already have calls to restore_boot_irq_mode()
* in one form or other. kexec jump path also need one.
*/
clear_IO_APIC();
restore_boot_irq_mode();
#endif
}
control_page = page_address(image->control_code_page) + PAGE_SIZE;
__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
page_list[PA_TABLE_PAGE] =
(unsigned long)__pa(page_address(image->control_code_page));
if (image->type == KEXEC_TYPE_DEFAULT)
page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
<< PAGE_SHIFT);
/*
* The segment registers are funny things, they have both a
* visible and an invisible part. Whenever the visible part is
* set to a specific selector, the invisible part is loaded
* with from a table in memory. At no other time is the
* descriptor table in memory accessed.
*
* I take advantage of this here by force loading the
* segments, before I zap the gdt with an invalid value.
*/
load_segments();
/*
* The gdt & idt are now invalid.
* If you want to load them you must set up your own idt & gdt.
*/
native_idt_invalidate();
native_gdt_invalidate();
/* now call it */
image->start = relocate_kernel((unsigned long)image->head,
(unsigned long)page_list,
image->start,
image->preserve_context,
host_mem_enc_active);
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
restore_processor_state();
#endif
__ftrace_enabled_restore(save_ftrace_enabled);
}
/* arch-dependent functionality related to kexec file-based syscall */
#ifdef CONFIG_KEXEC_FILE
/*
* Apply purgatory relocations.
*
* @pi: Purgatory to be relocated.
* @section: Section relocations applying to.
* @relsec: Section containing RELAs.
* @symtabsec: Corresponding symtab.
*
* TODO: Some of the code belongs to generic code. Move that in kexec.c.
*/
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
Elf_Shdr *section, const Elf_Shdr *relsec,
const Elf_Shdr *symtabsec)
{
unsigned int i;
Elf64_Rela *rel;
Elf64_Sym *sym;
void *location;
unsigned long address, sec_base, value;
const char *strtab, *name, *shstrtab;
const Elf_Shdr *sechdrs;
/* String & section header string table */
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
rel = (void *)pi->ehdr + relsec->sh_offset;
pr_debug("Applying relocate section %s to %u\n",
shstrtab + relsec->sh_name, relsec->sh_info);
for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
/*
* rel[i].r_offset contains byte offset from beginning
* of section to the storage unit affected.
*
* This is location to update. This is temporary buffer
* where section is currently loaded. This will finally be
* loaded to a different address later, pointed to by
* ->sh_addr. kexec takes care of moving it
* (kexec_load_segment()).
*/
location = pi->purgatory_buf;
location += section->sh_offset;
location += rel[i].r_offset;
/* Final address of the location */
address = section->sh_addr + rel[i].r_offset;
/*
* rel[i].r_info contains information about symbol table index
* w.r.t which relocation must be made and type of relocation
* to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
* these respectively.
*/
sym = (void *)pi->ehdr + symtabsec->sh_offset;
sym += ELF64_R_SYM(rel[i].r_info);
if (sym->st_name)
name = strtab + sym->st_name;
else
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
name, sym->st_info, sym->st_shndx, sym->st_value,
sym->st_size);
if (sym->st_shndx == SHN_UNDEF) {
pr_err("Undefined symbol: %s\n", name);
return -ENOEXEC;
}
if (sym->st_shndx == SHN_COMMON) {
pr_err("symbol '%s' in common section\n", name);
return -ENOEXEC;
}
if (sym->st_shndx == SHN_ABS)
sec_base = 0;
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
pr_err("Invalid section %d for symbol %s\n",
sym->st_shndx, name);
return -ENOEXEC;
} else
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
value = sym->st_value;
value += sec_base;
value += rel[i].r_addend;
switch (ELF64_R_TYPE(rel[i].r_info)) {
case R_X86_64_NONE:
break;
case R_X86_64_64:
*(u64 *)location = value;
break;
case R_X86_64_32:
*(u32 *)location = value;
if (value != *(u32 *)location)
goto overflow;
break;
case R_X86_64_32S:
*(s32 *)location = value;
if ((s64)value != *(s32 *)location)
goto overflow;
break;
case R_X86_64_PC32:
case R_X86_64_PLT32:
value -= (u64)address;
*(u32 *)location = value;
break;
default:
pr_err("Unknown rela relocation: %llu\n",
ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
}
return 0;
overflow:
pr_err("Overflow in relocation type %d value 0x%lx\n",
(int)ELF64_R_TYPE(rel[i].r_info), value);
return -ENOEXEC;
}
int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
vfree(image->elf_headers);
image->elf_headers = NULL;
image->elf_headers_sz = 0;
return kexec_image_post_load_cleanup_default(image);
}
#endif /* CONFIG_KEXEC_FILE */
#ifdef CONFIG_CRASH_DUMP
static int
kexec_mark_range(unsigned long start, unsigned long end, bool protect)
{
struct page *page;
unsigned int nr_pages;
/*
* For physical range: [start, end]. We must skip the unassigned
* crashk resource with zero-valued "end" member.
*/
if (!end || start > end)
return 0;
page = pfn_to_page(start >> PAGE_SHIFT);
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
if (protect)
return set_pages_ro(page, nr_pages);
else
return set_pages_rw(page, nr_pages);
}
static void kexec_mark_crashkres(bool protect)
{
unsigned long control;
kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
/* Don't touch the control code page used in crash_kexec().*/
control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
/* Control code page is located in the 2nd page. */
kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
control += KEXEC_CONTROL_PAGE_SIZE;
kexec_mark_range(control, crashk_res.end, protect);
}
void arch_kexec_protect_crashkres(void)
{
kexec_mark_crashkres(true);
}
void arch_kexec_unprotect_crashkres(void)
{
kexec_mark_crashkres(false);
}
#endif
/*
* During a traditional boot under SME, SME will encrypt the kernel,
* so the SME kexec kernel also needs to be un-encrypted in order to
* replicate a normal SME boot.
*
* During a traditional boot under SEV, the kernel has already been
* loaded encrypted, so the SEV kexec kernel needs to be encrypted in
* order to replicate a normal SEV boot.
*/
int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
{
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
return 0;
/*
* If host memory encryption is active we need to be sure that kexec
* pages are not encrypted because when we boot to the new kernel the
* pages won't be accessed encrypted (initially).
*/
return set_memory_decrypted((unsigned long)vaddr, pages);
}
void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
{
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
return;
/*
* If host memory encryption is active we need to reset the pages back
* to being an encrypted mapping before freeing them.
*/
set_memory_encrypted((unsigned long)vaddr, pages);
}