/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ioctl.h" #include "print-tree.h" #include "volumes.h" #include "ordered-data.h" struct btrfs_iget_args { u64 ino; struct btrfs_root *root; }; static struct inode_operations btrfs_dir_inode_operations; static struct inode_operations btrfs_symlink_inode_operations; static struct inode_operations btrfs_dir_ro_inode_operations; static struct inode_operations btrfs_special_inode_operations; static struct inode_operations btrfs_file_inode_operations; static struct address_space_operations btrfs_aops; static struct address_space_operations btrfs_symlink_aops; static struct file_operations btrfs_dir_file_operations; static struct extent_io_ops btrfs_extent_io_ops; static struct kmem_cache *btrfs_inode_cachep; struct kmem_cache *btrfs_trans_handle_cachep; struct kmem_cache *btrfs_transaction_cachep; struct kmem_cache *btrfs_bit_radix_cachep; struct kmem_cache *btrfs_path_cachep; #define S_SHIFT 12 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, }; static void btrfs_truncate(struct inode *inode); int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, int for_del) { u64 total; u64 used; u64 thresh; unsigned long flags; int ret = 0; spin_lock_irqsave(&root->fs_info->delalloc_lock, flags); total = btrfs_super_total_bytes(&root->fs_info->super_copy); used = btrfs_super_bytes_used(&root->fs_info->super_copy); if (for_del) thresh = total * 90; else thresh = total * 85; do_div(thresh, 100); if (used + root->fs_info->delalloc_bytes + num_required > thresh) ret = -ENOSPC; spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags); return ret; } static int cow_file_range(struct inode *inode, u64 start, u64 end) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; u64 alloc_hint = 0; u64 num_bytes; u64 cur_alloc_size; u64 blocksize = root->sectorsize; u64 orig_num_bytes; struct btrfs_key ins; struct extent_map *em; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; int ret = 0; trans = btrfs_join_transaction(root, 1); BUG_ON(!trans); btrfs_set_trans_block_group(trans, inode); num_bytes = (end - start + blocksize) & ~(blocksize - 1); num_bytes = max(blocksize, num_bytes); orig_num_bytes = num_bytes; if (alloc_hint == EXTENT_MAP_INLINE) goto out; BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy)); mutex_lock(&BTRFS_I(inode)->extent_mutex); btrfs_drop_extent_cache(inode, start, start + num_bytes - 1); mutex_unlock(&BTRFS_I(inode)->extent_mutex); while(num_bytes > 0) { cur_alloc_size = min(num_bytes, root->fs_info->max_extent); ret = btrfs_reserve_extent(trans, root, cur_alloc_size, root->sectorsize, 0, 0, (u64)-1, &ins, 1); if (ret) { WARN_ON(1); goto out; } em = alloc_extent_map(GFP_NOFS); em->start = start; em->len = ins.offset; em->block_start = ins.objectid; em->bdev = root->fs_info->fs_devices->latest_bdev; mutex_lock(&BTRFS_I(inode)->extent_mutex); set_bit(EXTENT_FLAG_PINNED, &em->flags); while(1) { spin_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em); spin_unlock(&em_tree->lock); if (ret != -EEXIST) { free_extent_map(em); break; } btrfs_drop_extent_cache(inode, start, start + ins.offset - 1); } mutex_unlock(&BTRFS_I(inode)->extent_mutex); cur_alloc_size = ins.offset; ret = btrfs_add_ordered_extent(inode, start, ins.objectid, ins.offset); BUG_ON(ret); if (num_bytes < cur_alloc_size) { printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes, cur_alloc_size); break; } num_bytes -= cur_alloc_size; alloc_hint = ins.objectid + ins.offset; start += cur_alloc_size; } out: btrfs_end_transaction(trans, root); return ret; } static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end) { u64 extent_start; u64 extent_end; u64 bytenr; u64 cow_end; u64 loops = 0; u64 total_fs_bytes; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_block_group_cache *block_group; struct extent_buffer *leaf; int found_type; struct btrfs_path *path; struct btrfs_file_extent_item *item; int ret; int err; struct btrfs_key found_key; total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); path = btrfs_alloc_path(); BUG_ON(!path); again: ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino, start, 0); if (ret < 0) { btrfs_free_path(path); return ret; } cow_end = end; if (ret != 0) { if (path->slots[0] == 0) goto not_found; path->slots[0]--; } leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); /* are we inside the extent that was found? */ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); found_type = btrfs_key_type(&found_key); if (found_key.objectid != inode->i_ino || found_type != BTRFS_EXTENT_DATA_KEY) goto not_found; found_type = btrfs_file_extent_type(leaf, item); extent_start = found_key.offset; if (found_type == BTRFS_FILE_EXTENT_REG) { u64 extent_num_bytes; extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item); extent_end = extent_start + extent_num_bytes; err = 0; if (loops && start != extent_start) goto not_found; if (start < extent_start || start >= extent_end) goto not_found; cow_end = min(end, extent_end - 1); bytenr = btrfs_file_extent_disk_bytenr(leaf, item); if (bytenr == 0) goto not_found; if (btrfs_cross_ref_exists(root, &found_key, bytenr)) goto not_found; /* * we may be called by the resizer, make sure we're inside * the limits of the FS */ block_group = btrfs_lookup_block_group(root->fs_info, bytenr); if (!block_group || block_group->ro) goto not_found; start = extent_end; } else { goto not_found; } loop: if (start > end) { btrfs_free_path(path); return 0; } btrfs_release_path(root, path); loops++; goto again; not_found: btrfs_release_path(root, path); cow_file_range(inode, start, end); start = end + 1; goto loop; } static int run_delalloc_range(struct inode *inode, u64 start, u64 end) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret; if (btrfs_test_opt(root, NODATACOW) || btrfs_test_flag(inode, NODATACOW)) ret = run_delalloc_nocow(inode, start, end); else ret = cow_file_range(inode, start, end); return ret; } int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, unsigned long old, unsigned long bits) { unsigned long flags; if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { struct btrfs_root *root = BTRFS_I(inode)->root; spin_lock_irqsave(&root->fs_info->delalloc_lock, flags); BTRFS_I(inode)->delalloc_bytes += end - start + 1; root->fs_info->delalloc_bytes += end - start + 1; spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags); } return 0; } int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, unsigned long old, unsigned long bits) { if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { struct btrfs_root *root = BTRFS_I(inode)->root; unsigned long flags; spin_lock_irqsave(&root->fs_info->delalloc_lock, flags); if (end - start + 1 > root->fs_info->delalloc_bytes) { printk("warning: delalloc account %Lu %Lu\n", end - start + 1, root->fs_info->delalloc_bytes); root->fs_info->delalloc_bytes = 0; BTRFS_I(inode)->delalloc_bytes = 0; } else { root->fs_info->delalloc_bytes -= end - start + 1; BTRFS_I(inode)->delalloc_bytes -= end - start + 1; } spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags); } return 0; } int btrfs_merge_bio_hook(struct page *page, unsigned long offset, size_t size, struct bio *bio) { struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; struct btrfs_mapping_tree *map_tree; u64 logical = bio->bi_sector << 9; u64 length = 0; u64 map_length; int ret; length = bio->bi_size; map_tree = &root->fs_info->mapping_tree; map_length = length; ret = btrfs_map_block(map_tree, READ, logical, &map_length, NULL, 0); if (map_length < length + size) { return 1; } return 0; } int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, int mirror_num) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; ret = btrfs_csum_one_bio(root, inode, bio); BUG_ON(ret); return btrfs_map_bio(root, rw, bio, mirror_num, 1); } int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, int mirror_num) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); BUG_ON(ret); if (!(rw & (1 << BIO_RW))) { goto mapit; } return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, inode, rw, bio, mirror_num, __btrfs_submit_bio_hook); mapit: return btrfs_map_bio(root, rw, bio, mirror_num, 0); } static noinline int add_pending_csums(struct btrfs_trans_handle *trans, struct inode *inode, u64 file_offset, struct list_head *list) { struct list_head *cur; struct btrfs_ordered_sum *sum; btrfs_set_trans_block_group(trans, inode); list_for_each(cur, list) { sum = list_entry(cur, struct btrfs_ordered_sum, list); mutex_lock(&BTRFS_I(inode)->csum_mutex); btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root, inode, sum); mutex_unlock(&BTRFS_I(inode)->csum_mutex); } return 0; } struct btrfs_writepage_fixup { struct page *page; struct btrfs_work work; }; /* see btrfs_writepage_start_hook for details on why this is required */ void btrfs_writepage_fixup_worker(struct btrfs_work *work) { struct btrfs_writepage_fixup *fixup; struct btrfs_ordered_extent *ordered; struct page *page; struct inode *inode; u64 page_start; u64 page_end; fixup = container_of(work, struct btrfs_writepage_fixup, work); page = fixup->page; again: lock_page(page); if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { ClearPageChecked(page); goto out_page; } inode = page->mapping->host; page_start = page_offset(page); page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); /* already ordered? We're done */ if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, EXTENT_ORDERED, 0)) { goto out; } ordered = btrfs_lookup_ordered_extent(inode, page_start); if (ordered) { unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); unlock_page(page); btrfs_start_ordered_extent(inode, ordered, 1); goto again; } set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); ClearPageChecked(page); out: unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); out_page: unlock_page(page); page_cache_release(page); } /* * There are a few paths in the higher layers of the kernel that directly * set the page dirty bit without asking the filesystem if it is a * good idea. This causes problems because we want to make sure COW * properly happens and the data=ordered rules are followed. * * In our case any range that doesn't have the EXTENT_ORDERED bit set * hasn't been properly setup for IO. We kick off an async process * to fix it up. The async helper will wait for ordered extents, set * the delalloc bit and make it safe to write the page. */ int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) { struct inode *inode = page->mapping->host; struct btrfs_writepage_fixup *fixup; struct btrfs_root *root = BTRFS_I(inode)->root; int ret; ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_ORDERED, 0); if (ret) return 0; if (PageChecked(page)) return -EAGAIN; fixup = kzalloc(sizeof(*fixup), GFP_NOFS); if (!fixup) return -EAGAIN; SetPageChecked(page); page_cache_get(page); fixup->work.func = btrfs_writepage_fixup_worker; fixup->page = page; btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); return -EAGAIN; } static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; struct btrfs_ordered_extent *ordered_extent; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_map *em; struct extent_map *em_orig; u64 alloc_hint = 0; u64 clear_start; u64 clear_end; struct list_head list; struct btrfs_key ins; struct rb_node *rb; int ret; ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); if (!ret) return 0; trans = btrfs_join_transaction(root, 1); ordered_extent = btrfs_lookup_ordered_extent(inode, start); BUG_ON(!ordered_extent); lock_extent(io_tree, ordered_extent->file_offset, ordered_extent->file_offset + ordered_extent->len - 1, GFP_NOFS); INIT_LIST_HEAD(&list); ins.objectid = ordered_extent->start; ins.offset = ordered_extent->len; ins.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid, trans->transid, inode->i_ino, ordered_extent->file_offset, &ins); BUG_ON(ret); mutex_lock(&BTRFS_I(inode)->extent_mutex); spin_lock(&em_tree->lock); clear_start = ordered_extent->file_offset; clear_end = ordered_extent->file_offset + ordered_extent->len; em = lookup_extent_mapping(em_tree, clear_start, ordered_extent->len); em_orig = em; while(em && clear_start < extent_map_end(em) && clear_end > em->start) { clear_bit(EXTENT_FLAG_PINNED, &em->flags); rb = rb_next(&em->rb_node); if (!rb) break; em = rb_entry(rb, struct extent_map, rb_node); } free_extent_map(em_orig); spin_unlock(&em_tree->lock); ret = btrfs_drop_extents(trans, root, inode, ordered_extent->file_offset, ordered_extent->file_offset + ordered_extent->len, ordered_extent->file_offset, &alloc_hint); BUG_ON(ret); ret = btrfs_insert_file_extent(trans, root, inode->i_ino, ordered_extent->file_offset, ordered_extent->start, ordered_extent->len, ordered_extent->len, 0); BUG_ON(ret); btrfs_drop_extent_cache(inode, ordered_extent->file_offset, ordered_extent->file_offset + ordered_extent->len - 1); mutex_unlock(&BTRFS_I(inode)->extent_mutex); inode->i_blocks += ordered_extent->len >> 9; unlock_extent(io_tree, ordered_extent->file_offset, ordered_extent->file_offset + ordered_extent->len - 1, GFP_NOFS); add_pending_csums(trans, inode, ordered_extent->file_offset, &ordered_extent->list); btrfs_ordered_update_i_size(inode, ordered_extent); btrfs_remove_ordered_extent(inode, ordered_extent); /* once for us */ btrfs_put_ordered_extent(ordered_extent); /* once for the tree */ btrfs_put_ordered_extent(ordered_extent); btrfs_update_inode(trans, root, inode); btrfs_end_transaction(trans, root); return 0; } int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, struct extent_state *state, int uptodate) { return btrfs_finish_ordered_io(page->mapping->host, start, end); } int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end) { int ret = 0; struct inode *inode = page->mapping->host; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_csum_item *item; struct btrfs_path *path = NULL; u32 csum; if (btrfs_test_opt(root, NODATASUM) || btrfs_test_flag(inode, NODATASUM)) return 0; /* * It is possible there is an ordered extent that has * not yet finished for this range in the file. If so, * that extent will have a csum cached, and it will insert * the sum after all the blocks in the extent are fully * on disk. So, look for an ordered extent and use the * sum if found. We have to do this before looking in the * btree because csum items are pre-inserted based on * the file size. btrfs_lookup_csum might find an item * that still hasn't been fully filled. */ ret = btrfs_find_ordered_sum(inode, start, &csum); if (ret == 0) goto found; ret = 0; path = btrfs_alloc_path(); item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0); if (IS_ERR(item)) { ret = PTR_ERR(item); /* a csum that isn't present is a preallocated region. */ if (ret == -ENOENT || ret == -EFBIG) ret = 0; csum = 0; printk("no csum found for inode %lu start %Lu\n", inode->i_ino, start); goto out; } read_extent_buffer(path->nodes[0], &csum, (unsigned long)item, BTRFS_CRC32_SIZE); found: set_state_private(io_tree, start, csum); out: if (path) btrfs_free_path(path); return ret; } struct io_failure_record { struct page *page; u64 start; u64 len; u64 logical; int last_mirror; }; int btrfs_io_failed_hook(struct bio *failed_bio, struct page *page, u64 start, u64 end, struct extent_state *state) { struct io_failure_record *failrec = NULL; u64 private; struct extent_map *em; struct inode *inode = page->mapping->host; struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct bio *bio; int num_copies; int ret; int rw; u64 logical; ret = get_state_private(failure_tree, start, &private); if (ret) { failrec = kmalloc(sizeof(*failrec), GFP_NOFS); if (!failrec) return -ENOMEM; failrec->start = start; failrec->len = end - start + 1; failrec->last_mirror = 0; spin_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, failrec->len); if (em->start > start || em->start + em->len < start) { free_extent_map(em); em = NULL; } spin_unlock(&em_tree->lock); if (!em || IS_ERR(em)) { kfree(failrec); return -EIO; } logical = start - em->start; logical = em->block_start + logical; failrec->logical = logical; free_extent_map(em); set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); set_state_private(failure_tree, start, (u64)(unsigned long)failrec); } else { failrec = (struct io_failure_record *)(unsigned long)private; } num_copies = btrfs_num_copies( &BTRFS_I(inode)->root->fs_info->mapping_tree, failrec->logical, failrec->len); failrec->last_mirror++; if (!state) { spin_lock_irq(&BTRFS_I(inode)->io_tree.lock); state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, failrec->start, EXTENT_LOCKED); if (state && state->start != failrec->start) state = NULL; spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock); } if (!state || failrec->last_mirror > num_copies) { set_state_private(failure_tree, failrec->start, 0); clear_extent_bits(failure_tree, failrec->start, failrec->start + failrec->len - 1, EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); kfree(failrec); return -EIO; } bio = bio_alloc(GFP_NOFS, 1); bio->bi_private = state; bio->bi_end_io = failed_bio->bi_end_io; bio->bi_sector = failrec->logical >> 9; bio->bi_bdev = failed_bio->bi_bdev; bio->bi_size = 0; bio_add_page(bio, page, failrec->len, start - page_offset(page)); if (failed_bio->bi_rw & (1 << BIO_RW)) rw = WRITE; else rw = READ; BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, failrec->last_mirror); return 0; } int btrfs_clean_io_failures(struct inode *inode, u64 start) { u64 private; u64 private_failure; struct io_failure_record *failure; int ret; private = 0; if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, (u64)-1, 1, EXTENT_DIRTY)) { ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, &private_failure); if (ret == 0) { failure = (struct io_failure_record *)(unsigned long) private_failure; set_state_private(&BTRFS_I(inode)->io_failure_tree, failure->start, 0); clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, failure->start, failure->start + failure->len - 1, EXTENT_DIRTY | EXTENT_LOCKED, GFP_NOFS); kfree(failure); } } return 0; } int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, struct extent_state *state) { size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); struct inode *inode = page->mapping->host; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; char *kaddr; u64 private = ~(u32)0; int ret; struct btrfs_root *root = BTRFS_I(inode)->root; u32 csum = ~(u32)0; unsigned long flags; if (btrfs_test_opt(root, NODATASUM) || btrfs_test_flag(inode, NODATASUM)) return 0; if (state && state->start == start) { private = state->private; ret = 0; } else { ret = get_state_private(io_tree, start, &private); } local_irq_save(flags); kaddr = kmap_atomic(page, KM_IRQ0); if (ret) { goto zeroit; } csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); btrfs_csum_final(csum, (char *)&csum); if (csum != private) { goto zeroit; } kunmap_atomic(kaddr, KM_IRQ0); local_irq_restore(flags); /* if the io failure tree for this inode is non-empty, * check to see if we've recovered from a failed IO */ btrfs_clean_io_failures(inode, start); return 0; zeroit: printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n", page->mapping->host->i_ino, (unsigned long long)start, csum, private); memset(kaddr + offset, 1, end - start + 1); flush_dcache_page(page); kunmap_atomic(kaddr, KM_IRQ0); local_irq_restore(flags); if (private == 0) return 0; return -EIO; } /* * This creates an orphan entry for the given inode in case something goes * wrong in the middle of an unlink/truncate. */ int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; spin_lock(&root->orphan_lock); /* already on the orphan list, we're good */ if (!list_empty(&BTRFS_I(inode)->i_orphan)) { spin_unlock(&root->orphan_lock); return 0; } list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); spin_unlock(&root->orphan_lock); /* * insert an orphan item to track this unlinked/truncated file */ ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); return ret; } /* * We have done the truncate/delete so we can go ahead and remove the orphan * item for this particular inode. */ int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; spin_lock(&root->orphan_lock); if (list_empty(&BTRFS_I(inode)->i_orphan)) { spin_unlock(&root->orphan_lock); return 0; } list_del_init(&BTRFS_I(inode)->i_orphan); if (!trans) { spin_unlock(&root->orphan_lock); return 0; } spin_unlock(&root->orphan_lock); ret = btrfs_del_orphan_item(trans, root, inode->i_ino); return ret; } /* * this cleans up any orphans that may be left on the list from the last use * of this root. */ void btrfs_orphan_cleanup(struct btrfs_root *root) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_item *item; struct btrfs_key key, found_key; struct btrfs_trans_handle *trans; struct inode *inode; int ret = 0, nr_unlink = 0, nr_truncate = 0; /* don't do orphan cleanup if the fs is readonly. */ if (root->inode->i_sb->s_flags & MS_RDONLY) return; path = btrfs_alloc_path(); if (!path) return; path->reada = -1; key.objectid = BTRFS_ORPHAN_OBJECTID; btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); key.offset = (u64)-1; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, root->inode); while (1) { ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { printk(KERN_ERR "Error searching slot for orphan: %d" "\n", ret); break; } /* * if ret == 0 means we found what we were searching for, which * is weird, but possible, so only screw with path if we didnt * find the key and see if we have stuff that matches */ if (ret > 0) { if (path->slots[0] == 0) break; path->slots[0]--; } /* pull out the item */ leaf = path->nodes[0]; item = btrfs_item_nr(leaf, path->slots[0]); btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); /* make sure the item matches what we want */ if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) break; if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) break; /* release the path since we're done with it */ btrfs_release_path(root, path); /* * this is where we are basically btrfs_lookup, without the * crossing root thing. we store the inode number in the * offset of the orphan item. */ inode = btrfs_iget_locked(root->inode->i_sb, found_key.offset, root); if (!inode) break; if (inode->i_state & I_NEW) { BTRFS_I(inode)->root = root; /* have to set the location manually */ BTRFS_I(inode)->location.objectid = inode->i_ino; BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; BTRFS_I(inode)->location.offset = 0; btrfs_read_locked_inode(inode); unlock_new_inode(inode); } /* * add this inode to the orphan list so btrfs_orphan_del does * the proper thing when we hit it */ spin_lock(&root->orphan_lock); list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); spin_unlock(&root->orphan_lock); /* * if this is a bad inode, means we actually succeeded in * removing the inode, but not the orphan record, which means * we need to manually delete the orphan since iput will just * do a destroy_inode */ if (is_bad_inode(inode)) { btrfs_orphan_del(trans, inode); iput(inode); continue; } /* if we have links, this was a truncate, lets do that */ if (inode->i_nlink) { nr_truncate++; btrfs_truncate(inode); } else { nr_unlink++; } /* this will do delete_inode and everything for us */ iput(inode); } if (nr_unlink) printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); if (nr_truncate) printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); btrfs_free_path(path); btrfs_end_transaction(trans, root); } void btrfs_read_locked_inode(struct inode *inode) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_inode_item *inode_item; struct btrfs_timespec *tspec; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_key location; u64 alloc_group_block; u32 rdev; int ret; path = btrfs_alloc_path(); BUG_ON(!path); memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); ret = btrfs_lookup_inode(NULL, root, path, &location, 0); if (ret) goto make_bad; leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); inode->i_mode = btrfs_inode_mode(leaf, inode_item); inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); inode->i_uid = btrfs_inode_uid(leaf, inode_item); inode->i_gid = btrfs_inode_gid(leaf, inode_item); btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); tspec = btrfs_inode_atime(inode_item); inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); tspec = btrfs_inode_mtime(inode_item); inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); tspec = btrfs_inode_ctime(inode_item); inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item); inode->i_generation = btrfs_inode_generation(leaf, inode_item); inode->i_rdev = 0; rdev = btrfs_inode_rdev(leaf, inode_item); BTRFS_I(inode)->index_cnt = (u64)-1; alloc_group_block = btrfs_inode_block_group(leaf, inode_item); BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info, alloc_group_block); BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); if (!BTRFS_I(inode)->block_group) { BTRFS_I(inode)->block_group = btrfs_find_block_group(root, NULL, 0, BTRFS_BLOCK_GROUP_METADATA, 0); } btrfs_free_path(path); inode_item = NULL; switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_mapping->a_ops = &btrfs_aops; inode->i_mapping->backing_dev_info = &root->fs_info->bdi; BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; break; case S_IFDIR: inode->i_fop = &btrfs_dir_file_operations; if (root == root->fs_info->tree_root) inode->i_op = &btrfs_dir_ro_inode_operations; else inode->i_op = &btrfs_dir_inode_operations; break; case S_IFLNK: inode->i_op = &btrfs_symlink_inode_operations; inode->i_mapping->a_ops = &btrfs_symlink_aops; inode->i_mapping->backing_dev_info = &root->fs_info->bdi; break; default: init_special_inode(inode, inode->i_mode, rdev); break; } return; make_bad: btrfs_free_path(path); make_bad_inode(inode); } static void fill_inode_item(struct extent_buffer *leaf, struct btrfs_inode_item *item, struct inode *inode) { btrfs_set_inode_uid(leaf, item, inode->i_uid); btrfs_set_inode_gid(leaf, item, inode->i_gid); btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); btrfs_set_inode_mode(leaf, item, inode->i_mode); btrfs_set_inode_nlink(leaf, item, inode->i_nlink); btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), inode->i_atime.tv_sec); btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), inode->i_atime.tv_nsec); btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), inode->i_mtime.tv_sec); btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), inode->i_mtime.tv_nsec); btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), inode->i_ctime.tv_sec); btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), inode->i_ctime.tv_nsec); btrfs_set_inode_nblocks(leaf, item, inode->i_blocks); btrfs_set_inode_generation(leaf, item, inode->i_generation); btrfs_set_inode_rdev(leaf, item, inode->i_rdev); btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group->key.objectid); } int noinline btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { struct btrfs_inode_item *inode_item; struct btrfs_path *path; struct extent_buffer *leaf; int ret; path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto failed; } leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); fill_inode_item(leaf, inode_item, inode); btrfs_mark_buffer_dirty(leaf); btrfs_set_inode_last_trans(trans, inode); ret = 0; failed: btrfs_free_path(path); return ret; } static int btrfs_unlink_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, struct dentry *dentry) { struct btrfs_path *path; const char *name = dentry->d_name.name; int name_len = dentry->d_name.len; int ret = 0; struct extent_buffer *leaf; struct btrfs_dir_item *di; struct btrfs_key key; u64 index; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto err; } di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, name, name_len, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto err; } if (!di) { ret = -ENOENT; goto err; } leaf = path->nodes[0]; btrfs_dir_item_key_to_cpu(leaf, di, &key); ret = btrfs_delete_one_dir_name(trans, root, path, di); if (ret) goto err; btrfs_release_path(root, path); ret = btrfs_del_inode_ref(trans, root, name, name_len, dentry->d_inode->i_ino, dentry->d_parent->d_inode->i_ino, &index); if (ret) { printk("failed to delete reference to %.*s, " "inode %lu parent %lu\n", name_len, name, dentry->d_inode->i_ino, dentry->d_parent->d_inode->i_ino); goto err; } di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, name, name_len, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); goto err; } if (!di) { ret = -ENOENT; goto err; } ret = btrfs_delete_one_dir_name(trans, root, path, di); btrfs_release_path(root, path); dentry->d_inode->i_ctime = dir->i_ctime; err: btrfs_free_path(path); if (!ret) { btrfs_i_size_write(dir, dir->i_size - name_len * 2); dir->i_mtime = dir->i_ctime = CURRENT_TIME; btrfs_update_inode(trans, root, dir); #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) dentry->d_inode->i_nlink--; #else drop_nlink(dentry->d_inode); #endif ret = btrfs_update_inode(trans, root, dentry->d_inode); dir->i_sb->s_dirt = 1; } return ret; } static int btrfs_unlink(struct inode *dir, struct dentry *dentry) { struct btrfs_root *root; struct btrfs_trans_handle *trans; struct inode *inode = dentry->d_inode; int ret; unsigned long nr = 0; root = BTRFS_I(dir)->root; ret = btrfs_check_free_space(root, 1, 1); if (ret) goto fail; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); ret = btrfs_unlink_trans(trans, root, dir, dentry); if (inode->i_nlink == 0) ret = btrfs_orphan_add(trans, inode); nr = trans->blocks_used; btrfs_end_transaction_throttle(trans, root); fail: btrfs_btree_balance_dirty(root, nr); return ret; } static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = dentry->d_inode; int err = 0; int ret; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_trans_handle *trans; unsigned long nr = 0; if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) { return -ENOTEMPTY; } ret = btrfs_check_free_space(root, 1, 1); if (ret) goto fail; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_orphan_add(trans, inode); if (err) goto fail_trans; /* now the directory is empty */ err = btrfs_unlink_trans(trans, root, dir, dentry); if (!err) { btrfs_i_size_write(inode, 0); } fail_trans: nr = trans->blocks_used; ret = btrfs_end_transaction_throttle(trans, root); fail: btrfs_btree_balance_dirty(root, nr); if (ret && !err) err = ret; return err; } /* * this can truncate away extent items, csum items and directory items. * It starts at a high offset and removes keys until it can't find * any higher than i_size. * * csum items that cross the new i_size are truncated to the new size * as well. * * min_type is the minimum key type to truncate down to. If set to 0, this * will kill all the items on this inode, including the INODE_ITEM_KEY. */ static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u32 min_type) { int ret; struct btrfs_path *path; struct btrfs_key key; struct btrfs_key found_key; u32 found_type; struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; u64 extent_start = 0; u64 extent_num_bytes = 0; u64 item_end = 0; u64 root_gen = 0; u64 root_owner = 0; int found_extent; int del_item; int pending_del_nr = 0; int pending_del_slot = 0; int extent_type = -1; u64 mask = root->sectorsize - 1; btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1); path = btrfs_alloc_path(); path->reada = -1; BUG_ON(!path); /* FIXME, add redo link to tree so we don't leak on crash */ key.objectid = inode->i_ino; key.offset = (u64)-1; key.type = (u8)-1; btrfs_init_path(path); search_again: ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) { goto error; } if (ret > 0) { BUG_ON(path->slots[0] == 0); path->slots[0]--; } while(1) { fi = NULL; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); found_type = btrfs_key_type(&found_key); if (found_key.objectid != inode->i_ino) break; if (found_type < min_type) break; item_end = found_key.offset; if (found_type == BTRFS_EXTENT_DATA_KEY) { fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(leaf, fi); if (extent_type != BTRFS_FILE_EXTENT_INLINE) { item_end += btrfs_file_extent_num_bytes(leaf, fi); } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { struct btrfs_item *item = btrfs_item_nr(leaf, path->slots[0]); item_end += btrfs_file_extent_inline_len(leaf, item); } item_end--; } if (found_type == BTRFS_CSUM_ITEM_KEY) { ret = btrfs_csum_truncate(trans, root, path, inode->i_size); BUG_ON(ret); } if (item_end < inode->i_size) { if (found_type == BTRFS_DIR_ITEM_KEY) { found_type = BTRFS_INODE_ITEM_KEY; } else if (found_type == BTRFS_EXTENT_ITEM_KEY) { found_type = BTRFS_CSUM_ITEM_KEY; } else if (found_type == BTRFS_EXTENT_DATA_KEY) { found_type = BTRFS_XATTR_ITEM_KEY; } else if (found_type == BTRFS_XATTR_ITEM_KEY) { found_type = BTRFS_INODE_REF_KEY; } else if (found_type) { found_type--; } else { break; } btrfs_set_key_type(&key, found_type); goto next; } if (found_key.offset >= inode->i_size) del_item = 1; else del_item = 0; found_extent = 0; /* FIXME, shrink the extent if the ref count is only 1 */ if (found_type != BTRFS_EXTENT_DATA_KEY) goto delete; if (extent_type != BTRFS_FILE_EXTENT_INLINE) { u64 num_dec; extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); if (!del_item) { u64 orig_num_bytes = btrfs_file_extent_num_bytes(leaf, fi); extent_num_bytes = inode->i_size - found_key.offset + root->sectorsize - 1; extent_num_bytes = extent_num_bytes & ~((u64)root->sectorsize - 1); btrfs_set_file_extent_num_bytes(leaf, fi, extent_num_bytes); num_dec = (orig_num_bytes - extent_num_bytes); if (extent_start != 0) dec_i_blocks(inode, num_dec); btrfs_mark_buffer_dirty(leaf); } else { extent_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); /* FIXME blocksize != 4096 */ num_dec = btrfs_file_extent_num_bytes(leaf, fi); if (extent_start != 0) { found_extent = 1; dec_i_blocks(inode, num_dec); } root_gen = btrfs_header_generation(leaf); root_owner = btrfs_header_owner(leaf); } } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { if (!del_item) { u32 newsize = inode->i_size - found_key.offset; dec_i_blocks(inode, item_end + 1 - found_key.offset - newsize); newsize = btrfs_file_extent_calc_inline_size(newsize); ret = btrfs_truncate_item(trans, root, path, newsize, 1); BUG_ON(ret); } else { dec_i_blocks(inode, item_end + 1 - found_key.offset); } } delete: if (del_item) { if (!pending_del_nr) { /* no pending yet, add ourselves */ pending_del_slot = path->slots[0]; pending_del_nr = 1; } else if (pending_del_nr && path->slots[0] + 1 == pending_del_slot) { /* hop on the pending chunk */ pending_del_nr++; pending_del_slot = path->slots[0]; } else { printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot); } } else { break; } if (found_extent) { ret = btrfs_free_extent(trans, root, extent_start, extent_num_bytes, root_owner, root_gen, inode->i_ino, found_key.offset, 0); BUG_ON(ret); } next: if (path->slots[0] == 0) { if (pending_del_nr) goto del_pending; btrfs_release_path(root, path); goto search_again; } path->slots[0]--; if (pending_del_nr && path->slots[0] + 1 != pending_del_slot) { struct btrfs_key debug; del_pending: btrfs_item_key_to_cpu(path->nodes[0], &debug, pending_del_slot); ret = btrfs_del_items(trans, root, path, pending_del_slot, pending_del_nr); BUG_ON(ret); pending_del_nr = 0; btrfs_release_path(root, path); goto search_again; } } ret = 0; error: if (pending_del_nr) { ret = btrfs_del_items(trans, root, path, pending_del_slot, pending_del_nr); } btrfs_free_path(path); inode->i_sb->s_dirt = 1; return ret; } /* * taken from block_truncate_page, but does cow as it zeros out * any bytes left in the last page in the file. */ static int btrfs_truncate_page(struct address_space *mapping, loff_t from) { struct inode *inode = mapping->host; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_ordered_extent *ordered; char *kaddr; u32 blocksize = root->sectorsize; pgoff_t index = from >> PAGE_CACHE_SHIFT; unsigned offset = from & (PAGE_CACHE_SIZE-1); struct page *page; int ret = 0; u64 page_start; u64 page_end; if ((offset & (blocksize - 1)) == 0) goto out; ret = -ENOMEM; again: page = grab_cache_page(mapping, index); if (!page) goto out; page_start = page_offset(page); page_end = page_start + PAGE_CACHE_SIZE - 1; if (!PageUptodate(page)) { ret = btrfs_readpage(NULL, page); lock_page(page); if (page->mapping != mapping) { unlock_page(page); page_cache_release(page); goto again; } if (!PageUptodate(page)) { ret = -EIO; goto out_unlock; } } wait_on_page_writeback(page); lock_extent(io_tree, page_start, page_end, GFP_NOFS); set_page_extent_mapped(page); ordered = btrfs_lookup_ordered_extent(inode, page_start); if (ordered) { unlock_extent(io_tree, page_start, page_end, GFP_NOFS); unlock_page(page); page_cache_release(page); btrfs_start_ordered_extent(inode, ordered, 1); btrfs_put_ordered_extent(ordered); goto again; } set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); ret = 0; if (offset != PAGE_CACHE_SIZE) { kaddr = kmap(page); memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); flush_dcache_page(page); kunmap(page); } ClearPageChecked(page); set_page_dirty(page); unlock_extent(io_tree, page_start, page_end, GFP_NOFS); out_unlock: unlock_page(page); page_cache_release(page); out: return ret; } static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode; int err; err = inode_change_ok(inode, attr); if (err) return err; if (S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; u64 mask = root->sectorsize - 1; u64 hole_start = (inode->i_size + mask) & ~mask; u64 block_end = (attr->ia_size + mask) & ~mask; u64 hole_size; u64 alloc_hint = 0; if (attr->ia_size <= hole_start) goto out; err = btrfs_check_free_space(root, 1, 0); if (err) goto fail; btrfs_truncate_page(inode->i_mapping, inode->i_size); hole_size = block_end - hole_start; btrfs_wait_ordered_range(inode, hole_start, hole_size); lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); mutex_lock(&BTRFS_I(inode)->extent_mutex); err = btrfs_drop_extents(trans, root, inode, hole_start, block_end, hole_start, &alloc_hint); if (alloc_hint != EXTENT_MAP_INLINE) { err = btrfs_insert_file_extent(trans, root, inode->i_ino, hole_start, 0, 0, hole_size, 0); btrfs_drop_extent_cache(inode, hole_start, (u64)-1); btrfs_check_file(root, inode); } mutex_unlock(&BTRFS_I(inode)->extent_mutex); btrfs_end_transaction(trans, root); unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); if (err) return err; } out: err = inode_setattr(inode, attr); if (!err && ((attr->ia_valid & ATTR_MODE))) err = btrfs_acl_chmod(inode); fail: return err; } void btrfs_delete_inode(struct inode *inode) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(inode)->root; unsigned long nr; int ret; truncate_inode_pages(&inode->i_data, 0); if (is_bad_inode(inode)) { btrfs_orphan_del(NULL, inode); goto no_delete; } btrfs_wait_ordered_range(inode, 0, (u64)-1); btrfs_i_size_write(inode, 0); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); ret = btrfs_truncate_in_trans(trans, root, inode, 0); if (ret) { btrfs_orphan_del(NULL, inode); goto no_delete_lock; } btrfs_orphan_del(trans, inode); nr = trans->blocks_used; clear_inode(inode); btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(root, nr); return; no_delete_lock: nr = trans->blocks_used; btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(root, nr); no_delete: clear_inode(inode); } /* * this returns the key found in the dir entry in the location pointer. * If no dir entries were found, location->objectid is 0. */ static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, struct btrfs_key *location) { const char *name = dentry->d_name.name; int namelen = dentry->d_name.len; struct btrfs_dir_item *di; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(dir)->root; int ret = 0; if (namelen == 1 && strcmp(name, ".") == 0) { location->objectid = dir->i_ino; location->type = BTRFS_INODE_ITEM_KEY; location->offset = 0; return 0; } path = btrfs_alloc_path(); BUG_ON(!path); if (namelen == 2 && strcmp(name, "..") == 0) { struct btrfs_key key; struct extent_buffer *leaf; int slot; key.objectid = dir->i_ino; key.offset = (u64)-1; btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY); if (ret < 0 || path->slots[0] == 0) goto out_err; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); BUG_ON(ret == 0); ret = 0; leaf = path->nodes[0]; slot = path->slots[0] - 1; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid != dir->i_ino || key.type != BTRFS_INODE_REF_KEY) { goto out_err; } location->objectid = key.offset; location->type = BTRFS_INODE_ITEM_KEY; location->offset = 0; goto out; } di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, namelen, 0); if (IS_ERR(di)) ret = PTR_ERR(di); if (!di || IS_ERR(di)) { goto out_err; } btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); out: btrfs_free_path(path); return ret; out_err: location->objectid = 0; goto out; } /* * when we hit a tree root in a directory, the btrfs part of the inode * needs to be changed to reflect the root directory of the tree root. This * is kind of like crossing a mount point. */ static int fixup_tree_root_location(struct btrfs_root *root, struct btrfs_key *location, struct btrfs_root **sub_root, struct dentry *dentry) { struct btrfs_root_item *ri; if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) return 0; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return 0; *sub_root = btrfs_read_fs_root(root->fs_info, location, dentry->d_name.name, dentry->d_name.len); if (IS_ERR(*sub_root)) return PTR_ERR(*sub_root); ri = &(*sub_root)->root_item; location->objectid = btrfs_root_dirid(ri); btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); location->offset = 0; return 0; } static int btrfs_init_locked_inode(struct inode *inode, void *p) { struct btrfs_iget_args *args = p; inode->i_ino = args->ino; BTRFS_I(inode)->root = args->root; BTRFS_I(inode)->delalloc_bytes = 0; BTRFS_I(inode)->disk_i_size = 0; BTRFS_I(inode)->index_cnt = (u64)-1; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, inode->i_mapping, GFP_NOFS); btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); mutex_init(&BTRFS_I(inode)->csum_mutex); mutex_init(&BTRFS_I(inode)->extent_mutex); return 0; } static int btrfs_find_actor(struct inode *inode, void *opaque) { struct btrfs_iget_args *args = opaque; return (args->ino == inode->i_ino && args->root == BTRFS_I(inode)->root); } struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, u64 root_objectid) { struct btrfs_iget_args args; args.ino = objectid; args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid); if (!args.root) return NULL; return ilookup5(s, objectid, btrfs_find_actor, (void *)&args); } struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, struct btrfs_root *root) { struct inode *inode; struct btrfs_iget_args args; args.ino = objectid; args.root = root; inode = iget5_locked(s, objectid, btrfs_find_actor, btrfs_init_locked_inode, (void *)&args); return inode; } static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode * inode; struct btrfs_inode *bi = BTRFS_I(dir); struct btrfs_root *root = bi->root; struct btrfs_root *sub_root = root; struct btrfs_key location; int ret, do_orphan = 0; if (dentry->d_name.len > BTRFS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); ret = btrfs_inode_by_name(dir, dentry, &location); if (ret < 0) return ERR_PTR(ret); inode = NULL; if (location.objectid) { ret = fixup_tree_root_location(root, &location, &sub_root, dentry); if (ret < 0) return ERR_PTR(ret); if (ret > 0) return ERR_PTR(-ENOENT); inode = btrfs_iget_locked(dir->i_sb, location.objectid, sub_root); if (!inode) return ERR_PTR(-EACCES); if (inode->i_state & I_NEW) { /* the inode and parent dir are two different roots */ if (sub_root != root) { igrab(inode); sub_root->inode = inode; do_orphan = 1; } BTRFS_I(inode)->root = sub_root; memcpy(&BTRFS_I(inode)->location, &location, sizeof(location)); btrfs_read_locked_inode(inode); unlock_new_inode(inode); } } if (unlikely(do_orphan)) btrfs_orphan_cleanup(sub_root); return d_splice_alias(inode, dentry); } static unsigned char btrfs_filetype_table[] = { DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK }; static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir) { struct inode *inode = filp->f_dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_item *item; struct btrfs_dir_item *di; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_path *path; int ret; u32 nritems; struct extent_buffer *leaf; int slot; int advance; unsigned char d_type; int over = 0; u32 di_cur; u32 di_total; u32 di_len; int key_type = BTRFS_DIR_INDEX_KEY; char tmp_name[32]; char *name_ptr; int name_len; /* FIXME, use a real flag for deciding about the key type */ if (root->fs_info->tree_root == root) key_type = BTRFS_DIR_ITEM_KEY; /* special case for "." */ if (filp->f_pos == 0) { over = filldir(dirent, ".", 1, 1, inode->i_ino, DT_DIR); if (over) return 0; filp->f_pos = 1; } key.objectid = inode->i_ino; path = btrfs_alloc_path(); path->reada = 2; /* special case for .., just use the back ref */ if (filp->f_pos == 1) { btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY); key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0 || path->slots[0] == 0) { btrfs_release_path(root, path); goto read_dir_items; } BUG_ON(ret == 0); leaf = path->nodes[0]; slot = path->slots[0] - 1; btrfs_item_key_to_cpu(leaf, &found_key, slot); btrfs_release_path(root, path); if (found_key.objectid != key.objectid || found_key.type != BTRFS_INODE_REF_KEY) goto read_dir_items; over = filldir(dirent, "..", 2, 2, found_key.offset, DT_DIR); if (over) goto nopos; filp->f_pos = 2; } read_dir_items: btrfs_set_key_type(&key, key_type); key.offset = filp->f_pos; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto err; advance = 0; while(1) { leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); slot = path->slots[0]; if (advance || slot >= nritems) { if (slot >= nritems -1) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); slot = path->slots[0]; } else { slot++; path->slots[0]++; } } advance = 1; item = btrfs_item_nr(leaf, slot); btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid != key.objectid) break; if (btrfs_key_type(&found_key) != key_type) break; if (found_key.offset < filp->f_pos) continue; filp->f_pos = found_key.offset; advance = 1; di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); di_cur = 0; di_total = btrfs_item_size(leaf, item); while(di_cur < di_total) { struct btrfs_key location; name_len = btrfs_dir_name_len(leaf, di); if (name_len < 32) { name_ptr = tmp_name; } else { name_ptr = kmalloc(name_len, GFP_NOFS); BUG_ON(!name_ptr); } read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), name_len); d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; btrfs_dir_item_key_to_cpu(leaf, di, &location); over = filldir(dirent, name_ptr, name_len, found_key.offset, location.objectid, d_type); if (name_ptr != tmp_name) kfree(name_ptr); if (over) goto nopos; di_len = btrfs_dir_name_len(leaf, di) + btrfs_dir_data_len(leaf, di) +sizeof(*di); di_cur += di_len; di = (struct btrfs_dir_item *)((char *)di + di_len); } } if (key_type == BTRFS_DIR_INDEX_KEY) filp->f_pos = INT_LIMIT(typeof(filp->f_pos)); else filp->f_pos++; nopos: ret = 0; err: btrfs_free_path(path); return ret; } int btrfs_write_inode(struct inode *inode, int wait) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; int ret = 0; if (wait) { trans = btrfs_join_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); ret = btrfs_commit_transaction(trans, root); } return ret; } /* * This is somewhat expensive, updating the tree every time the * inode changes. But, it is most likely to find the inode in cache. * FIXME, needs more benchmarking...there are no reasons other than performance * to keep or drop this code. */ void btrfs_dirty_inode(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; trans = btrfs_join_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); btrfs_update_inode(trans, root, inode); btrfs_end_transaction(trans, root); } static int btrfs_set_inode_index_count(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_key key, found_key; struct btrfs_path *path; struct extent_buffer *leaf; int ret; key.objectid = inode->i_ino; btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); key.offset = (u64)-1; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; /* FIXME: we should be able to handle this */ if (ret == 0) goto out; ret = 0; /* * MAGIC NUMBER EXPLANATION: * since we search a directory based on f_pos we have to start at 2 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody * else has to start at 2 */ if (path->slots[0] == 0) { BTRFS_I(inode)->index_cnt = 2; goto out; } path->slots[0]--; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != inode->i_ino || btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { BTRFS_I(inode)->index_cnt = 2; goto out; } BTRFS_I(inode)->index_cnt = found_key.offset + 1; out: btrfs_free_path(path); return ret; } static int btrfs_set_inode_index(struct inode *dir, struct inode *inode) { int ret = 0; if (BTRFS_I(dir)->index_cnt == (u64)-1) { ret = btrfs_set_inode_index_count(dir); if (ret) return ret; } BTRFS_I(inode)->index = BTRFS_I(dir)->index_cnt; BTRFS_I(dir)->index_cnt++; return ret; } static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, const char *name, int name_len, u64 ref_objectid, u64 objectid, struct btrfs_block_group_cache *group, int mode) { struct inode *inode; struct btrfs_inode_item *inode_item; struct btrfs_block_group_cache *new_inode_group; struct btrfs_key *location; struct btrfs_path *path; struct btrfs_inode_ref *ref; struct btrfs_key key[2]; u32 sizes[2]; unsigned long ptr; int ret; int owner; path = btrfs_alloc_path(); BUG_ON(!path); inode = new_inode(root->fs_info->sb); if (!inode) return ERR_PTR(-ENOMEM); if (dir) { ret = btrfs_set_inode_index(dir, inode); if (ret) return ERR_PTR(ret); } else { BTRFS_I(inode)->index = 0; } /* * index_cnt is ignored for everything but a dir, * btrfs_get_inode_index_count has an explanation for the magic * number */ BTRFS_I(inode)->index_cnt = 2; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, inode->i_mapping, GFP_NOFS); btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); mutex_init(&BTRFS_I(inode)->csum_mutex); mutex_init(&BTRFS_I(inode)->extent_mutex); BTRFS_I(inode)->delalloc_bytes = 0; BTRFS_I(inode)->disk_i_size = 0; BTRFS_I(inode)->root = root; if (mode & S_IFDIR) owner = 0; else owner = 1; new_inode_group = btrfs_find_block_group(root, group, 0, BTRFS_BLOCK_GROUP_METADATA, owner); if (!new_inode_group) { printk("find_block group failed\n"); new_inode_group = group; } BTRFS_I(inode)->block_group = new_inode_group; BTRFS_I(inode)->flags = 0; key[0].objectid = objectid; btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); key[0].offset = 0; key[1].objectid = objectid; btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); key[1].offset = ref_objectid; sizes[0] = sizeof(struct btrfs_inode_item); sizes[1] = name_len + sizeof(*ref); ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); if (ret != 0) goto fail; if (objectid > root->highest_inode) root->highest_inode = objectid; inode->i_uid = current->fsuid; inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = objectid; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); fill_inode_item(path->nodes[0], inode_item, inode); ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, struct btrfs_inode_ref); btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); btrfs_set_inode_ref_index(path->nodes[0], ref, BTRFS_I(inode)->index); ptr = (unsigned long)(ref + 1); write_extent_buffer(path->nodes[0], name, ptr, name_len); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); location = &BTRFS_I(inode)->location; location->objectid = objectid; location->offset = 0; btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); insert_inode_hash(inode); return inode; fail: if (dir) BTRFS_I(dir)->index_cnt--; btrfs_free_path(path); return ERR_PTR(ret); } static inline u8 btrfs_inode_type(struct inode *inode) { return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; } static int btrfs_add_link(struct btrfs_trans_handle *trans, struct dentry *dentry, struct inode *inode, int add_backref) { int ret; struct btrfs_key key; struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root; struct inode *parent_inode = dentry->d_parent->d_inode; key.objectid = inode->i_ino; btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); key.offset = 0; ret = btrfs_insert_dir_item(trans, root, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, &key, btrfs_inode_type(inode), BTRFS_I(inode)->index); if (ret == 0) { if (add_backref) { ret = btrfs_insert_inode_ref(trans, root, dentry->d_name.name, dentry->d_name.len, inode->i_ino, parent_inode->i_ino, BTRFS_I(inode)->index); } btrfs_i_size_write(parent_inode, parent_inode->i_size + dentry->d_name.len * 2); parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; ret = btrfs_update_inode(trans, root, dentry->d_parent->d_inode); } return ret; } static int btrfs_add_nondir(struct btrfs_trans_handle *trans, struct dentry *dentry, struct inode *inode, int backref) { int err = btrfs_add_link(trans, dentry, inode, backref); if (!err) { d_instantiate(dentry, inode); return 0; } if (err > 0) err = -EEXIST; return err; } static int btrfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode = NULL; int err; int drop_inode = 0; u64 objectid; unsigned long nr = 0; if (!new_valid_dev(rdev)) return -EINVAL; err = btrfs_check_free_space(root, 1, 0); if (err) goto fail; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, objectid, BTRFS_I(dir)->block_group, mode); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; err = btrfs_init_acl(inode, dir); if (err) { drop_inode = 1; goto out_unlock; } btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode, 0); if (err) drop_inode = 1; else { inode->i_op = &btrfs_special_inode_operations; init_special_inode(inode, inode->i_mode, rdev); btrfs_update_inode(trans, root, inode); } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_unlock: nr = trans->blocks_used; btrfs_end_transaction_throttle(trans, root); fail: if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root, nr); return err; } static int btrfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode = NULL; int err; int drop_inode = 0; unsigned long nr = 0; u64 objectid; err = btrfs_check_free_space(root, 1, 0); if (err) goto fail; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, objectid, BTRFS_I(dir)->block_group, mode); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; err = btrfs_init_acl(inode, dir); if (err) { drop_inode = 1; goto out_unlock; } btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode, 0); if (err) drop_inode = 1; else { inode->i_mapping->a_ops = &btrfs_aops; inode->i_mapping->backing_dev_info = &root->fs_info->bdi; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, inode->i_mapping, GFP_NOFS); mutex_init(&BTRFS_I(inode)->csum_mutex); mutex_init(&BTRFS_I(inode)->extent_mutex); BTRFS_I(inode)->delalloc_bytes = 0; BTRFS_I(inode)->disk_i_size = 0; BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_unlock: nr = trans->blocks_used; btrfs_end_transaction_throttle(trans, root); fail: if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root, nr); return err; } static int btrfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode = old_dentry->d_inode; unsigned long nr = 0; int err; int drop_inode = 0; if (inode->i_nlink == 0) return -ENOENT; #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) inode->i_nlink++; #else inc_nlink(inode); #endif err = btrfs_check_free_space(root, 1, 0); if (err) goto fail; err = btrfs_set_inode_index(dir, inode); if (err) goto fail; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); atomic_inc(&inode->i_count); err = btrfs_add_nondir(trans, dentry, inode, 1); if (err) drop_inode = 1; dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, dir); err = btrfs_update_inode(trans, root, inode); if (err) drop_inode = 1; nr = trans->blocks_used; btrfs_end_transaction_throttle(trans, root); fail: if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root, nr); return err; } static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { struct inode *inode = NULL; struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; int err = 0; int drop_on_err = 0; u64 objectid = 0; unsigned long nr = 1; err = btrfs_check_free_space(root, 1, 0); if (err) goto out_unlock; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_unlock; } err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, objectid, BTRFS_I(dir)->block_group, S_IFDIR | mode); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_fail; } drop_on_err = 1; err = btrfs_init_acl(inode, dir); if (err) goto out_fail; inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; btrfs_set_trans_block_group(trans, inode); btrfs_i_size_write(inode, 0); err = btrfs_update_inode(trans, root, inode); if (err) goto out_fail; err = btrfs_add_link(trans, dentry, inode, 0); if (err) goto out_fail; d_instantiate(dentry, inode); drop_on_err = 0; dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); out_fail: nr = trans->blocks_used; btrfs_end_transaction_throttle(trans, root); out_unlock: if (drop_on_err) iput(inode); btrfs_btree_balance_dirty(root, nr); return err; } static int merge_extent_mapping(struct extent_map_tree *em_tree, struct extent_map *existing, struct extent_map *em, u64 map_start, u64 map_len) { u64 start_diff; BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); start_diff = map_start - em->start; em->start = map_start; em->len = map_len; if (em->block_start < EXTENT_MAP_LAST_BYTE) em->block_start += start_diff; return add_extent_mapping(em_tree, em); } struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, size_t pg_offset, u64 start, u64 len, int create) { int ret; int err = 0; u64 bytenr; u64 extent_start = 0; u64 extent_end = 0; u64 objectid = inode->i_ino; u32 found_type; struct btrfs_path *path = NULL; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_file_extent_item *item; struct extent_buffer *leaf; struct btrfs_key found_key; struct extent_map *em = NULL; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_trans_handle *trans = NULL; again: spin_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (em) em->bdev = root->fs_info->fs_devices->latest_bdev; spin_unlock(&em_tree->lock); if (em) { if (em->start > start || em->start + em->len <= start) free_extent_map(em); else if (em->block_start == EXTENT_MAP_INLINE && page) free_extent_map(em); else goto out; } em = alloc_extent_map(GFP_NOFS); if (!em) { err = -ENOMEM; goto out; } em->bdev = root->fs_info->fs_devices->latest_bdev; em->start = EXTENT_MAP_HOLE; em->len = (u64)-1; if (!path) { path = btrfs_alloc_path(); BUG_ON(!path); } ret = btrfs_lookup_file_extent(trans, root, path, objectid, start, trans != NULL); if (ret < 0) { err = ret; goto out; } if (ret != 0) { if (path->slots[0] == 0) goto not_found; path->slots[0]--; } leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); /* are we inside the extent that was found? */ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); found_type = btrfs_key_type(&found_key); if (found_key.objectid != objectid || found_type != BTRFS_EXTENT_DATA_KEY) { goto not_found; } found_type = btrfs_file_extent_type(leaf, item); extent_start = found_key.offset; if (found_type == BTRFS_FILE_EXTENT_REG) { extent_end = extent_start + btrfs_file_extent_num_bytes(leaf, item); err = 0; if (start < extent_start || start >= extent_end) { em->start = start; if (start < extent_start) { if (start + len <= extent_start) goto not_found; em->len = extent_end - extent_start; } else { em->len = len; } goto not_found_em; } bytenr = btrfs_file_extent_disk_bytenr(leaf, item); if (bytenr == 0) { em->start = extent_start; em->len = extent_end - extent_start; em->block_start = EXTENT_MAP_HOLE; goto insert; } bytenr += btrfs_file_extent_offset(leaf, item); em->block_start = bytenr; em->start = extent_start; em->len = extent_end - extent_start; goto insert; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { u64 page_start; unsigned long ptr; char *map; size_t size; size_t extent_offset; size_t copy_size; size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf, path->slots[0])); extent_end = (extent_start + size + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); if (start < extent_start || start >= extent_end) { em->start = start; if (start < extent_start) { if (start + len <= extent_start) goto not_found; em->len = extent_end - extent_start; } else { em->len = len; } goto not_found_em; } em->block_start = EXTENT_MAP_INLINE; if (!page) { em->start = extent_start; em->len = size; goto out; } page_start = page_offset(page) + pg_offset; extent_offset = page_start - extent_start; copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, size - extent_offset); em->start = extent_start + extent_offset; em->len = (copy_size + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); map = kmap(page); ptr = btrfs_file_extent_inline_start(item) + extent_offset; if (create == 0 && !PageUptodate(page)) { read_extent_buffer(leaf, map + pg_offset, ptr, copy_size); flush_dcache_page(page); } else if (create && PageUptodate(page)) { if (!trans) { kunmap(page); free_extent_map(em); em = NULL; btrfs_release_path(root, path); trans = btrfs_join_transaction(root, 1); goto again; } write_extent_buffer(leaf, map + pg_offset, ptr, copy_size); btrfs_mark_buffer_dirty(leaf); } kunmap(page); set_extent_uptodate(io_tree, em->start, extent_map_end(em) - 1, GFP_NOFS); goto insert; } else { printk("unkknown found_type %d\n", found_type); WARN_ON(1); } not_found: em->start = start; em->len = len; not_found_em: em->block_start = EXTENT_MAP_HOLE; insert: btrfs_release_path(root, path); if (em->start > start || extent_map_end(em) <= start) { printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len); err = -EIO; goto out; } err = 0; spin_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em); /* it is possible that someone inserted the extent into the tree * while we had the lock dropped. It is also possible that * an overlapping map exists in the tree */ if (ret == -EEXIST) { struct extent_map *existing; ret = 0; existing = lookup_extent_mapping(em_tree, start, len); if (existing && (existing->start > start || existing->start + existing->len <= start)) { free_extent_map(existing); existing = NULL; } if (!existing) { existing = lookup_extent_mapping(em_tree, em->start, em->len); if (existing) { err = merge_extent_mapping(em_tree, existing, em, start, root->sectorsize); free_extent_map(existing); if (err) { free_extent_map(em); em = NULL; } } else { err = -EIO; printk("failing to insert %Lu %Lu\n", start, len); free_extent_map(em); em = NULL; } } else { free_extent_map(em); em = existing; err = 0; } } spin_unlock(&em_tree->lock); out: if (path) btrfs_free_path(path); if (trans) { ret = btrfs_end_transaction(trans, root); if (!err) { err = ret; } } if (err) { free_extent_map(em); WARN_ON(1); return ERR_PTR(err); } return em; } #if 0 /* waiting for O_DIRECT reads */ static int btrfs_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { struct extent_map *em; u64 start = (u64)iblock << inode->i_blkbits; struct btrfs_multi_bio *multi = NULL; struct btrfs_root *root = BTRFS_I(inode)->root; u64 len; u64 logical; u64 map_length; int ret = 0; em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0); if (!em || IS_ERR(em)) goto out; if (em->start > start || em->start + em->len <= start) { goto out; } if (em->block_start == EXTENT_MAP_INLINE) { ret = -EINVAL; goto out; } len = em->start + em->len - start; len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size))); if (em->block_start == EXTENT_MAP_HOLE || em->block_start == EXTENT_MAP_DELALLOC) { bh_result->b_size = len; goto out; } logical = start - em->start; logical = em->block_start + logical; map_length = len; ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, logical, &map_length, &multi, 0); BUG_ON(ret); bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits; bh_result->b_size = min(map_length, len); bh_result->b_bdev = multi->stripes[0].dev->bdev; set_buffer_mapped(bh_result); kfree(multi); out: free_extent_map(em); return ret; } #endif static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { return -EINVAL; #if 0 struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; if (rw == WRITE) return -EINVAL; return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, offset, nr_segs, btrfs_get_block, NULL); #endif } static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock) { return extent_bmap(mapping, iblock, btrfs_get_extent); } int btrfs_readpage(struct file *file, struct page *page) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; return extent_read_full_page(tree, page, btrfs_get_extent); } static int btrfs_writepage(struct page *page, struct writeback_control *wbc) { struct extent_io_tree *tree; if (current->flags & PF_MEMALLOC) { redirty_page_for_writepage(wbc, page); unlock_page(page); return 0; } tree = &BTRFS_I(page->mapping->host)->io_tree; return extent_write_full_page(tree, page, btrfs_get_extent, wbc); } int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct extent_io_tree *tree; tree = &BTRFS_I(mapping->host)->io_tree; return extent_writepages(tree, mapping, btrfs_get_extent, wbc); } static int btrfs_readpages(struct file *file, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { struct extent_io_tree *tree; tree = &BTRFS_I(mapping->host)->io_tree; return extent_readpages(tree, mapping, pages, nr_pages, btrfs_get_extent); } static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) { struct extent_io_tree *tree; struct extent_map_tree *map; int ret; tree = &BTRFS_I(page->mapping->host)->io_tree; map = &BTRFS_I(page->mapping->host)->extent_tree; ret = try_release_extent_mapping(map, tree, page, gfp_flags); if (ret == 1) { ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } return ret; } static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) { return __btrfs_releasepage(page, gfp_flags); } static void btrfs_invalidatepage(struct page *page, unsigned long offset) { struct extent_io_tree *tree; struct btrfs_ordered_extent *ordered; u64 page_start = page_offset(page); u64 page_end = page_start + PAGE_CACHE_SIZE - 1; wait_on_page_writeback(page); tree = &BTRFS_I(page->mapping->host)->io_tree; if (offset) { btrfs_releasepage(page, GFP_NOFS); return; } lock_extent(tree, page_start, page_end, GFP_NOFS); ordered = btrfs_lookup_ordered_extent(page->mapping->host, page_offset(page)); if (ordered) { /* * IO on this page will never be started, so we need * to account for any ordered extents now */ clear_extent_bit(tree, page_start, page_end, EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_LOCKED, 1, 0, GFP_NOFS); btrfs_finish_ordered_io(page->mapping->host, page_start, page_end); btrfs_put_ordered_extent(ordered); lock_extent(tree, page_start, page_end, GFP_NOFS); } clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_ORDERED, 1, 1, GFP_NOFS); __btrfs_releasepage(page, GFP_NOFS); ClearPageChecked(page); if (PagePrivate(page)) { ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } } /* * btrfs_page_mkwrite() is not allowed to change the file size as it gets * called from a page fault handler when a page is first dirtied. Hence we must * be careful to check for EOF conditions here. We set the page up correctly * for a written page which means we get ENOSPC checking when writing into * holes and correct delalloc and unwritten extent mapping on filesystems that * support these features. * * We are not allowed to take the i_mutex here so we have to play games to * protect against truncate races as the page could now be beyond EOF. Because * vmtruncate() writes the inode size before removing pages, once we have the * page lock we can determine safely if the page is beyond EOF. If it is not * beyond EOF, then the page is guaranteed safe against truncation until we * unlock the page. */ int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) { struct inode *inode = fdentry(vma->vm_file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_ordered_extent *ordered; char *kaddr; unsigned long zero_start; loff_t size; int ret; u64 page_start; u64 page_end; ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0); if (ret) goto out; ret = -EINVAL; again: lock_page(page); size = i_size_read(inode); page_start = page_offset(page); page_end = page_start + PAGE_CACHE_SIZE - 1; if ((page->mapping != inode->i_mapping) || (page_start >= size)) { /* page got truncated out from underneath us */ goto out_unlock; } wait_on_page_writeback(page); lock_extent(io_tree, page_start, page_end, GFP_NOFS); set_page_extent_mapped(page); /* * we can't set the delalloc bits if there are pending ordered * extents. Drop our locks and wait for them to finish */ ordered = btrfs_lookup_ordered_extent(inode, page_start); if (ordered) { unlock_extent(io_tree, page_start, page_end, GFP_NOFS); unlock_page(page); btrfs_start_ordered_extent(inode, ordered, 1); btrfs_put_ordered_extent(ordered); goto again; } set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); ret = 0; /* page is wholly or partially inside EOF */ if (page_start + PAGE_CACHE_SIZE > size) zero_start = size & ~PAGE_CACHE_MASK; else zero_start = PAGE_CACHE_SIZE; if (zero_start != PAGE_CACHE_SIZE) { kaddr = kmap(page); memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); flush_dcache_page(page); kunmap(page); } ClearPageChecked(page); set_page_dirty(page); unlock_extent(io_tree, page_start, page_end, GFP_NOFS); out_unlock: unlock_page(page); out: return ret; } static void btrfs_truncate(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; int ret; struct btrfs_trans_handle *trans; unsigned long nr; u64 mask = root->sectorsize - 1; if (!S_ISREG(inode->i_mode)) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; btrfs_truncate_page(inode->i_mapping, inode->i_size); btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); btrfs_i_size_write(inode, inode->i_size); ret = btrfs_orphan_add(trans, inode); if (ret) goto out; /* FIXME, add redo link to tree so we don't leak on crash */ ret = btrfs_truncate_in_trans(trans, root, inode, BTRFS_EXTENT_DATA_KEY); btrfs_update_inode(trans, root, inode); ret = btrfs_orphan_del(trans, inode); BUG_ON(ret); out: nr = trans->blocks_used; ret = btrfs_end_transaction_throttle(trans, root); BUG_ON(ret); btrfs_btree_balance_dirty(root, nr); } /* * Invalidate a single dcache entry at the root of the filesystem. * Needed after creation of snapshot or subvolume. */ void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name, int namelen) { struct dentry *alias, *entry; struct qstr qstr; alias = d_find_alias(root->fs_info->sb->s_root->d_inode); if (alias) { qstr.name = name; qstr.len = namelen; /* change me if btrfs ever gets a d_hash operation */ qstr.hash = full_name_hash(qstr.name, qstr.len); entry = d_lookup(alias, &qstr); dput(alias); if (entry) { d_invalidate(entry); dput(entry); } } } int btrfs_create_subvol_root(struct btrfs_root *new_root, struct btrfs_trans_handle *trans, u64 new_dirid, struct btrfs_block_group_cache *block_group) { struct inode *inode; inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, new_dirid, block_group, S_IFDIR | 0700); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; new_root->inode = inode; inode->i_nlink = 1; btrfs_i_size_write(inode, 0); return btrfs_update_inode(trans, new_root, inode); } unsigned long btrfs_force_ra(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t offset, pgoff_t last_index) { pgoff_t req_size = last_index - offset + 1; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) offset = page_cache_readahead(mapping, ra, file, offset, req_size); return offset; #else page_cache_sync_readahead(mapping, ra, file, offset, req_size); return offset + req_size; #endif } struct inode *btrfs_alloc_inode(struct super_block *sb) { struct btrfs_inode *ei; ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); if (!ei) return NULL; ei->last_trans = 0; btrfs_ordered_inode_tree_init(&ei->ordered_tree); ei->i_acl = BTRFS_ACL_NOT_CACHED; ei->i_default_acl = BTRFS_ACL_NOT_CACHED; INIT_LIST_HEAD(&ei->i_orphan); return &ei->vfs_inode; } void btrfs_destroy_inode(struct inode *inode) { struct btrfs_ordered_extent *ordered; WARN_ON(!list_empty(&inode->i_dentry)); WARN_ON(inode->i_data.nrpages); if (BTRFS_I(inode)->i_acl && BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) posix_acl_release(BTRFS_I(inode)->i_acl); if (BTRFS_I(inode)->i_default_acl && BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) posix_acl_release(BTRFS_I(inode)->i_default_acl); spin_lock(&BTRFS_I(inode)->root->orphan_lock); if (!list_empty(&BTRFS_I(inode)->i_orphan)) { printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" " list\n", inode->i_ino); dump_stack(); } spin_unlock(&BTRFS_I(inode)->root->orphan_lock); while(1) { ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); if (!ordered) break; else { printk("found ordered extent %Lu %Lu\n", ordered->file_offset, ordered->len); btrfs_remove_ordered_extent(inode, ordered); btrfs_put_ordered_extent(ordered); btrfs_put_ordered_extent(ordered); } } btrfs_drop_extent_cache(inode, 0, (u64)-1); kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) static void init_once(struct kmem_cache * cachep, void *foo) #else static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) #endif { struct btrfs_inode *ei = (struct btrfs_inode *) foo; inode_init_once(&ei->vfs_inode); } void btrfs_destroy_cachep(void) { if (btrfs_inode_cachep) kmem_cache_destroy(btrfs_inode_cachep); if (btrfs_trans_handle_cachep) kmem_cache_destroy(btrfs_trans_handle_cachep); if (btrfs_transaction_cachep) kmem_cache_destroy(btrfs_transaction_cachep); if (btrfs_bit_radix_cachep) kmem_cache_destroy(btrfs_bit_radix_cachep); if (btrfs_path_cachep) kmem_cache_destroy(btrfs_path_cachep); } struct kmem_cache *btrfs_cache_create(const char *name, size_t size, unsigned long extra_flags, #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) void (*ctor)(struct kmem_cache *, void *) #else void (*ctor)(void *, struct kmem_cache *, unsigned long) #endif ) { return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | extra_flags), ctor #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ,NULL #endif ); } int btrfs_init_cachep(void) { btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", sizeof(struct btrfs_inode), 0, init_once); if (!btrfs_inode_cachep) goto fail; btrfs_trans_handle_cachep = btrfs_cache_create("btrfs_trans_handle_cache", sizeof(struct btrfs_trans_handle), 0, NULL); if (!btrfs_trans_handle_cachep) goto fail; btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", sizeof(struct btrfs_transaction), 0, NULL); if (!btrfs_transaction_cachep) goto fail; btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", sizeof(struct btrfs_path), 0, NULL); if (!btrfs_path_cachep) goto fail; btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, SLAB_DESTROY_BY_RCU, NULL); if (!btrfs_bit_radix_cachep) goto fail; return 0; fail: btrfs_destroy_cachep(); return -ENOMEM; } static int btrfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; generic_fillattr(inode, stat); stat->blksize = PAGE_CACHE_SIZE; stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9); return 0; } static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry, struct inode * new_dir,struct dentry *new_dentry) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(old_dir)->root; struct inode *new_inode = new_dentry->d_inode; struct inode *old_inode = old_dentry->d_inode; struct timespec ctime = CURRENT_TIME; int ret; if (S_ISDIR(old_inode->i_mode) && new_inode && new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { return -ENOTEMPTY; } ret = btrfs_check_free_space(root, 1, 0); if (ret) goto out_unlock; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, new_dir); old_dentry->d_inode->i_nlink++; old_dir->i_ctime = old_dir->i_mtime = ctime; new_dir->i_ctime = new_dir->i_mtime = ctime; old_inode->i_ctime = ctime; ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry); if (ret) goto out_fail; if (new_inode) { new_inode->i_ctime = CURRENT_TIME; ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry); if (ret) goto out_fail; if (new_inode->i_nlink == 0) { ret = btrfs_orphan_add(trans, new_inode); if (ret) goto out_fail; } } ret = btrfs_set_inode_index(new_dir, old_inode); if (ret) goto out_fail; ret = btrfs_add_link(trans, new_dentry, old_inode, 1); if (ret) goto out_fail; out_fail: btrfs_end_transaction_throttle(trans, root); out_unlock: return ret; } static int btrfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_path *path; struct btrfs_key key; struct inode *inode = NULL; int err; int drop_inode = 0; u64 objectid; int name_len; int datasize; unsigned long ptr; struct btrfs_file_extent_item *ei; struct extent_buffer *leaf; unsigned long nr = 0; name_len = strlen(symname) + 1; if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) return -ENAMETOOLONG; err = btrfs_check_free_space(root, 1, 0); if (err) goto out_fail; trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, dir); err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); if (err) { err = -ENOSPC; goto out_unlock; } inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, dentry->d_name.len, dentry->d_parent->d_inode->i_ino, objectid, BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_unlock; err = btrfs_init_acl(inode, dir); if (err) { drop_inode = 1; goto out_unlock; } btrfs_set_trans_block_group(trans, inode); err = btrfs_add_nondir(trans, dentry, inode, 0); if (err) drop_inode = 1; else { inode->i_mapping->a_ops = &btrfs_aops; inode->i_mapping->backing_dev_info = &root->fs_info->bdi; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping, GFP_NOFS); extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, inode->i_mapping, GFP_NOFS); mutex_init(&BTRFS_I(inode)->csum_mutex); mutex_init(&BTRFS_I(inode)->extent_mutex); BTRFS_I(inode)->delalloc_bytes = 0; BTRFS_I(inode)->disk_i_size = 0; BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); } dir->i_sb->s_dirt = 1; btrfs_update_inode_block_group(trans, inode); btrfs_update_inode_block_group(trans, dir); if (drop_inode) goto out_unlock; path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = inode->i_ino; key.offset = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); datasize = btrfs_file_extent_calc_inline_size(name_len); err = btrfs_insert_empty_item(trans, root, path, &key, datasize); if (err) { drop_inode = 1; goto out_unlock; } leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(leaf, ei, trans->transid); btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); ptr = btrfs_file_extent_inline_start(ei); write_extent_buffer(leaf, symname, ptr, name_len); btrfs_mark_buffer_dirty(leaf); btrfs_free_path(path); inode->i_op = &btrfs_symlink_inode_operations; inode->i_mapping->a_ops = &btrfs_symlink_aops; inode->i_mapping->backing_dev_info = &root->fs_info->bdi; btrfs_i_size_write(inode, name_len - 1); err = btrfs_update_inode(trans, root, inode); if (err) drop_inode = 1; out_unlock: nr = trans->blocks_used; btrfs_end_transaction_throttle(trans, root); out_fail: if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(root, nr); return err; } static int btrfs_set_page_dirty(struct page *page) { return __set_page_dirty_nobuffers(page); } static int btrfs_permission(struct inode *inode, int mask, struct nameidata *nd) { if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) return -EACCES; return generic_permission(inode, mask, btrfs_check_acl); } static struct inode_operations btrfs_dir_inode_operations = { .lookup = btrfs_lookup, .create = btrfs_create, .unlink = btrfs_unlink, .link = btrfs_link, .mkdir = btrfs_mkdir, .rmdir = btrfs_rmdir, .rename = btrfs_rename, .symlink = btrfs_symlink, .setattr = btrfs_setattr, .mknod = btrfs_mknod, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = btrfs_listxattr, .removexattr = generic_removexattr, .permission = btrfs_permission, }; static struct inode_operations btrfs_dir_ro_inode_operations = { .lookup = btrfs_lookup, .permission = btrfs_permission, }; static struct file_operations btrfs_dir_file_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .readdir = btrfs_readdir, .unlocked_ioctl = btrfs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = btrfs_ioctl, #endif .release = btrfs_release_file, }; static struct extent_io_ops btrfs_extent_io_ops = { .fill_delalloc = run_delalloc_range, .submit_bio_hook = btrfs_submit_bio_hook, .merge_bio_hook = btrfs_merge_bio_hook, .readpage_io_hook = btrfs_readpage_io_hook, .readpage_end_io_hook = btrfs_readpage_end_io_hook, .writepage_end_io_hook = btrfs_writepage_end_io_hook, .writepage_start_hook = btrfs_writepage_start_hook, .readpage_io_failed_hook = btrfs_io_failed_hook, .set_bit_hook = btrfs_set_bit_hook, .clear_bit_hook = btrfs_clear_bit_hook, }; static struct address_space_operations btrfs_aops = { .readpage = btrfs_readpage, .writepage = btrfs_writepage, .writepages = btrfs_writepages, .readpages = btrfs_readpages, .sync_page = block_sync_page, .bmap = btrfs_bmap, .direct_IO = btrfs_direct_IO, .invalidatepage = btrfs_invalidatepage, .releasepage = btrfs_releasepage, .set_page_dirty = btrfs_set_page_dirty, }; static struct address_space_operations btrfs_symlink_aops = { .readpage = btrfs_readpage, .writepage = btrfs_writepage, .invalidatepage = btrfs_invalidatepage, .releasepage = btrfs_releasepage, }; static struct inode_operations btrfs_file_inode_operations = { .truncate = btrfs_truncate, .getattr = btrfs_getattr, .setattr = btrfs_setattr, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = btrfs_listxattr, .removexattr = generic_removexattr, .permission = btrfs_permission, }; static struct inode_operations btrfs_special_inode_operations = { .getattr = btrfs_getattr, .setattr = btrfs_setattr, .permission = btrfs_permission, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = btrfs_listxattr, .removexattr = generic_removexattr, }; static struct inode_operations btrfs_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = page_follow_link_light, .put_link = page_put_link, .permission = btrfs_permission, };