/* * linux/kernel/exit.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for audit_free() */ #include #include #include #include #include #include #include #include static void exit_mm(struct task_struct * tsk); static inline int task_detached(struct task_struct *p) { return p->exit_signal == -1; } static void __unhash_process(struct task_struct *p) { nr_threads--; detach_pid(p, PIDTYPE_PID); if (thread_group_leader(p)) { detach_pid(p, PIDTYPE_PGID); detach_pid(p, PIDTYPE_SID); list_del_rcu(&p->tasks); __get_cpu_var(process_counts)--; } list_del_rcu(&p->thread_group); list_del_init(&p->sibling); } /* * This function expects the tasklist_lock write-locked. */ static void __exit_signal(struct task_struct *tsk) { struct signal_struct *sig = tsk->signal; struct sighand_struct *sighand; BUG_ON(!sig); BUG_ON(!atomic_read(&sig->count)); sighand = rcu_dereference(tsk->sighand); spin_lock(&sighand->siglock); posix_cpu_timers_exit(tsk); if (atomic_dec_and_test(&sig->count)) posix_cpu_timers_exit_group(tsk); else { /* * If there is any task waiting for the group exit * then notify it: */ if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) wake_up_process(sig->group_exit_task); if (tsk == sig->curr_target) sig->curr_target = next_thread(tsk); /* * Accumulate here the counters for all threads but the * group leader as they die, so they can be added into * the process-wide totals when those are taken. * The group leader stays around as a zombie as long * as there are other threads. When it gets reaped, * the exit.c code will add its counts into these totals. * We won't ever get here for the group leader, since it * will have been the last reference on the signal_struct. */ sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); sig->min_flt += tsk->min_flt; sig->maj_flt += tsk->maj_flt; sig->nvcsw += tsk->nvcsw; sig->nivcsw += tsk->nivcsw; sig->inblock += task_io_get_inblock(tsk); sig->oublock += task_io_get_oublock(tsk); task_io_accounting_add(&sig->ioac, &tsk->ioac); sig = NULL; /* Marker for below. */ } __unhash_process(tsk); /* * Do this under ->siglock, we can race with another thread * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. */ flush_sigqueue(&tsk->pending); tsk->signal = NULL; tsk->sighand = NULL; spin_unlock(&sighand->siglock); __cleanup_sighand(sighand); clear_tsk_thread_flag(tsk,TIF_SIGPENDING); if (sig) { flush_sigqueue(&sig->shared_pending); taskstats_tgid_free(sig); __cleanup_signal(sig); } } static void delayed_put_task_struct(struct rcu_head *rhp) { put_task_struct(container_of(rhp, struct task_struct, rcu)); } void release_task(struct task_struct * p) { struct task_struct *leader; int zap_leader; repeat: tracehook_prepare_release_task(p); atomic_dec(&p->user->processes); proc_flush_task(p); write_lock_irq(&tasklist_lock); tracehook_finish_release_task(p); __exit_signal(p); /* * If we are the last non-leader member of the thread * group, and the leader is zombie, then notify the * group leader's parent process. (if it wants notification.) */ zap_leader = 0; leader = p->group_leader; if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { BUG_ON(task_detached(leader)); do_notify_parent(leader, leader->exit_signal); /* * If we were the last child thread and the leader has * exited already, and the leader's parent ignores SIGCHLD, * then we are the one who should release the leader. * * do_notify_parent() will have marked it self-reaping in * that case. */ zap_leader = task_detached(leader); /* * This maintains the invariant that release_task() * only runs on a task in EXIT_DEAD, just for sanity. */ if (zap_leader) leader->exit_state = EXIT_DEAD; } write_unlock_irq(&tasklist_lock); release_thread(p); call_rcu(&p->rcu, delayed_put_task_struct); p = leader; if (unlikely(zap_leader)) goto repeat; } /* * This checks not only the pgrp, but falls back on the pid if no * satisfactory pgrp is found. I dunno - gdb doesn't work correctly * without this... * * The caller must hold rcu lock or the tasklist lock. */ struct pid *session_of_pgrp(struct pid *pgrp) { struct task_struct *p; struct pid *sid = NULL; p = pid_task(pgrp, PIDTYPE_PGID); if (p == NULL) p = pid_task(pgrp, PIDTYPE_PID); if (p != NULL) sid = task_session(p); return sid; } /* * Determine if a process group is "orphaned", according to the POSIX * definition in 2.2.2.52. Orphaned process groups are not to be affected * by terminal-generated stop signals. Newly orphaned process groups are * to receive a SIGHUP and a SIGCONT. * * "I ask you, have you ever known what it is to be an orphan?" */ static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) { struct task_struct *p; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { if ((p == ignored_task) || (p->exit_state && thread_group_empty(p)) || is_global_init(p->real_parent)) continue; if (task_pgrp(p->real_parent) != pgrp && task_session(p->real_parent) == task_session(p)) return 0; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return 1; } int is_current_pgrp_orphaned(void) { int retval; read_lock(&tasklist_lock); retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); read_unlock(&tasklist_lock); return retval; } static int has_stopped_jobs(struct pid *pgrp) { int retval = 0; struct task_struct *p; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { if (!task_is_stopped(p)) continue; retval = 1; break; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return retval; } /* * Check to see if any process groups have become orphaned as * a result of our exiting, and if they have any stopped jobs, * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) */ static void kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) { struct pid *pgrp = task_pgrp(tsk); struct task_struct *ignored_task = tsk; if (!parent) /* exit: our father is in a different pgrp than * we are and we were the only connection outside. */ parent = tsk->real_parent; else /* reparent: our child is in a different pgrp than * we are, and it was the only connection outside. */ ignored_task = NULL; if (task_pgrp(parent) != pgrp && task_session(parent) == task_session(tsk) && will_become_orphaned_pgrp(pgrp, ignored_task) && has_stopped_jobs(pgrp)) { __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); } } /** * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd * * If a kernel thread is launched as a result of a system call, or if * it ever exits, it should generally reparent itself to kthreadd so it * isn't in the way of other processes and is correctly cleaned up on exit. * * The various task state such as scheduling policy and priority may have * been inherited from a user process, so we reset them to sane values here. * * NOTE that reparent_to_kthreadd() gives the caller full capabilities. */ static void reparent_to_kthreadd(void) { write_lock_irq(&tasklist_lock); ptrace_unlink(current); /* Reparent to init */ current->real_parent = current->parent = kthreadd_task; list_move_tail(¤t->sibling, ¤t->real_parent->children); /* Set the exit signal to SIGCHLD so we signal init on exit */ current->exit_signal = SIGCHLD; if (task_nice(current) < 0) set_user_nice(current, 0); /* cpus_allowed? */ /* rt_priority? */ /* signals? */ security_task_reparent_to_init(current); memcpy(current->signal->rlim, init_task.signal->rlim, sizeof(current->signal->rlim)); atomic_inc(&(INIT_USER->__count)); write_unlock_irq(&tasklist_lock); switch_uid(INIT_USER); } void __set_special_pids(struct pid *pid) { struct task_struct *curr = current->group_leader; pid_t nr = pid_nr(pid); if (task_session(curr) != pid) { change_pid(curr, PIDTYPE_SID, pid); set_task_session(curr, nr); } if (task_pgrp(curr) != pid) { change_pid(curr, PIDTYPE_PGID, pid); set_task_pgrp(curr, nr); } } static void set_special_pids(struct pid *pid) { write_lock_irq(&tasklist_lock); __set_special_pids(pid); write_unlock_irq(&tasklist_lock); } /* * Let kernel threads use this to say that they * allow a certain signal (since daemonize() will * have disabled all of them by default). */ int allow_signal(int sig) { if (!valid_signal(sig) || sig < 1) return -EINVAL; spin_lock_irq(¤t->sighand->siglock); sigdelset(¤t->blocked, sig); if (!current->mm) { /* Kernel threads handle their own signals. Let the signal code know it'll be handled, so that they don't get converted to SIGKILL or just silently dropped */ current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; } recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); return 0; } EXPORT_SYMBOL(allow_signal); int disallow_signal(int sig) { if (!valid_signal(sig) || sig < 1) return -EINVAL; spin_lock_irq(¤t->sighand->siglock); current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); return 0; } EXPORT_SYMBOL(disallow_signal); /* * Put all the gunge required to become a kernel thread without * attached user resources in one place where it belongs. */ void daemonize(const char *name, ...) { va_list args; struct fs_struct *fs; sigset_t blocked; va_start(args, name); vsnprintf(current->comm, sizeof(current->comm), name, args); va_end(args); /* * If we were started as result of loading a module, close all of the * user space pages. We don't need them, and if we didn't close them * they would be locked into memory. */ exit_mm(current); /* * We don't want to have TIF_FREEZE set if the system-wide hibernation * or suspend transition begins right now. */ current->flags |= (PF_NOFREEZE | PF_KTHREAD); if (current->nsproxy != &init_nsproxy) { get_nsproxy(&init_nsproxy); switch_task_namespaces(current, &init_nsproxy); } set_special_pids(&init_struct_pid); proc_clear_tty(current); /* Block and flush all signals */ sigfillset(&blocked); sigprocmask(SIG_BLOCK, &blocked, NULL); flush_signals(current); /* Become as one with the init task */ exit_fs(current); /* current->fs->count--; */ fs = init_task.fs; current->fs = fs; atomic_inc(&fs->count); exit_files(current); current->files = init_task.files; atomic_inc(¤t->files->count); reparent_to_kthreadd(); } EXPORT_SYMBOL(daemonize); static void close_files(struct files_struct * files) { int i, j; struct fdtable *fdt; j = 0; /* * It is safe to dereference the fd table without RCU or * ->file_lock because this is the last reference to the * files structure. */ fdt = files_fdtable(files); for (;;) { unsigned long set; i = j * __NFDBITS; if (i >= fdt->max_fds) break; set = fdt->open_fds->fds_bits[j++]; while (set) { if (set & 1) { struct file * file = xchg(&fdt->fd[i], NULL); if (file) { filp_close(file, files); cond_resched(); } } i++; set >>= 1; } } } struct files_struct *get_files_struct(struct task_struct *task) { struct files_struct *files; task_lock(task); files = task->files; if (files) atomic_inc(&files->count); task_unlock(task); return files; } void put_files_struct(struct files_struct *files) { struct fdtable *fdt; if (atomic_dec_and_test(&files->count)) { close_files(files); /* * Free the fd and fdset arrays if we expanded them. * If the fdtable was embedded, pass files for freeing * at the end of the RCU grace period. Otherwise, * you can free files immediately. */ fdt = files_fdtable(files); if (fdt != &files->fdtab) kmem_cache_free(files_cachep, files); free_fdtable(fdt); } } void reset_files_struct(struct files_struct *files) { struct task_struct *tsk = current; struct files_struct *old; old = tsk->files; task_lock(tsk); tsk->files = files; task_unlock(tsk); put_files_struct(old); } void exit_files(struct task_struct *tsk) { struct files_struct * files = tsk->files; if (files) { task_lock(tsk); tsk->files = NULL; task_unlock(tsk); put_files_struct(files); } } void put_fs_struct(struct fs_struct *fs) { /* No need to hold fs->lock if we are killing it */ if (atomic_dec_and_test(&fs->count)) { path_put(&fs->root); path_put(&fs->pwd); kmem_cache_free(fs_cachep, fs); } } void exit_fs(struct task_struct *tsk) { struct fs_struct * fs = tsk->fs; if (fs) { task_lock(tsk); tsk->fs = NULL; task_unlock(tsk); put_fs_struct(fs); } } EXPORT_SYMBOL_GPL(exit_fs); #ifdef CONFIG_MM_OWNER /* * Task p is exiting and it owned mm, lets find a new owner for it */ static inline int mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) { /* * If there are other users of the mm and the owner (us) is exiting * we need to find a new owner to take on the responsibility. */ if (!mm) return 0; if (atomic_read(&mm->mm_users) <= 1) return 0; if (mm->owner != p) return 0; return 1; } void mm_update_next_owner(struct mm_struct *mm) { struct task_struct *c, *g, *p = current; retry: if (!mm_need_new_owner(mm, p)) return; read_lock(&tasklist_lock); /* * Search in the children */ list_for_each_entry(c, &p->children, sibling) { if (c->mm == mm) goto assign_new_owner; } /* * Search in the siblings */ list_for_each_entry(c, &p->parent->children, sibling) { if (c->mm == mm) goto assign_new_owner; } /* * Search through everything else. We should not get * here often */ do_each_thread(g, c) { if (c->mm == mm) goto assign_new_owner; } while_each_thread(g, c); read_unlock(&tasklist_lock); return; assign_new_owner: BUG_ON(c == p); get_task_struct(c); /* * The task_lock protects c->mm from changing. * We always want mm->owner->mm == mm */ task_lock(c); /* * Delay read_unlock() till we have the task_lock() * to ensure that c does not slip away underneath us */ read_unlock(&tasklist_lock); if (c->mm != mm) { task_unlock(c); put_task_struct(c); goto retry; } cgroup_mm_owner_callbacks(mm->owner, c); mm->owner = c; task_unlock(c); put_task_struct(c); } #endif /* CONFIG_MM_OWNER */ /* * Turn us into a lazy TLB process if we * aren't already.. */ static void exit_mm(struct task_struct * tsk) { struct mm_struct *mm = tsk->mm; struct core_state *core_state; mm_release(tsk, mm); if (!mm) return; /* * Serialize with any possible pending coredump. * We must hold mmap_sem around checking core_state * and clearing tsk->mm. The core-inducing thread * will increment ->nr_threads for each thread in the * group with ->mm != NULL. */ down_read(&mm->mmap_sem); core_state = mm->core_state; if (core_state) { struct core_thread self; up_read(&mm->mmap_sem); self.task = tsk; self.next = xchg(&core_state->dumper.next, &self); /* * Implies mb(), the result of xchg() must be visible * to core_state->dumper. */ if (atomic_dec_and_test(&core_state->nr_threads)) complete(&core_state->startup); for (;;) { set_task_state(tsk, TASK_UNINTERRUPTIBLE); if (!self.task) /* see coredump_finish() */ break; schedule(); } __set_task_state(tsk, TASK_RUNNING); down_read(&mm->mmap_sem); } atomic_inc(&mm->mm_count); BUG_ON(mm != tsk->active_mm); /* more a memory barrier than a real lock */ task_lock(tsk); tsk->mm = NULL; up_read(&mm->mmap_sem); enter_lazy_tlb(mm, current); /* We don't want this task to be frozen prematurely */ clear_freeze_flag(tsk); task_unlock(tsk); mm_update_next_owner(mm); mmput(mm); } /* * Return nonzero if @parent's children should reap themselves. * * Called with write_lock_irq(&tasklist_lock) held. */ static int ignoring_children(struct task_struct *parent) { int ret; struct sighand_struct *psig = parent->sighand; unsigned long flags; spin_lock_irqsave(&psig->siglock, flags); ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); spin_unlock_irqrestore(&psig->siglock, flags); return ret; } /* * Detach all tasks we were using ptrace on. * Any that need to be release_task'd are put on the @dead list. * * Called with write_lock(&tasklist_lock) held. */ static void ptrace_exit(struct task_struct *parent, struct list_head *dead) { struct task_struct *p, *n; int ign = -1; list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { __ptrace_unlink(p); if (p->exit_state != EXIT_ZOMBIE) continue; /* * If it's a zombie, our attachedness prevented normal * parent notification or self-reaping. Do notification * now if it would have happened earlier. If it should * reap itself, add it to the @dead list. We can't call * release_task() here because we already hold tasklist_lock. * * If it's our own child, there is no notification to do. * But if our normal children self-reap, then this child * was prevented by ptrace and we must reap it now. */ if (!task_detached(p) && thread_group_empty(p)) { if (!same_thread_group(p->real_parent, parent)) do_notify_parent(p, p->exit_signal); else { if (ign < 0) ign = ignoring_children(parent); if (ign) p->exit_signal = -1; } } if (task_detached(p)) { /* * Mark it as in the process of being reaped. */ p->exit_state = EXIT_DEAD; list_add(&p->ptrace_entry, dead); } } } /* * Finish up exit-time ptrace cleanup. * * Called without locks. */ static void ptrace_exit_finish(struct task_struct *parent, struct list_head *dead) { struct task_struct *p, *n; BUG_ON(!list_empty(&parent->ptraced)); list_for_each_entry_safe(p, n, dead, ptrace_entry) { list_del_init(&p->ptrace_entry); release_task(p); } } static void reparent_thread(struct task_struct *p, struct task_struct *father) { if (p->pdeath_signal) /* We already hold the tasklist_lock here. */ group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); list_move_tail(&p->sibling, &p->real_parent->children); /* If this is a threaded reparent there is no need to * notify anyone anything has happened. */ if (same_thread_group(p->real_parent, father)) return; /* We don't want people slaying init. */ if (!task_detached(p)) p->exit_signal = SIGCHLD; /* If we'd notified the old parent about this child's death, * also notify the new parent. */ if (!ptrace_reparented(p) && p->exit_state == EXIT_ZOMBIE && !task_detached(p) && thread_group_empty(p)) do_notify_parent(p, p->exit_signal); kill_orphaned_pgrp(p, father); } /* * When we die, we re-parent all our children. * Try to give them to another thread in our thread * group, and if no such member exists, give it to * the child reaper process (ie "init") in our pid * space. */ static struct task_struct *find_new_reaper(struct task_struct *father) { struct pid_namespace *pid_ns = task_active_pid_ns(father); struct task_struct *thread; thread = father; while_each_thread(father, thread) { if (thread->flags & PF_EXITING) continue; if (unlikely(pid_ns->child_reaper == father)) pid_ns->child_reaper = thread; return thread; } if (unlikely(pid_ns->child_reaper == father)) { write_unlock_irq(&tasklist_lock); if (unlikely(pid_ns == &init_pid_ns)) panic("Attempted to kill init!"); zap_pid_ns_processes(pid_ns); write_lock_irq(&tasklist_lock); /* * We can not clear ->child_reaper or leave it alone. * There may by stealth EXIT_DEAD tasks on ->children, * forget_original_parent() must move them somewhere. */ pid_ns->child_reaper = init_pid_ns.child_reaper; } return pid_ns->child_reaper; } static void forget_original_parent(struct task_struct *father) { struct task_struct *p, *n, *reaper; LIST_HEAD(ptrace_dead); write_lock_irq(&tasklist_lock); reaper = find_new_reaper(father); /* * First clean up ptrace if we were using it. */ ptrace_exit(father, &ptrace_dead); list_for_each_entry_safe(p, n, &father->children, sibling) { p->real_parent = reaper; if (p->parent == father) { BUG_ON(p->ptrace); p->parent = p->real_parent; } reparent_thread(p, father); } write_unlock_irq(&tasklist_lock); BUG_ON(!list_empty(&father->children)); ptrace_exit_finish(father, &ptrace_dead); } /* * Send signals to all our closest relatives so that they know * to properly mourn us.. */ static void exit_notify(struct task_struct *tsk, int group_dead) { int signal; void *cookie; /* * This does two things: * * A. Make init inherit all the child processes * B. Check to see if any process groups have become orphaned * as a result of our exiting, and if they have any stopped * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) */ forget_original_parent(tsk); exit_task_namespaces(tsk); write_lock_irq(&tasklist_lock); if (group_dead) kill_orphaned_pgrp(tsk->group_leader, NULL); /* Let father know we died * * Thread signals are configurable, but you aren't going to use * that to send signals to arbitary processes. * That stops right now. * * If the parent exec id doesn't match the exec id we saved * when we started then we know the parent has changed security * domain. * * If our self_exec id doesn't match our parent_exec_id then * we have changed execution domain as these two values started * the same after a fork. */ if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && (tsk->parent_exec_id != tsk->real_parent->self_exec_id || tsk->self_exec_id != tsk->parent_exec_id) && !capable(CAP_KILL)) tsk->exit_signal = SIGCHLD; signal = tracehook_notify_death(tsk, &cookie, group_dead); if (signal >= 0) signal = do_notify_parent(tsk, signal); tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; /* mt-exec, de_thread() is waiting for us */ if (thread_group_leader(tsk) && tsk->signal->group_exit_task && tsk->signal->notify_count < 0) wake_up_process(tsk->signal->group_exit_task); write_unlock_irq(&tasklist_lock); tracehook_report_death(tsk, signal, cookie, group_dead); /* If the process is dead, release it - nobody will wait for it */ if (signal == DEATH_REAP) release_task(tsk); } #ifdef CONFIG_DEBUG_STACK_USAGE static void check_stack_usage(void) { static DEFINE_SPINLOCK(low_water_lock); static int lowest_to_date = THREAD_SIZE; unsigned long *n = end_of_stack(current); unsigned long free; while (*n == 0) n++; free = (unsigned long)n - (unsigned long)end_of_stack(current); if (free >= lowest_to_date) return; spin_lock(&low_water_lock); if (free < lowest_to_date) { printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " "left\n", current->comm, free); lowest_to_date = free; } spin_unlock(&low_water_lock); } #else static inline void check_stack_usage(void) {} #endif NORET_TYPE void do_exit(long code) { struct task_struct *tsk = current; int group_dead; profile_task_exit(tsk); WARN_ON(atomic_read(&tsk->fs_excl)); if (unlikely(in_interrupt())) panic("Aiee, killing interrupt handler!"); if (unlikely(!tsk->pid)) panic("Attempted to kill the idle task!"); tracehook_report_exit(&code); /* * We're taking recursive faults here in do_exit. Safest is to just * leave this task alone and wait for reboot. */ if (unlikely(tsk->flags & PF_EXITING)) { printk(KERN_ALERT "Fixing recursive fault but reboot is needed!\n"); /* * We can do this unlocked here. The futex code uses * this flag just to verify whether the pi state * cleanup has been done or not. In the worst case it * loops once more. We pretend that the cleanup was * done as there is no way to return. Either the * OWNER_DIED bit is set by now or we push the blocked * task into the wait for ever nirwana as well. */ tsk->flags |= PF_EXITPIDONE; if (tsk->io_context) exit_io_context(); set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } exit_signals(tsk); /* sets PF_EXITING */ /* * tsk->flags are checked in the futex code to protect against * an exiting task cleaning up the robust pi futexes. */ smp_mb(); spin_unlock_wait(&tsk->pi_lock); if (unlikely(in_atomic())) printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", current->comm, task_pid_nr(current), preempt_count()); acct_update_integrals(tsk); if (tsk->mm) { update_hiwater_rss(tsk->mm); update_hiwater_vm(tsk->mm); } group_dead = atomic_dec_and_test(&tsk->signal->live); if (group_dead) { hrtimer_cancel(&tsk->signal->real_timer); exit_itimers(tsk->signal); } acct_collect(code, group_dead); #ifdef CONFIG_FUTEX if (unlikely(tsk->robust_list)) exit_robust_list(tsk); #ifdef CONFIG_COMPAT if (unlikely(tsk->compat_robust_list)) compat_exit_robust_list(tsk); #endif #endif if (group_dead) tty_audit_exit(); if (unlikely(tsk->audit_context)) audit_free(tsk); tsk->exit_code = code; taskstats_exit(tsk, group_dead); exit_mm(tsk); if (group_dead) acct_process(); exit_sem(tsk); exit_files(tsk); exit_fs(tsk); check_stack_usage(); exit_thread(); cgroup_exit(tsk, 1); exit_keys(tsk); if (group_dead && tsk->signal->leader) disassociate_ctty(1); module_put(task_thread_info(tsk)->exec_domain->module); if (tsk->binfmt) module_put(tsk->binfmt->module); proc_exit_connector(tsk); exit_notify(tsk, group_dead); #ifdef CONFIG_NUMA mpol_put(tsk->mempolicy); tsk->mempolicy = NULL; #endif #ifdef CONFIG_FUTEX /* * This must happen late, after the PID is not * hashed anymore: */ if (unlikely(!list_empty(&tsk->pi_state_list))) exit_pi_state_list(tsk); if (unlikely(current->pi_state_cache)) kfree(current->pi_state_cache); #endif /* * Make sure we are holding no locks: */ debug_check_no_locks_held(tsk); /* * We can do this unlocked here. The futex code uses this flag * just to verify whether the pi state cleanup has been done * or not. In the worst case it loops once more. */ tsk->flags |= PF_EXITPIDONE; if (tsk->io_context) exit_io_context(); if (tsk->splice_pipe) __free_pipe_info(tsk->splice_pipe); preempt_disable(); /* causes final put_task_struct in finish_task_switch(). */ tsk->state = TASK_DEAD; schedule(); BUG(); /* Avoid "noreturn function does return". */ for (;;) cpu_relax(); /* For when BUG is null */ } EXPORT_SYMBOL_GPL(do_exit); NORET_TYPE void complete_and_exit(struct completion *comp, long code) { if (comp) complete(comp); do_exit(code); } EXPORT_SYMBOL(complete_and_exit); asmlinkage long sys_exit(int error_code) { do_exit((error_code&0xff)<<8); } /* * Take down every thread in the group. This is called by fatal signals * as well as by sys_exit_group (below). */ NORET_TYPE void do_group_exit(int exit_code) { struct signal_struct *sig = current->signal; BUG_ON(exit_code & 0x80); /* core dumps don't get here */ if (signal_group_exit(sig)) exit_code = sig->group_exit_code; else if (!thread_group_empty(current)) { struct sighand_struct *const sighand = current->sighand; spin_lock_irq(&sighand->siglock); if (signal_group_exit(sig)) /* Another thread got here before we took the lock. */ exit_code = sig->group_exit_code; else { sig->group_exit_code = exit_code; sig->flags = SIGNAL_GROUP_EXIT; zap_other_threads(current); } spin_unlock_irq(&sighand->siglock); } do_exit(exit_code); /* NOTREACHED */ } /* * this kills every thread in the thread group. Note that any externally * wait4()-ing process will get the correct exit code - even if this * thread is not the thread group leader. */ asmlinkage void sys_exit_group(int error_code) { do_group_exit((error_code & 0xff) << 8); } static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) { struct pid *pid = NULL; if (type == PIDTYPE_PID) pid = task->pids[type].pid; else if (type < PIDTYPE_MAX) pid = task->group_leader->pids[type].pid; return pid; } static int eligible_child(enum pid_type type, struct pid *pid, int options, struct task_struct *p) { int err; if (type < PIDTYPE_MAX) { if (task_pid_type(p, type) != pid) return 0; } /* Wait for all children (clone and not) if __WALL is set; * otherwise, wait for clone children *only* if __WCLONE is * set; otherwise, wait for non-clone children *only*. (Note: * A "clone" child here is one that reports to its parent * using a signal other than SIGCHLD.) */ if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) && !(options & __WALL)) return 0; err = security_task_wait(p); if (err) return err; return 1; } static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, int why, int status, struct siginfo __user *infop, struct rusage __user *rusagep) { int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; put_task_struct(p); if (!retval) retval = put_user(SIGCHLD, &infop->si_signo); if (!retval) retval = put_user(0, &infop->si_errno); if (!retval) retval = put_user((short)why, &infop->si_code); if (!retval) retval = put_user(pid, &infop->si_pid); if (!retval) retval = put_user(uid, &infop->si_uid); if (!retval) retval = put_user(status, &infop->si_status); if (!retval) retval = pid; return retval; } /* * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_zombie(struct task_struct *p, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { unsigned long state; int retval, status, traced; pid_t pid = task_pid_vnr(p); if (!likely(options & WEXITED)) return 0; if (unlikely(options & WNOWAIT)) { uid_t uid = p->uid; int exit_code = p->exit_code; int why, status; get_task_struct(p); read_unlock(&tasklist_lock); if ((exit_code & 0x7f) == 0) { why = CLD_EXITED; status = exit_code >> 8; } else { why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; status = exit_code & 0x7f; } return wait_noreap_copyout(p, pid, uid, why, status, infop, ru); } /* * Try to move the task's state to DEAD * only one thread is allowed to do this: */ state = xchg(&p->exit_state, EXIT_DEAD); if (state != EXIT_ZOMBIE) { BUG_ON(state != EXIT_DEAD); return 0; } traced = ptrace_reparented(p); if (likely(!traced)) { struct signal_struct *psig; struct signal_struct *sig; struct task_cputime cputime; /* * The resource counters for the group leader are in its * own task_struct. Those for dead threads in the group * are in its signal_struct, as are those for the child * processes it has previously reaped. All these * accumulate in the parent's signal_struct c* fields. * * We don't bother to take a lock here to protect these * p->signal fields, because they are only touched by * __exit_signal, which runs with tasklist_lock * write-locked anyway, and so is excluded here. We do * need to protect the access to p->parent->signal fields, * as other threads in the parent group can be right * here reaping other children at the same time. * * We use thread_group_cputime() to get times for the thread * group, which consolidates times for all threads in the * group including the group leader. */ spin_lock_irq(&p->parent->sighand->siglock); psig = p->parent->signal; sig = p->signal; thread_group_cputime(p, &cputime); psig->cutime = cputime_add(psig->cutime, cputime_add(cputime.utime, sig->cutime)); psig->cstime = cputime_add(psig->cstime, cputime_add(cputime.stime, sig->cstime)); psig->cgtime = cputime_add(psig->cgtime, cputime_add(p->gtime, cputime_add(sig->gtime, sig->cgtime))); psig->cmin_flt += p->min_flt + sig->min_flt + sig->cmin_flt; psig->cmaj_flt += p->maj_flt + sig->maj_flt + sig->cmaj_flt; psig->cnvcsw += p->nvcsw + sig->nvcsw + sig->cnvcsw; psig->cnivcsw += p->nivcsw + sig->nivcsw + sig->cnivcsw; psig->cinblock += task_io_get_inblock(p) + sig->inblock + sig->cinblock; psig->coublock += task_io_get_oublock(p) + sig->oublock + sig->coublock; task_io_accounting_add(&psig->ioac, &p->ioac); task_io_accounting_add(&psig->ioac, &sig->ioac); spin_unlock_irq(&p->parent->sighand->siglock); } /* * Now we are sure this task is interesting, and no other * thread can reap it because we set its state to EXIT_DEAD. */ read_unlock(&tasklist_lock); retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; status = (p->signal->flags & SIGNAL_GROUP_EXIT) ? p->signal->group_exit_code : p->exit_code; if (!retval && stat_addr) retval = put_user(status, stat_addr); if (!retval && infop) retval = put_user(SIGCHLD, &infop->si_signo); if (!retval && infop) retval = put_user(0, &infop->si_errno); if (!retval && infop) { int why; if ((status & 0x7f) == 0) { why = CLD_EXITED; status >>= 8; } else { why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; status &= 0x7f; } retval = put_user((short)why, &infop->si_code); if (!retval) retval = put_user(status, &infop->si_status); } if (!retval && infop) retval = put_user(pid, &infop->si_pid); if (!retval && infop) retval = put_user(p->uid, &infop->si_uid); if (!retval) retval = pid; if (traced) { write_lock_irq(&tasklist_lock); /* We dropped tasklist, ptracer could die and untrace */ ptrace_unlink(p); /* * If this is not a detached task, notify the parent. * If it's still not detached after that, don't release * it now. */ if (!task_detached(p)) { do_notify_parent(p, p->exit_signal); if (!task_detached(p)) { p->exit_state = EXIT_ZOMBIE; p = NULL; } } write_unlock_irq(&tasklist_lock); } if (p != NULL) release_task(p); return retval; } /* * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_stopped(int ptrace, struct task_struct *p, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { int retval, exit_code, why; uid_t uid = 0; /* unneeded, required by compiler */ pid_t pid; if (!(options & WUNTRACED)) return 0; exit_code = 0; spin_lock_irq(&p->sighand->siglock); if (unlikely(!task_is_stopped_or_traced(p))) goto unlock_sig; if (!ptrace && p->signal->group_stop_count > 0) /* * A group stop is in progress and this is the group leader. * We won't report until all threads have stopped. */ goto unlock_sig; exit_code = p->exit_code; if (!exit_code) goto unlock_sig; if (!unlikely(options & WNOWAIT)) p->exit_code = 0; uid = p->uid; unlock_sig: spin_unlock_irq(&p->sighand->siglock); if (!exit_code) return 0; /* * Now we are pretty sure this task is interesting. * Make sure it doesn't get reaped out from under us while we * give up the lock and then examine it below. We don't want to * keep holding onto the tasklist_lock while we call getrusage and * possibly take page faults for user memory. */ get_task_struct(p); pid = task_pid_vnr(p); why = ptrace ? CLD_TRAPPED : CLD_STOPPED; read_unlock(&tasklist_lock); if (unlikely(options & WNOWAIT)) return wait_noreap_copyout(p, pid, uid, why, exit_code, infop, ru); retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; if (!retval && stat_addr) retval = put_user((exit_code << 8) | 0x7f, stat_addr); if (!retval && infop) retval = put_user(SIGCHLD, &infop->si_signo); if (!retval && infop) retval = put_user(0, &infop->si_errno); if (!retval && infop) retval = put_user((short)why, &infop->si_code); if (!retval && infop) retval = put_user(exit_code, &infop->si_status); if (!retval && infop) retval = put_user(pid, &infop->si_pid); if (!retval && infop) retval = put_user(uid, &infop->si_uid); if (!retval) retval = pid; put_task_struct(p); BUG_ON(!retval); return retval; } /* * Handle do_wait work for one task in a live, non-stopped state. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_continued(struct task_struct *p, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { int retval; pid_t pid; uid_t uid; if (!unlikely(options & WCONTINUED)) return 0; if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) return 0; spin_lock_irq(&p->sighand->siglock); /* Re-check with the lock held. */ if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { spin_unlock_irq(&p->sighand->siglock); return 0; } if (!unlikely(options & WNOWAIT)) p->signal->flags &= ~SIGNAL_STOP_CONTINUED; spin_unlock_irq(&p->sighand->siglock); pid = task_pid_vnr(p); uid = p->uid; get_task_struct(p); read_unlock(&tasklist_lock); if (!infop) { retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; put_task_struct(p); if (!retval && stat_addr) retval = put_user(0xffff, stat_addr); if (!retval) retval = pid; } else { retval = wait_noreap_copyout(p, pid, uid, CLD_CONTINUED, SIGCONT, infop, ru); BUG_ON(retval == 0); } return retval; } /* * Consider @p for a wait by @parent. * * -ECHILD should be in *@notask_error before the first call. * Returns nonzero for a final return, when we have unlocked tasklist_lock. * Returns zero if the search for a child should continue; * then *@notask_error is 0 if @p is an eligible child, * or another error from security_task_wait(), or still -ECHILD. */ static int wait_consider_task(struct task_struct *parent, int ptrace, struct task_struct *p, int *notask_error, enum pid_type type, struct pid *pid, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { int ret = eligible_child(type, pid, options, p); if (!ret) return ret; if (unlikely(ret < 0)) { /* * If we have not yet seen any eligible child, * then let this error code replace -ECHILD. * A permission error will give the user a clue * to look for security policy problems, rather * than for mysterious wait bugs. */ if (*notask_error) *notask_error = ret; } if (likely(!ptrace) && unlikely(p->ptrace)) { /* * This child is hidden by ptrace. * We aren't allowed to see it now, but eventually we will. */ *notask_error = 0; return 0; } if (p->exit_state == EXIT_DEAD) return 0; /* * We don't reap group leaders with subthreads. */ if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) return wait_task_zombie(p, options, infop, stat_addr, ru); /* * It's stopped or running now, so it might * later continue, exit, or stop again. */ *notask_error = 0; if (task_is_stopped_or_traced(p)) return wait_task_stopped(ptrace, p, options, infop, stat_addr, ru); return wait_task_continued(p, options, infop, stat_addr, ru); } /* * Do the work of do_wait() for one thread in the group, @tsk. * * -ECHILD should be in *@notask_error before the first call. * Returns nonzero for a final return, when we have unlocked tasklist_lock. * Returns zero if the search for a child should continue; then * *@notask_error is 0 if there were any eligible children, * or another error from security_task_wait(), or still -ECHILD. */ static int do_wait_thread(struct task_struct *tsk, int *notask_error, enum pid_type type, struct pid *pid, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { struct task_struct *p; list_for_each_entry(p, &tsk->children, sibling) { /* * Do not consider detached threads. */ if (!task_detached(p)) { int ret = wait_consider_task(tsk, 0, p, notask_error, type, pid, options, infop, stat_addr, ru); if (ret) return ret; } } return 0; } static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, enum pid_type type, struct pid *pid, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { struct task_struct *p; /* * Traditionally we see ptrace'd stopped tasks regardless of options. */ options |= WUNTRACED; list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { int ret = wait_consider_task(tsk, 1, p, notask_error, type, pid, options, infop, stat_addr, ru); if (ret) return ret; } return 0; } static long do_wait(enum pid_type type, struct pid *pid, int options, struct siginfo __user *infop, int __user *stat_addr, struct rusage __user *ru) { DECLARE_WAITQUEUE(wait, current); struct task_struct *tsk; int retval; add_wait_queue(¤t->signal->wait_chldexit,&wait); repeat: /* * If there is nothing that can match our critiera just get out. * We will clear @retval to zero if we see any child that might later * match our criteria, even if we are not able to reap it yet. */ retval = -ECHILD; if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) goto end; current->state = TASK_INTERRUPTIBLE; read_lock(&tasklist_lock); tsk = current; do { int tsk_result = do_wait_thread(tsk, &retval, type, pid, options, infop, stat_addr, ru); if (!tsk_result) tsk_result = ptrace_do_wait(tsk, &retval, type, pid, options, infop, stat_addr, ru); if (tsk_result) { /* * tasklist_lock is unlocked and we have a final result. */ retval = tsk_result; goto end; } if (options & __WNOTHREAD) break; tsk = next_thread(tsk); BUG_ON(tsk->signal != current->signal); } while (tsk != current); read_unlock(&tasklist_lock); if (!retval && !(options & WNOHANG)) { retval = -ERESTARTSYS; if (!signal_pending(current)) { schedule(); goto repeat; } } end: current->state = TASK_RUNNING; remove_wait_queue(¤t->signal->wait_chldexit,&wait); if (infop) { if (retval > 0) retval = 0; else { /* * For a WNOHANG return, clear out all the fields * we would set so the user can easily tell the * difference. */ if (!retval) retval = put_user(0, &infop->si_signo); if (!retval) retval = put_user(0, &infop->si_errno); if (!retval) retval = put_user(0, &infop->si_code); if (!retval) retval = put_user(0, &infop->si_pid); if (!retval) retval = put_user(0, &infop->si_uid); if (!retval) retval = put_user(0, &infop->si_status); } } return retval; } asmlinkage long sys_waitid(int which, pid_t upid, struct siginfo __user *infop, int options, struct rusage __user *ru) { struct pid *pid = NULL; enum pid_type type; long ret; if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) return -EINVAL; if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) return -EINVAL; switch (which) { case P_ALL: type = PIDTYPE_MAX; break; case P_PID: type = PIDTYPE_PID; if (upid <= 0) return -EINVAL; break; case P_PGID: type = PIDTYPE_PGID; if (upid <= 0) return -EINVAL; break; default: return -EINVAL; } if (type < PIDTYPE_MAX) pid = find_get_pid(upid); ret = do_wait(type, pid, options, infop, NULL, ru); put_pid(pid); /* avoid REGPARM breakage on x86: */ asmlinkage_protect(5, ret, which, upid, infop, options, ru); return ret; } asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, int options, struct rusage __user *ru) { struct pid *pid = NULL; enum pid_type type; long ret; if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| __WNOTHREAD|__WCLONE|__WALL)) return -EINVAL; if (upid == -1) type = PIDTYPE_MAX; else if (upid < 0) { type = PIDTYPE_PGID; pid = find_get_pid(-upid); } else if (upid == 0) { type = PIDTYPE_PGID; pid = get_pid(task_pgrp(current)); } else /* upid > 0 */ { type = PIDTYPE_PID; pid = find_get_pid(upid); } ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); put_pid(pid); /* avoid REGPARM breakage on x86: */ asmlinkage_protect(4, ret, upid, stat_addr, options, ru); return ret; } #ifdef __ARCH_WANT_SYS_WAITPID /* * sys_waitpid() remains for compatibility. waitpid() should be * implemented by calling sys_wait4() from libc.a. */ asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) { return sys_wait4(pid, stat_addr, options, NULL); } #endif