// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #define pr_fmt(fmt) "habanalabs: " fmt #include "habanalabs.h" #include #include #include #define HL_PLDM_PENDING_RESET_PER_SEC (HL_PENDING_RESET_PER_SEC * 10) bool hl_device_disabled_or_in_reset(struct hl_device *hdev) { if ((hdev->disabled) || (atomic_read(&hdev->in_reset))) return true; else return false; } enum hl_device_status hl_device_status(struct hl_device *hdev) { enum hl_device_status status; if (hdev->disabled) status = HL_DEVICE_STATUS_MALFUNCTION; else if (atomic_read(&hdev->in_reset)) status = HL_DEVICE_STATUS_IN_RESET; else status = HL_DEVICE_STATUS_OPERATIONAL; return status; } static void hpriv_release(struct kref *ref) { struct hl_fpriv *hpriv; struct hl_device *hdev; hpriv = container_of(ref, struct hl_fpriv, refcount); hdev = hpriv->hdev; put_pid(hpriv->taskpid); hl_debugfs_remove_file(hpriv); mutex_destroy(&hpriv->restore_phase_mutex); mutex_lock(&hdev->fpriv_list_lock); list_del(&hpriv->dev_node); hdev->compute_ctx = NULL; mutex_unlock(&hdev->fpriv_list_lock); kfree(hpriv); } void hl_hpriv_get(struct hl_fpriv *hpriv) { kref_get(&hpriv->refcount); } void hl_hpriv_put(struct hl_fpriv *hpriv) { kref_put(&hpriv->refcount, hpriv_release); } /* * hl_device_release - release function for habanalabs device * * @inode: pointer to inode structure * @filp: pointer to file structure * * Called when process closes an habanalabs device */ static int hl_device_release(struct inode *inode, struct file *filp) { struct hl_fpriv *hpriv = filp->private_data; hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr); hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr); filp->private_data = NULL; hl_hpriv_put(hpriv); return 0; } static int hl_device_release_ctrl(struct inode *inode, struct file *filp) { struct hl_fpriv *hpriv = filp->private_data; struct hl_device *hdev; filp->private_data = NULL; hdev = hpriv->hdev; mutex_lock(&hdev->fpriv_list_lock); list_del(&hpriv->dev_node); mutex_unlock(&hdev->fpriv_list_lock); kfree(hpriv); return 0; } /* * hl_mmap - mmap function for habanalabs device * * @*filp: pointer to file structure * @*vma: pointer to vm_area_struct of the process * * Called when process does an mmap on habanalabs device. Call the device's mmap * function at the end of the common code. */ static int hl_mmap(struct file *filp, struct vm_area_struct *vma) { struct hl_fpriv *hpriv = filp->private_data; unsigned long vm_pgoff; vm_pgoff = vma->vm_pgoff; vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff); switch (vm_pgoff & HL_MMAP_TYPE_MASK) { case HL_MMAP_TYPE_CB: return hl_cb_mmap(hpriv, vma); } return -EINVAL; } static const struct file_operations hl_ops = { .owner = THIS_MODULE, .open = hl_device_open, .release = hl_device_release, .mmap = hl_mmap, .unlocked_ioctl = hl_ioctl, .compat_ioctl = hl_ioctl }; static const struct file_operations hl_ctrl_ops = { .owner = THIS_MODULE, .open = hl_device_open_ctrl, .release = hl_device_release_ctrl, .unlocked_ioctl = hl_ioctl_control, .compat_ioctl = hl_ioctl_control }; static void device_release_func(struct device *dev) { kfree(dev); } /* * device_init_cdev - Initialize cdev and device for habanalabs device * * @hdev: pointer to habanalabs device structure * @hclass: pointer to the class object of the device * @minor: minor number of the specific device * @fpos: file operations to install for this device * @name: name of the device as it will appear in the filesystem * @cdev: pointer to the char device object that will be initialized * @dev: pointer to the device object that will be initialized * * Initialize a cdev and a Linux device for habanalabs's device. */ static int device_init_cdev(struct hl_device *hdev, struct class *hclass, int minor, const struct file_operations *fops, char *name, struct cdev *cdev, struct device **dev) { cdev_init(cdev, fops); cdev->owner = THIS_MODULE; *dev = kzalloc(sizeof(**dev), GFP_KERNEL); if (!*dev) return -ENOMEM; device_initialize(*dev); (*dev)->devt = MKDEV(hdev->major, minor); (*dev)->class = hclass; (*dev)->release = device_release_func; dev_set_drvdata(*dev, hdev); dev_set_name(*dev, "%s", name); return 0; } static int device_cdev_sysfs_add(struct hl_device *hdev) { int rc; rc = cdev_device_add(&hdev->cdev, hdev->dev); if (rc) { dev_err(hdev->dev, "failed to add a char device to the system\n"); return rc; } rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl); if (rc) { dev_err(hdev->dev, "failed to add a control char device to the system\n"); goto delete_cdev_device; } /* hl_sysfs_init() must be done after adding the device to the system */ rc = hl_sysfs_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize sysfs\n"); goto delete_ctrl_cdev_device; } hdev->cdev_sysfs_created = true; return 0; delete_ctrl_cdev_device: cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); delete_cdev_device: cdev_device_del(&hdev->cdev, hdev->dev); return rc; } static void device_cdev_sysfs_del(struct hl_device *hdev) { /* device_release() won't be called so must free devices explicitly */ if (!hdev->cdev_sysfs_created) { kfree(hdev->dev_ctrl); kfree(hdev->dev); return; } hl_sysfs_fini(hdev); cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); cdev_device_del(&hdev->cdev, hdev->dev); } /* * device_early_init - do some early initialization for the habanalabs device * * @hdev: pointer to habanalabs device structure * * Install the relevant function pointers and call the early_init function, * if such a function exists */ static int device_early_init(struct hl_device *hdev) { int i, rc; char workq_name[32]; switch (hdev->asic_type) { case ASIC_GOYA: goya_set_asic_funcs(hdev); strlcpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name)); break; case ASIC_GAUDI: gaudi_set_asic_funcs(hdev); sprintf(hdev->asic_name, "GAUDI"); break; default: dev_err(hdev->dev, "Unrecognized ASIC type %d\n", hdev->asic_type); return -EINVAL; } rc = hdev->asic_funcs->early_init(hdev); if (rc) return rc; rc = hl_asid_init(hdev); if (rc) goto early_fini; if (hdev->asic_prop.completion_queues_count) { hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count, sizeof(*hdev->cq_wq), GFP_ATOMIC); if (!hdev->cq_wq) { rc = -ENOMEM; goto asid_fini; } } for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) { snprintf(workq_name, 32, "hl-free-jobs-%u", (u32) i); hdev->cq_wq[i] = create_singlethread_workqueue(workq_name); if (hdev->cq_wq[i] == NULL) { dev_err(hdev->dev, "Failed to allocate CQ workqueue\n"); rc = -ENOMEM; goto free_cq_wq; } } hdev->eq_wq = alloc_workqueue("hl-events", WQ_UNBOUND, 0); if (hdev->eq_wq == NULL) { dev_err(hdev->dev, "Failed to allocate EQ workqueue\n"); rc = -ENOMEM; goto free_cq_wq; } hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL); if (!hdev->hl_chip_info) { rc = -ENOMEM; goto free_eq_wq; } hdev->idle_busy_ts_arr = kmalloc_array(HL_IDLE_BUSY_TS_ARR_SIZE, sizeof(struct hl_device_idle_busy_ts), (GFP_KERNEL | __GFP_ZERO)); if (!hdev->idle_busy_ts_arr) { rc = -ENOMEM; goto free_chip_info; } rc = hl_mmu_if_set_funcs(hdev); if (rc) goto free_idle_busy_ts_arr; hl_cb_mgr_init(&hdev->kernel_cb_mgr); mutex_init(&hdev->send_cpu_message_lock); mutex_init(&hdev->debug_lock); mutex_init(&hdev->mmu_cache_lock); INIT_LIST_HEAD(&hdev->hw_queues_mirror_list); spin_lock_init(&hdev->hw_queues_mirror_lock); INIT_LIST_HEAD(&hdev->fpriv_list); mutex_init(&hdev->fpriv_list_lock); atomic_set(&hdev->in_reset, 0); return 0; free_idle_busy_ts_arr: kfree(hdev->idle_busy_ts_arr); free_chip_info: kfree(hdev->hl_chip_info); free_eq_wq: destroy_workqueue(hdev->eq_wq); free_cq_wq: for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) if (hdev->cq_wq[i]) destroy_workqueue(hdev->cq_wq[i]); kfree(hdev->cq_wq); asid_fini: hl_asid_fini(hdev); early_fini: if (hdev->asic_funcs->early_fini) hdev->asic_funcs->early_fini(hdev); return rc; } /* * device_early_fini - finalize all that was done in device_early_init * * @hdev: pointer to habanalabs device structure * */ static void device_early_fini(struct hl_device *hdev) { int i; mutex_destroy(&hdev->mmu_cache_lock); mutex_destroy(&hdev->debug_lock); mutex_destroy(&hdev->send_cpu_message_lock); mutex_destroy(&hdev->fpriv_list_lock); hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr); kfree(hdev->idle_busy_ts_arr); kfree(hdev->hl_chip_info); destroy_workqueue(hdev->eq_wq); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) destroy_workqueue(hdev->cq_wq[i]); kfree(hdev->cq_wq); hl_asid_fini(hdev); if (hdev->asic_funcs->early_fini) hdev->asic_funcs->early_fini(hdev); } static void set_freq_to_low_job(struct work_struct *work) { struct hl_device *hdev = container_of(work, struct hl_device, work_freq.work); mutex_lock(&hdev->fpriv_list_lock); if (!hdev->compute_ctx) hl_device_set_frequency(hdev, PLL_LOW); mutex_unlock(&hdev->fpriv_list_lock); schedule_delayed_work(&hdev->work_freq, usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC)); } static void hl_device_heartbeat(struct work_struct *work) { struct hl_device *hdev = container_of(work, struct hl_device, work_heartbeat.work); if (hl_device_disabled_or_in_reset(hdev)) goto reschedule; if (!hdev->asic_funcs->send_heartbeat(hdev)) goto reschedule; dev_err(hdev->dev, "Device heartbeat failed!\n"); hl_device_reset(hdev, true, false); return; reschedule: schedule_delayed_work(&hdev->work_heartbeat, usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); } /* * device_late_init - do late stuff initialization for the habanalabs device * * @hdev: pointer to habanalabs device structure * * Do stuff that either needs the device H/W queues to be active or needs * to happen after all the rest of the initialization is finished */ static int device_late_init(struct hl_device *hdev) { int rc; if (hdev->asic_funcs->late_init) { rc = hdev->asic_funcs->late_init(hdev); if (rc) { dev_err(hdev->dev, "failed late initialization for the H/W\n"); return rc; } } hdev->high_pll = hdev->asic_prop.high_pll; /* force setting to low frequency */ hdev->curr_pll_profile = PLL_LOW; if (hdev->pm_mng_profile == PM_AUTO) hdev->asic_funcs->set_pll_profile(hdev, PLL_LOW); else hdev->asic_funcs->set_pll_profile(hdev, PLL_LAST); INIT_DELAYED_WORK(&hdev->work_freq, set_freq_to_low_job); schedule_delayed_work(&hdev->work_freq, usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC)); if (hdev->heartbeat) { INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat); schedule_delayed_work(&hdev->work_heartbeat, usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); } hdev->late_init_done = true; return 0; } /* * device_late_fini - finalize all that was done in device_late_init * * @hdev: pointer to habanalabs device structure * */ static void device_late_fini(struct hl_device *hdev) { if (!hdev->late_init_done) return; cancel_delayed_work_sync(&hdev->work_freq); if (hdev->heartbeat) cancel_delayed_work_sync(&hdev->work_heartbeat); if (hdev->asic_funcs->late_fini) hdev->asic_funcs->late_fini(hdev); hdev->late_init_done = false; } uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms) { struct hl_device_idle_busy_ts *ts; ktime_t zero_ktime, curr = ktime_get(); u32 overlap_cnt = 0, last_index = hdev->idle_busy_ts_idx; s64 period_us, last_start_us, last_end_us, last_busy_time_us, total_busy_time_us = 0, total_busy_time_ms; zero_ktime = ktime_set(0, 0); period_us = period_ms * USEC_PER_MSEC; ts = &hdev->idle_busy_ts_arr[last_index]; /* check case that device is currently in idle */ if (!ktime_compare(ts->busy_to_idle_ts, zero_ktime) && !ktime_compare(ts->idle_to_busy_ts, zero_ktime)) { last_index--; /* Handle case idle_busy_ts_idx was 0 */ if (last_index > HL_IDLE_BUSY_TS_ARR_SIZE) last_index = HL_IDLE_BUSY_TS_ARR_SIZE - 1; ts = &hdev->idle_busy_ts_arr[last_index]; } while (overlap_cnt < HL_IDLE_BUSY_TS_ARR_SIZE) { /* Check if we are in last sample case. i.e. if the sample * begun before the sampling period. This could be a real * sample or 0 so need to handle both cases */ last_start_us = ktime_to_us( ktime_sub(curr, ts->idle_to_busy_ts)); if (last_start_us > period_us) { /* First check two cases: * 1. If the device is currently busy * 2. If the device was idle during the whole sampling * period */ if (!ktime_compare(ts->busy_to_idle_ts, zero_ktime)) { /* Check if the device is currently busy */ if (ktime_compare(ts->idle_to_busy_ts, zero_ktime)) return 100; /* We either didn't have any activity or we * reached an entry which is 0. Either way, * exit and return what was accumulated so far */ break; } /* If sample has finished, check it is relevant */ last_end_us = ktime_to_us( ktime_sub(curr, ts->busy_to_idle_ts)); if (last_end_us > period_us) break; /* It is relevant so add it but with adjustment */ last_busy_time_us = ktime_to_us( ktime_sub(ts->busy_to_idle_ts, ts->idle_to_busy_ts)); total_busy_time_us += last_busy_time_us - (last_start_us - period_us); break; } /* Check if the sample is finished or still open */ if (ktime_compare(ts->busy_to_idle_ts, zero_ktime)) last_busy_time_us = ktime_to_us( ktime_sub(ts->busy_to_idle_ts, ts->idle_to_busy_ts)); else last_busy_time_us = ktime_to_us( ktime_sub(curr, ts->idle_to_busy_ts)); total_busy_time_us += last_busy_time_us; last_index--; /* Handle case idle_busy_ts_idx was 0 */ if (last_index > HL_IDLE_BUSY_TS_ARR_SIZE) last_index = HL_IDLE_BUSY_TS_ARR_SIZE - 1; ts = &hdev->idle_busy_ts_arr[last_index]; overlap_cnt++; } total_busy_time_ms = DIV_ROUND_UP_ULL(total_busy_time_us, USEC_PER_MSEC); return DIV_ROUND_UP_ULL(total_busy_time_ms * 100, period_ms); } /* * hl_device_set_frequency - set the frequency of the device * * @hdev: pointer to habanalabs device structure * @freq: the new frequency value * * Change the frequency if needed. This function has no protection against * concurrency, therefore it is assumed that the calling function has protected * itself against the case of calling this function from multiple threads with * different values * * Returns 0 if no change was done, otherwise returns 1 */ int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq) { if ((hdev->pm_mng_profile == PM_MANUAL) || (hdev->curr_pll_profile == freq)) return 0; dev_dbg(hdev->dev, "Changing device frequency to %s\n", freq == PLL_HIGH ? "high" : "low"); hdev->asic_funcs->set_pll_profile(hdev, freq); hdev->curr_pll_profile = freq; return 1; } int hl_device_set_debug_mode(struct hl_device *hdev, bool enable) { int rc = 0; mutex_lock(&hdev->debug_lock); if (!enable) { if (!hdev->in_debug) { dev_err(hdev->dev, "Failed to disable debug mode because device was not in debug mode\n"); rc = -EFAULT; goto out; } if (!hdev->hard_reset_pending) hdev->asic_funcs->halt_coresight(hdev); hdev->in_debug = 0; if (!hdev->hard_reset_pending) hdev->asic_funcs->set_clock_gating(hdev); goto out; } if (hdev->in_debug) { dev_err(hdev->dev, "Failed to enable debug mode because device is already in debug mode\n"); rc = -EFAULT; goto out; } hdev->asic_funcs->disable_clock_gating(hdev); hdev->in_debug = 1; out: mutex_unlock(&hdev->debug_lock); return rc; } /* * hl_device_suspend - initiate device suspend * * @hdev: pointer to habanalabs device structure * * Puts the hw in the suspend state (all asics). * Returns 0 for success or an error on failure. * Called at driver suspend. */ int hl_device_suspend(struct hl_device *hdev) { int rc; pci_save_state(hdev->pdev); /* Block future CS/VM/JOB completion operations */ rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); if (rc) { dev_err(hdev->dev, "Can't suspend while in reset\n"); return -EIO; } /* This blocks all other stuff that is not blocked by in_reset */ hdev->disabled = true; /* * Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); /* Flush processes that are sending message to CPU */ mutex_lock(&hdev->send_cpu_message_lock); mutex_unlock(&hdev->send_cpu_message_lock); rc = hdev->asic_funcs->suspend(hdev); if (rc) dev_err(hdev->dev, "Failed to disable PCI access of device CPU\n"); /* Shut down the device */ pci_disable_device(hdev->pdev); pci_set_power_state(hdev->pdev, PCI_D3hot); return 0; } /* * hl_device_resume - initiate device resume * * @hdev: pointer to habanalabs device structure * * Bring the hw back to operating state (all asics). * Returns 0 for success or an error on failure. * Called at driver resume. */ int hl_device_resume(struct hl_device *hdev) { int rc; pci_set_power_state(hdev->pdev, PCI_D0); pci_restore_state(hdev->pdev); rc = pci_enable_device_mem(hdev->pdev); if (rc) { dev_err(hdev->dev, "Failed to enable PCI device in resume\n"); return rc; } pci_set_master(hdev->pdev); rc = hdev->asic_funcs->resume(hdev); if (rc) { dev_err(hdev->dev, "Failed to resume device after suspend\n"); goto disable_device; } hdev->disabled = false; atomic_set(&hdev->in_reset, 0); rc = hl_device_reset(hdev, true, false); if (rc) { dev_err(hdev->dev, "Failed to reset device during resume\n"); goto disable_device; } return 0; disable_device: pci_clear_master(hdev->pdev); pci_disable_device(hdev->pdev); return rc; } static int device_kill_open_processes(struct hl_device *hdev) { u16 pending_total, pending_cnt; struct hl_fpriv *hpriv; struct task_struct *task = NULL; if (hdev->pldm) pending_total = HL_PLDM_PENDING_RESET_PER_SEC; else pending_total = HL_PENDING_RESET_PER_SEC; /* Giving time for user to close FD, and for processes that are inside * hl_device_open to finish */ if (!list_empty(&hdev->fpriv_list)) ssleep(1); mutex_lock(&hdev->fpriv_list_lock); /* This section must be protected because we are dereferencing * pointers that are freed if the process exits */ list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) { task = get_pid_task(hpriv->taskpid, PIDTYPE_PID); if (task) { dev_info(hdev->dev, "Killing user process pid=%d\n", task_pid_nr(task)); send_sig(SIGKILL, task, 1); usleep_range(1000, 10000); put_task_struct(task); } } mutex_unlock(&hdev->fpriv_list_lock); /* * We killed the open users, but that doesn't mean they are closed. * It could be that they are running a long cleanup phase in the driver * e.g. MMU unmappings, or running other long teardown flow even before * our cleanup. * Therefore we need to wait again to make sure they are closed before * continuing with the reset. */ pending_cnt = pending_total; while ((!list_empty(&hdev->fpriv_list)) && (pending_cnt)) { dev_info(hdev->dev, "Waiting for all user contexts to get closed before hard reset\n"); pending_cnt--; ssleep(1); } return list_empty(&hdev->fpriv_list) ? 0 : -EBUSY; } static void device_hard_reset_pending(struct work_struct *work) { struct hl_device_reset_work *device_reset_work = container_of(work, struct hl_device_reset_work, reset_work); struct hl_device *hdev = device_reset_work->hdev; hl_device_reset(hdev, true, true); kfree(device_reset_work); } /* * hl_device_reset - reset the device * * @hdev: pointer to habanalabs device structure * @hard_reset: should we do hard reset to all engines or just reset the * compute/dma engines * @from_hard_reset_thread: is the caller the hard-reset thread * * Block future CS and wait for pending CS to be enqueued * Call ASIC H/W fini * Flush all completions * Re-initialize all internal data structures * Call ASIC H/W init, late_init * Test queues * Enable device * * Returns 0 for success or an error on failure. */ int hl_device_reset(struct hl_device *hdev, bool hard_reset, bool from_hard_reset_thread) { int i, rc; if (!hdev->init_done) { dev_err(hdev->dev, "Can't reset before initialization is done\n"); return 0; } if ((!hard_reset) && (!hdev->supports_soft_reset)) { dev_dbg(hdev->dev, "Doing hard-reset instead of soft-reset\n"); hard_reset = true; } /* * Prevent concurrency in this function - only one reset should be * done at any given time. Only need to perform this if we didn't * get from the dedicated hard reset thread */ if (!from_hard_reset_thread) { /* Block future CS/VM/JOB completion operations */ rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); if (rc) return 0; if (hard_reset) { /* Disable PCI access from device F/W so he won't send * us additional interrupts. We disable MSI/MSI-X at * the halt_engines function and we can't have the F/W * sending us interrupts after that. We need to disable * the access here because if the device is marked * disable, the message won't be send. Also, in case * of heartbeat, the device CPU is marked as disable * so this message won't be sent */ if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS)) dev_warn(hdev->dev, "Failed to disable PCI access by F/W\n"); } /* This also blocks future CS/VM/JOB completion operations */ hdev->disabled = true; /* Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); /* Flush anyone that is inside device open */ mutex_lock(&hdev->fpriv_list_lock); mutex_unlock(&hdev->fpriv_list_lock); dev_err(hdev->dev, "Going to RESET device!\n"); } again: if ((hard_reset) && (!from_hard_reset_thread)) { struct hl_device_reset_work *device_reset_work; hdev->hard_reset_pending = true; device_reset_work = kzalloc(sizeof(*device_reset_work), GFP_ATOMIC); if (!device_reset_work) { rc = -ENOMEM; goto out_err; } /* * Because the reset function can't run from interrupt or * from heartbeat work, we need to call the reset function * from a dedicated work */ INIT_WORK(&device_reset_work->reset_work, device_hard_reset_pending); device_reset_work->hdev = hdev; schedule_work(&device_reset_work->reset_work); return 0; } if (hard_reset) { device_late_fini(hdev); /* * Now that the heartbeat thread is closed, flush processes * which are sending messages to CPU */ mutex_lock(&hdev->send_cpu_message_lock); mutex_unlock(&hdev->send_cpu_message_lock); } /* * Halt the engines and disable interrupts so we won't get any more * completions from H/W and we won't have any accesses from the * H/W to the host machine */ hdev->asic_funcs->halt_engines(hdev, hard_reset); /* Go over all the queues, release all CS and their jobs */ hl_cs_rollback_all(hdev); if (hard_reset) { /* Kill processes here after CS rollback. This is because the * process can't really exit until all its CSs are done, which * is what we do in cs rollback */ rc = device_kill_open_processes(hdev); if (rc) { dev_crit(hdev->dev, "Failed to kill all open processes, stopping hard reset\n"); goto out_err; } /* Flush the Event queue workers to make sure no other thread is * reading or writing to registers during the reset */ flush_workqueue(hdev->eq_wq); } /* Reset the H/W. It will be in idle state after this returns */ hdev->asic_funcs->hw_fini(hdev, hard_reset); if (hard_reset) { /* Release kernel context */ if (hl_ctx_put(hdev->kernel_ctx) == 1) hdev->kernel_ctx = NULL; hl_vm_fini(hdev); hl_mmu_fini(hdev); hl_eq_reset(hdev, &hdev->event_queue); } /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */ hl_hw_queue_reset(hdev, hard_reset); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) hl_cq_reset(hdev, &hdev->completion_queue[i]); hdev->idle_busy_ts_idx = 0; hdev->idle_busy_ts_arr[0].busy_to_idle_ts = ktime_set(0, 0); hdev->idle_busy_ts_arr[0].idle_to_busy_ts = ktime_set(0, 0); if (hdev->cs_active_cnt) dev_crit(hdev->dev, "CS active cnt %d is not 0 during reset\n", hdev->cs_active_cnt); mutex_lock(&hdev->fpriv_list_lock); /* Make sure the context switch phase will run again */ if (hdev->compute_ctx) { atomic_set(&hdev->compute_ctx->thread_ctx_switch_token, 1); hdev->compute_ctx->thread_ctx_switch_wait_token = 0; } mutex_unlock(&hdev->fpriv_list_lock); /* Finished tear-down, starting to re-initialize */ if (hard_reset) { hdev->device_cpu_disabled = false; hdev->hard_reset_pending = false; if (hdev->kernel_ctx) { dev_crit(hdev->dev, "kernel ctx was alive during hard reset, something is terribly wrong\n"); rc = -EBUSY; goto out_err; } rc = hl_mmu_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize MMU S/W after hard reset\n"); goto out_err; } /* Allocate the kernel context */ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); if (!hdev->kernel_ctx) { rc = -ENOMEM; goto out_err; } hdev->compute_ctx = NULL; rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); if (rc) { dev_err(hdev->dev, "failed to init kernel ctx in hard reset\n"); kfree(hdev->kernel_ctx); hdev->kernel_ctx = NULL; goto out_err; } } /* Device is now enabled as part of the initialization requires * communication with the device firmware to get information that * is required for the initialization itself */ hdev->disabled = false; rc = hdev->asic_funcs->hw_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize the H/W after reset\n"); goto out_err; } /* Check that the communication with the device is working */ rc = hdev->asic_funcs->test_queues(hdev); if (rc) { dev_err(hdev->dev, "Failed to detect if device is alive after reset\n"); goto out_err; } if (hard_reset) { rc = device_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late init after hard reset\n"); goto out_err; } rc = hl_vm_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to init memory module after hard reset\n"); goto out_err; } hl_set_max_power(hdev); } else { rc = hdev->asic_funcs->soft_reset_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late init after soft reset\n"); goto out_err; } } atomic_set(&hdev->in_reset, 0); if (hard_reset) hdev->hard_reset_cnt++; else hdev->soft_reset_cnt++; dev_warn(hdev->dev, "Successfully finished resetting the device\n"); return 0; out_err: hdev->disabled = true; if (hard_reset) { dev_err(hdev->dev, "Failed to reset! Device is NOT usable\n"); hdev->hard_reset_cnt++; } else { dev_err(hdev->dev, "Failed to do soft-reset, trying hard reset\n"); hdev->soft_reset_cnt++; hard_reset = true; goto again; } atomic_set(&hdev->in_reset, 0); return rc; } /* * hl_device_init - main initialization function for habanalabs device * * @hdev: pointer to habanalabs device structure * * Allocate an id for the device, do early initialization and then call the * ASIC specific initialization functions. Finally, create the cdev and the * Linux device to expose it to the user */ int hl_device_init(struct hl_device *hdev, struct class *hclass) { int i, rc, cq_cnt, cq_ready_cnt; char *name; bool add_cdev_sysfs_on_err = false; name = kasprintf(GFP_KERNEL, "hl%d", hdev->id / 2); if (!name) { rc = -ENOMEM; goto out_disabled; } /* Initialize cdev and device structures */ rc = device_init_cdev(hdev, hclass, hdev->id, &hl_ops, name, &hdev->cdev, &hdev->dev); kfree(name); if (rc) goto out_disabled; name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->id / 2); if (!name) { rc = -ENOMEM; goto free_dev; } /* Initialize cdev and device structures for control device */ rc = device_init_cdev(hdev, hclass, hdev->id_control, &hl_ctrl_ops, name, &hdev->cdev_ctrl, &hdev->dev_ctrl); kfree(name); if (rc) goto free_dev; /* Initialize ASIC function pointers and perform early init */ rc = device_early_init(hdev); if (rc) goto free_dev_ctrl; /* * Start calling ASIC initialization. First S/W then H/W and finally * late init */ rc = hdev->asic_funcs->sw_init(hdev); if (rc) goto early_fini; /* * Initialize the H/W queues. Must be done before hw_init, because * there the addresses of the kernel queue are being written to the * registers of the device */ rc = hl_hw_queues_create(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize kernel queues\n"); goto sw_fini; } cq_cnt = hdev->asic_prop.completion_queues_count; /* * Initialize the completion queues. Must be done before hw_init, * because there the addresses of the completion queues are being * passed as arguments to request_irq */ if (cq_cnt) { hdev->completion_queue = kcalloc(cq_cnt, sizeof(*hdev->completion_queue), GFP_KERNEL); if (!hdev->completion_queue) { dev_err(hdev->dev, "failed to allocate completion queues\n"); rc = -ENOMEM; goto hw_queues_destroy; } } for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) { rc = hl_cq_init(hdev, &hdev->completion_queue[i], hdev->asic_funcs->get_queue_id_for_cq(hdev, i)); if (rc) { dev_err(hdev->dev, "failed to initialize completion queue\n"); goto cq_fini; } hdev->completion_queue[i].cq_idx = i; } /* * Initialize the event queue. Must be done before hw_init, * because there the address of the event queue is being * passed as argument to request_irq */ rc = hl_eq_init(hdev, &hdev->event_queue); if (rc) { dev_err(hdev->dev, "failed to initialize event queue\n"); goto cq_fini; } /* MMU S/W must be initialized before kernel context is created */ rc = hl_mmu_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n"); goto eq_fini; } /* Allocate the kernel context */ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); if (!hdev->kernel_ctx) { rc = -ENOMEM; goto mmu_fini; } hdev->compute_ctx = NULL; rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); if (rc) { dev_err(hdev->dev, "failed to initialize kernel context\n"); kfree(hdev->kernel_ctx); goto mmu_fini; } rc = hl_cb_pool_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize CB pool\n"); goto release_ctx; } hl_debugfs_add_device(hdev); if (hdev->asic_funcs->get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) { dev_info(hdev->dev, "H/W state is dirty, must reset before initializing\n"); hdev->asic_funcs->halt_engines(hdev, true); hdev->asic_funcs->hw_fini(hdev, true); } /* * From this point, in case of an error, add char devices and create * sysfs nodes as part of the error flow, to allow debugging. */ add_cdev_sysfs_on_err = true; /* Device is now enabled as part of the initialization requires * communication with the device firmware to get information that * is required for the initialization itself */ hdev->disabled = false; rc = hdev->asic_funcs->hw_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize the H/W\n"); rc = 0; goto out_disabled; } /* Check that the communication with the device is working */ rc = hdev->asic_funcs->test_queues(hdev); if (rc) { dev_err(hdev->dev, "Failed to detect if device is alive\n"); rc = 0; goto out_disabled; } rc = device_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late initialization\n"); rc = 0; goto out_disabled; } dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n", hdev->asic_name, hdev->asic_prop.dram_size / 1024 / 1024 / 1024); rc = hl_vm_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize memory module\n"); rc = 0; goto out_disabled; } /* * Expose devices and sysfs nodes to user. * From here there is no need to add char devices and create sysfs nodes * in case of an error. */ add_cdev_sysfs_on_err = false; rc = device_cdev_sysfs_add(hdev); if (rc) { dev_err(hdev->dev, "Failed to add char devices and sysfs nodes\n"); rc = 0; goto out_disabled; } /* Need to call this again because the max power might change, * depending on card type for certain ASICs */ hl_set_max_power(hdev); /* * hl_hwmon_init() must be called after device_late_init(), because only * there we get the information from the device about which * hwmon-related sensors the device supports. * Furthermore, it must be done after adding the device to the system. */ rc = hl_hwmon_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize hwmon\n"); rc = 0; goto out_disabled; } dev_notice(hdev->dev, "Successfully added device to habanalabs driver\n"); hdev->init_done = true; return 0; release_ctx: if (hl_ctx_put(hdev->kernel_ctx) != 1) dev_err(hdev->dev, "kernel ctx is still alive on initialization failure\n"); mmu_fini: hl_mmu_fini(hdev); eq_fini: hl_eq_fini(hdev, &hdev->event_queue); cq_fini: for (i = 0 ; i < cq_ready_cnt ; i++) hl_cq_fini(hdev, &hdev->completion_queue[i]); kfree(hdev->completion_queue); hw_queues_destroy: hl_hw_queues_destroy(hdev); sw_fini: hdev->asic_funcs->sw_fini(hdev); early_fini: device_early_fini(hdev); free_dev_ctrl: kfree(hdev->dev_ctrl); free_dev: kfree(hdev->dev); out_disabled: hdev->disabled = true; if (add_cdev_sysfs_on_err) device_cdev_sysfs_add(hdev); if (hdev->pdev) dev_err(&hdev->pdev->dev, "Failed to initialize hl%d. Device is NOT usable !\n", hdev->id / 2); else pr_err("Failed to initialize hl%d. Device is NOT usable !\n", hdev->id / 2); return rc; } /* * hl_device_fini - main tear-down function for habanalabs device * * @hdev: pointer to habanalabs device structure * * Destroy the device, call ASIC fini functions and release the id */ void hl_device_fini(struct hl_device *hdev) { int i, rc; ktime_t timeout; dev_info(hdev->dev, "Removing device\n"); /* * This function is competing with the reset function, so try to * take the reset atomic and if we are already in middle of reset, * wait until reset function is finished. Reset function is designed * to always finish. However, in Gaudi, because of all the network * ports, the hard reset could take between 10-30 seconds */ timeout = ktime_add_us(ktime_get(), HL_HARD_RESET_MAX_TIMEOUT * 1000 * 1000); rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); while (rc) { usleep_range(50, 200); rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); if (ktime_compare(ktime_get(), timeout) > 0) { WARN(1, "Failed to remove device because reset function did not finish\n"); return; } } /* Mark device as disabled */ hdev->disabled = true; /* Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); /* Flush anyone that is inside device open */ mutex_lock(&hdev->fpriv_list_lock); mutex_unlock(&hdev->fpriv_list_lock); hdev->hard_reset_pending = true; hl_hwmon_fini(hdev); device_late_fini(hdev); hl_debugfs_remove_device(hdev); /* * Halt the engines and disable interrupts so we won't get any more * completions from H/W and we won't have any accesses from the * H/W to the host machine */ hdev->asic_funcs->halt_engines(hdev, true); /* Go over all the queues, release all CS and their jobs */ hl_cs_rollback_all(hdev); /* Kill processes here after CS rollback. This is because the process * can't really exit until all its CSs are done, which is what we * do in cs rollback */ rc = device_kill_open_processes(hdev); if (rc) dev_crit(hdev->dev, "Failed to kill all open processes\n"); hl_cb_pool_fini(hdev); /* Reset the H/W. It will be in idle state after this returns */ hdev->asic_funcs->hw_fini(hdev, true); /* Release kernel context */ if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1)) dev_err(hdev->dev, "kernel ctx is still alive\n"); hl_vm_fini(hdev); hl_mmu_fini(hdev); hl_eq_fini(hdev, &hdev->event_queue); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) hl_cq_fini(hdev, &hdev->completion_queue[i]); kfree(hdev->completion_queue); hl_hw_queues_destroy(hdev); /* Call ASIC S/W finalize function */ hdev->asic_funcs->sw_fini(hdev); device_early_fini(hdev); /* Hide devices and sysfs nodes from user */ device_cdev_sysfs_del(hdev); pr_info("removed device successfully\n"); } /* * MMIO register access helper functions. */ /* * hl_rreg - Read an MMIO register * * @hdev: pointer to habanalabs device structure * @reg: MMIO register offset (in bytes) * * Returns the value of the MMIO register we are asked to read * */ inline u32 hl_rreg(struct hl_device *hdev, u32 reg) { return readl(hdev->rmmio + reg); } /* * hl_wreg - Write to an MMIO register * * @hdev: pointer to habanalabs device structure * @reg: MMIO register offset (in bytes) * @val: 32-bit value * * Writes the 32-bit value into the MMIO register * */ inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val) { writel(val, hdev->rmmio + reg); }