/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic socket support routines. Memory allocators, socket lock/release * handler for protocols to use and generic option handler. * * * Authors: Ross Biro * Fred N. van Kempen, * Florian La Roche, * Alan Cox, * * Fixes: * Alan Cox : Numerous verify_area() problems * Alan Cox : Connecting on a connecting socket * now returns an error for tcp. * Alan Cox : sock->protocol is set correctly. * and is not sometimes left as 0. * Alan Cox : connect handles icmp errors on a * connect properly. Unfortunately there * is a restart syscall nasty there. I * can't match BSD without hacking the C * library. Ideas urgently sought! * Alan Cox : Disallow bind() to addresses that are * not ours - especially broadcast ones!! * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, * instead they leave that for the DESTROY timer. * Alan Cox : Clean up error flag in accept * Alan Cox : TCP ack handling is buggy, the DESTROY timer * was buggy. Put a remove_sock() in the handler * for memory when we hit 0. Also altered the timer * code. The ACK stuff can wait and needs major * TCP layer surgery. * Alan Cox : Fixed TCP ack bug, removed remove sock * and fixed timer/inet_bh race. * Alan Cox : Added zapped flag for TCP * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... * Rick Sladkey : Relaxed UDP rules for matching packets. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support * Pauline Middelink : identd support * Alan Cox : Fixed connect() taking signals I think. * Alan Cox : SO_LINGER supported * Alan Cox : Error reporting fixes * Anonymous : inet_create tidied up (sk->reuse setting) * Alan Cox : inet sockets don't set sk->type! * Alan Cox : Split socket option code * Alan Cox : Callbacks * Alan Cox : Nagle flag for Charles & Johannes stuff * Alex : Removed restriction on inet fioctl * Alan Cox : Splitting INET from NET core * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code * Alan Cox : Split IP from generic code * Alan Cox : New kfree_skbmem() * Alan Cox : Make SO_DEBUG superuser only. * Alan Cox : Allow anyone to clear SO_DEBUG * (compatibility fix) * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. * Alan Cox : Allocator for a socket is settable. * Alan Cox : SO_ERROR includes soft errors. * Alan Cox : Allow NULL arguments on some SO_ opts * Alan Cox : Generic socket allocation to make hooks * easier (suggested by Craig Metz). * Michael Pall : SO_ERROR returns positive errno again * Steve Whitehouse: Added default destructor to free * protocol private data. * Steve Whitehouse: Added various other default routines * common to several socket families. * Chris Evans : Call suser() check last on F_SETOWN * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() * Andi Kleen : Fix write_space callback * Chris Evans : Security fixes - signedness again * Arnaldo C. Melo : cleanups, use skb_queue_purge * * To Fix: * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_INET #include #endif /* * Each address family might have different locking rules, so we have * one slock key per address family: */ static struct lock_class_key af_family_keys[AF_MAX]; static struct lock_class_key af_family_slock_keys[AF_MAX]; /* * Make lock validator output more readable. (we pre-construct these * strings build-time, so that runtime initialization of socket * locks is fast): */ static const char *const af_family_key_strings[AF_MAX+1] = { "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , "sk_lock-AF_IEEE802154", "sk_lock-AF_MAX" }; static const char *const af_family_slock_key_strings[AF_MAX+1] = { "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , "slock-27" , "slock-28" , "slock-AF_CAN" , "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , "slock-AF_IEEE802154", "slock-AF_MAX" }; static const char *const af_family_clock_key_strings[AF_MAX+1] = { "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , "clock-27" , "clock-28" , "clock-AF_CAN" , "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , "clock-AF_IEEE802154", "clock-AF_MAX" }; /* * sk_callback_lock locking rules are per-address-family, * so split the lock classes by using a per-AF key: */ static struct lock_class_key af_callback_keys[AF_MAX]; /* Take into consideration the size of the struct sk_buff overhead in the * determination of these values, since that is non-constant across * platforms. This makes socket queueing behavior and performance * not depend upon such differences. */ #define _SK_MEM_PACKETS 256 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) /* Run time adjustable parameters. */ __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; /* Maximal space eaten by iovec or ancilliary data plus some space */ int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); EXPORT_SYMBOL(sysctl_optmem_max); static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) { struct timeval tv; if (optlen < sizeof(tv)) return -EINVAL; if (copy_from_user(&tv, optval, sizeof(tv))) return -EFAULT; if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) return -EDOM; if (tv.tv_sec < 0) { static int warned __read_mostly; *timeo_p = 0; if (warned < 10 && net_ratelimit()) { warned++; printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) " "tries to set negative timeout\n", current->comm, task_pid_nr(current)); } return 0; } *timeo_p = MAX_SCHEDULE_TIMEOUT; if (tv.tv_sec == 0 && tv.tv_usec == 0) return 0; if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); return 0; } static void sock_warn_obsolete_bsdism(const char *name) { static int warned; static char warncomm[TASK_COMM_LEN]; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); printk(KERN_WARNING "process `%s' is using obsolete " "%s SO_BSDCOMPAT\n", warncomm, name); warned++; } } static void sock_disable_timestamp(struct sock *sk, int flag) { if (sock_flag(sk, flag)) { sock_reset_flag(sk, flag); if (!sock_flag(sk, SOCK_TIMESTAMP) && !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) { net_disable_timestamp(); } } } int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; int skb_len; unsigned long flags; struct sk_buff_head *list = &sk->sk_receive_queue; /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces number of warnings when compiling with -W --ANK */ if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= (unsigned)sk->sk_rcvbuf) { atomic_inc(&sk->sk_drops); return -ENOMEM; } err = sk_filter(sk, skb); if (err) return err; if (!sk_rmem_schedule(sk, skb->truesize)) { atomic_inc(&sk->sk_drops); return -ENOBUFS; } skb->dev = NULL; skb_set_owner_r(skb, sk); /* Cache the SKB length before we tack it onto the receive * queue. Once it is added it no longer belongs to us and * may be freed by other threads of control pulling packets * from the queue. */ skb_len = skb->len; spin_lock_irqsave(&list->lock, flags); skb->dropcount = atomic_read(&sk->sk_drops); __skb_queue_tail(list, skb); spin_unlock_irqrestore(&list->lock, flags); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk, skb_len); return 0; } EXPORT_SYMBOL(sock_queue_rcv_skb); int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) { int rc = NET_RX_SUCCESS; if (sk_filter(sk, skb)) goto discard_and_relse; skb->dev = NULL; if (nested) bh_lock_sock_nested(sk); else bh_lock_sock(sk); if (!sock_owned_by_user(sk)) { /* * trylock + unlock semantics: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); rc = sk_backlog_rcv(sk, skb); mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); } else sk_add_backlog(sk, skb); bh_unlock_sock(sk); out: sock_put(sk); return rc; discard_and_relse: kfree_skb(skb); goto out; } EXPORT_SYMBOL(sk_receive_skb); struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = sk->sk_dst_cache; if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { sk_tx_queue_clear(sk); sk->sk_dst_cache = NULL; dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(__sk_dst_check); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = sk_dst_get(sk); if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { sk_dst_reset(sk); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(sk_dst_check); static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); char devname[IFNAMSIZ]; int index; /* Sorry... */ ret = -EPERM; if (!capable(CAP_NET_RAW)) goto out; ret = -EINVAL; if (optlen < 0) goto out; /* Bind this socket to a particular device like "eth0", * as specified in the passed interface name. If the * name is "" or the option length is zero the socket * is not bound. */ if (optlen > IFNAMSIZ - 1) optlen = IFNAMSIZ - 1; memset(devname, 0, sizeof(devname)); ret = -EFAULT; if (copy_from_user(devname, optval, optlen)) goto out; if (devname[0] == '\0') { index = 0; } else { struct net_device *dev = dev_get_by_name(net, devname); ret = -ENODEV; if (!dev) goto out; index = dev->ifindex; dev_put(dev); } lock_sock(sk); sk->sk_bound_dev_if = index; sk_dst_reset(sk); release_sock(sk); ret = 0; out: #endif return ret; } static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) { if (valbool) sock_set_flag(sk, bit); else sock_reset_flag(sk, bit); } /* * This is meant for all protocols to use and covers goings on * at the socket level. Everything here is generic. */ int sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; int val; int valbool; struct linger ling; int ret = 0; /* * Options without arguments */ if (optname == SO_BINDTODEVICE) return sock_bindtodevice(sk, optval, optlen); if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; valbool = val ? 1 : 0; lock_sock(sk); switch (optname) { case SO_DEBUG: if (val && !capable(CAP_NET_ADMIN)) ret = -EACCES; else sock_valbool_flag(sk, SOCK_DBG, valbool); break; case SO_REUSEADDR: sk->sk_reuse = valbool; break; case SO_TYPE: case SO_PROTOCOL: case SO_DOMAIN: case SO_ERROR: ret = -ENOPROTOOPT; break; case SO_DONTROUTE: sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); break; case SO_BROADCAST: sock_valbool_flag(sk, SOCK_BROADCAST, valbool); break; case SO_SNDBUF: /* Don't error on this BSD doesn't and if you think about it this is right. Otherwise apps have to play 'guess the biggest size' games. RCVBUF/SNDBUF are treated in BSD as hints */ if (val > sysctl_wmem_max) val = sysctl_wmem_max; set_sndbuf: sk->sk_userlocks |= SOCK_SNDBUF_LOCK; if ((val * 2) < SOCK_MIN_SNDBUF) sk->sk_sndbuf = SOCK_MIN_SNDBUF; else sk->sk_sndbuf = val * 2; /* * Wake up sending tasks if we * upped the value. */ sk->sk_write_space(sk); break; case SO_SNDBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } goto set_sndbuf; case SO_RCVBUF: /* Don't error on this BSD doesn't and if you think about it this is right. Otherwise apps have to play 'guess the biggest size' games. RCVBUF/SNDBUF are treated in BSD as hints */ if (val > sysctl_rmem_max) val = sysctl_rmem_max; set_rcvbuf: sk->sk_userlocks |= SOCK_RCVBUF_LOCK; /* * We double it on the way in to account for * "struct sk_buff" etc. overhead. Applications * assume that the SO_RCVBUF setting they make will * allow that much actual data to be received on that * socket. * * Applications are unaware that "struct sk_buff" and * other overheads allocate from the receive buffer * during socket buffer allocation. * * And after considering the possible alternatives, * returning the value we actually used in getsockopt * is the most desirable behavior. */ if ((val * 2) < SOCK_MIN_RCVBUF) sk->sk_rcvbuf = SOCK_MIN_RCVBUF; else sk->sk_rcvbuf = val * 2; break; case SO_RCVBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } goto set_rcvbuf; case SO_KEEPALIVE: #ifdef CONFIG_INET if (sk->sk_protocol == IPPROTO_TCP) tcp_set_keepalive(sk, valbool); #endif sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); break; case SO_OOBINLINE: sock_valbool_flag(sk, SOCK_URGINLINE, valbool); break; case SO_NO_CHECK: sk->sk_no_check = valbool; break; case SO_PRIORITY: if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) sk->sk_priority = val; else ret = -EPERM; break; case SO_LINGER: if (optlen < sizeof(ling)) { ret = -EINVAL; /* 1003.1g */ break; } if (copy_from_user(&ling, optval, sizeof(ling))) { ret = -EFAULT; break; } if (!ling.l_onoff) sock_reset_flag(sk, SOCK_LINGER); else { #if (BITS_PER_LONG == 32) if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; else #endif sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; sock_set_flag(sk, SOCK_LINGER); } break; case SO_BSDCOMPAT: sock_warn_obsolete_bsdism("setsockopt"); break; case SO_PASSCRED: if (valbool) set_bit(SOCK_PASSCRED, &sock->flags); else clear_bit(SOCK_PASSCRED, &sock->flags); break; case SO_TIMESTAMP: case SO_TIMESTAMPNS: if (valbool) { if (optname == SO_TIMESTAMP) sock_reset_flag(sk, SOCK_RCVTSTAMPNS); else sock_set_flag(sk, SOCK_RCVTSTAMPNS); sock_set_flag(sk, SOCK_RCVTSTAMP); sock_enable_timestamp(sk, SOCK_TIMESTAMP); } else { sock_reset_flag(sk, SOCK_RCVTSTAMP); sock_reset_flag(sk, SOCK_RCVTSTAMPNS); } break; case SO_TIMESTAMPING: if (val & ~SOF_TIMESTAMPING_MASK) { ret = -EINVAL; break; } sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE, val & SOF_TIMESTAMPING_TX_HARDWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE, val & SOF_TIMESTAMPING_TX_SOFTWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE, val & SOF_TIMESTAMPING_RX_HARDWARE); if (val & SOF_TIMESTAMPING_RX_SOFTWARE) sock_enable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); else sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE, val & SOF_TIMESTAMPING_SOFTWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE, val & SOF_TIMESTAMPING_SYS_HARDWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE, val & SOF_TIMESTAMPING_RAW_HARDWARE); break; case SO_RCVLOWAT: if (val < 0) val = INT_MAX; sk->sk_rcvlowat = val ? : 1; break; case SO_RCVTIMEO: ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); break; case SO_SNDTIMEO: ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); break; case SO_ATTACH_FILTER: ret = -EINVAL; if (optlen == sizeof(struct sock_fprog)) { struct sock_fprog fprog; ret = -EFAULT; if (copy_from_user(&fprog, optval, sizeof(fprog))) break; ret = sk_attach_filter(&fprog, sk); } break; case SO_DETACH_FILTER: ret = sk_detach_filter(sk); break; case SO_PASSSEC: if (valbool) set_bit(SOCK_PASSSEC, &sock->flags); else clear_bit(SOCK_PASSSEC, &sock->flags); break; case SO_MARK: if (!capable(CAP_NET_ADMIN)) ret = -EPERM; else sk->sk_mark = val; break; /* We implement the SO_SNDLOWAT etc to not be settable (1003.1g 5.3) */ case SO_RXQ_OVFL: if (valbool) sock_set_flag(sk, SOCK_RXQ_OVFL); else sock_reset_flag(sk, SOCK_RXQ_OVFL); break; default: ret = -ENOPROTOOPT; break; } release_sock(sk); return ret; } EXPORT_SYMBOL(sock_setsockopt); int sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; union { int val; struct linger ling; struct timeval tm; } v; unsigned int lv = sizeof(int); int len; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; memset(&v, 0, sizeof(v)); switch (optname) { case SO_DEBUG: v.val = sock_flag(sk, SOCK_DBG); break; case SO_DONTROUTE: v.val = sock_flag(sk, SOCK_LOCALROUTE); break; case SO_BROADCAST: v.val = !!sock_flag(sk, SOCK_BROADCAST); break; case SO_SNDBUF: v.val = sk->sk_sndbuf; break; case SO_RCVBUF: v.val = sk->sk_rcvbuf; break; case SO_REUSEADDR: v.val = sk->sk_reuse; break; case SO_KEEPALIVE: v.val = !!sock_flag(sk, SOCK_KEEPOPEN); break; case SO_TYPE: v.val = sk->sk_type; break; case SO_PROTOCOL: v.val = sk->sk_protocol; break; case SO_DOMAIN: v.val = sk->sk_family; break; case SO_ERROR: v.val = -sock_error(sk); if (v.val == 0) v.val = xchg(&sk->sk_err_soft, 0); break; case SO_OOBINLINE: v.val = !!sock_flag(sk, SOCK_URGINLINE); break; case SO_NO_CHECK: v.val = sk->sk_no_check; break; case SO_PRIORITY: v.val = sk->sk_priority; break; case SO_LINGER: lv = sizeof(v.ling); v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); v.ling.l_linger = sk->sk_lingertime / HZ; break; case SO_BSDCOMPAT: sock_warn_obsolete_bsdism("getsockopt"); break; case SO_TIMESTAMP: v.val = sock_flag(sk, SOCK_RCVTSTAMP) && !sock_flag(sk, SOCK_RCVTSTAMPNS); break; case SO_TIMESTAMPNS: v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); break; case SO_TIMESTAMPING: v.val = 0; if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) v.val |= SOF_TIMESTAMPING_TX_HARDWARE; if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) v.val |= SOF_TIMESTAMPING_TX_SOFTWARE; if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE)) v.val |= SOF_TIMESTAMPING_RX_HARDWARE; if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) v.val |= SOF_TIMESTAMPING_RX_SOFTWARE; if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) v.val |= SOF_TIMESTAMPING_SOFTWARE; if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)) v.val |= SOF_TIMESTAMPING_SYS_HARDWARE; if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) v.val |= SOF_TIMESTAMPING_RAW_HARDWARE; break; case SO_RCVTIMEO: lv = sizeof(struct timeval); if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { v.tm.tv_sec = 0; v.tm.tv_usec = 0; } else { v.tm.tv_sec = sk->sk_rcvtimeo / HZ; v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; } break; case SO_SNDTIMEO: lv = sizeof(struct timeval); if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { v.tm.tv_sec = 0; v.tm.tv_usec = 0; } else { v.tm.tv_sec = sk->sk_sndtimeo / HZ; v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; } break; case SO_RCVLOWAT: v.val = sk->sk_rcvlowat; break; case SO_SNDLOWAT: v.val = 1; break; case SO_PASSCRED: v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; break; case SO_PEERCRED: if (len > sizeof(sk->sk_peercred)) len = sizeof(sk->sk_peercred); if (copy_to_user(optval, &sk->sk_peercred, len)) return -EFAULT; goto lenout; case SO_PEERNAME: { char address[128]; if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) return -ENOTCONN; if (lv < len) return -EINVAL; if (copy_to_user(optval, address, len)) return -EFAULT; goto lenout; } /* Dubious BSD thing... Probably nobody even uses it, but * the UNIX standard wants it for whatever reason... -DaveM */ case SO_ACCEPTCONN: v.val = sk->sk_state == TCP_LISTEN; break; case SO_PASSSEC: v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0; break; case SO_PEERSEC: return security_socket_getpeersec_stream(sock, optval, optlen, len); case SO_MARK: v.val = sk->sk_mark; break; case SO_RXQ_OVFL: v.val = !!sock_flag(sk, SOCK_RXQ_OVFL); break; default: return -ENOPROTOOPT; } if (len > lv) len = lv; if (copy_to_user(optval, &v, len)) return -EFAULT; lenout: if (put_user(len, optlen)) return -EFAULT; return 0; } /* * Initialize an sk_lock. * * (We also register the sk_lock with the lock validator.) */ static inline void sock_lock_init(struct sock *sk) { sock_lock_init_class_and_name(sk, af_family_slock_key_strings[sk->sk_family], af_family_slock_keys + sk->sk_family, af_family_key_strings[sk->sk_family], af_family_keys + sk->sk_family); } /* * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, * even temporarly, because of RCU lookups. sk_node should also be left as is. */ static void sock_copy(struct sock *nsk, const struct sock *osk) { #ifdef CONFIG_SECURITY_NETWORK void *sptr = nsk->sk_security; #endif BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) != sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) + sizeof(osk->sk_tx_queue_mapping)); memcpy(&nsk->sk_copy_start, &osk->sk_copy_start, osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start)); #ifdef CONFIG_SECURITY_NETWORK nsk->sk_security = sptr; security_sk_clone(osk, nsk); #endif } static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, int family) { struct sock *sk; struct kmem_cache *slab; slab = prot->slab; if (slab != NULL) { sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); if (!sk) return sk; if (priority & __GFP_ZERO) { /* * caches using SLAB_DESTROY_BY_RCU should let * sk_node.next un-modified. Special care is taken * when initializing object to zero. */ if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, prot->obj_size - offsetof(struct sock, sk_node.pprev)); } } else sk = kmalloc(prot->obj_size, priority); if (sk != NULL) { kmemcheck_annotate_bitfield(sk, flags); if (security_sk_alloc(sk, family, priority)) goto out_free; if (!try_module_get(prot->owner)) goto out_free_sec; sk_tx_queue_clear(sk); } return sk; out_free_sec: security_sk_free(sk); out_free: if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); return NULL; } static void sk_prot_free(struct proto *prot, struct sock *sk) { struct kmem_cache *slab; struct module *owner; owner = prot->owner; slab = prot->slab; security_sk_free(sk); if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); module_put(owner); } /** * sk_alloc - All socket objects are allocated here * @net: the applicable net namespace * @family: protocol family * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * @prot: struct proto associated with this new sock instance */ struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot) { struct sock *sk; sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); if (sk) { sk->sk_family = family; /* * See comment in struct sock definition to understand * why we need sk_prot_creator -acme */ sk->sk_prot = sk->sk_prot_creator = prot; sock_lock_init(sk); sock_net_set(sk, get_net(net)); atomic_set(&sk->sk_wmem_alloc, 1); } return sk; } EXPORT_SYMBOL(sk_alloc); static void __sk_free(struct sock *sk) { struct sk_filter *filter; if (sk->sk_destruct) sk->sk_destruct(sk); filter = rcu_dereference(sk->sk_filter); if (filter) { sk_filter_uncharge(sk, filter); rcu_assign_pointer(sk->sk_filter, NULL); } sock_disable_timestamp(sk, SOCK_TIMESTAMP); sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); if (atomic_read(&sk->sk_omem_alloc)) printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", __func__, atomic_read(&sk->sk_omem_alloc)); put_net(sock_net(sk)); sk_prot_free(sk->sk_prot_creator, sk); } void sk_free(struct sock *sk) { /* * We substract one from sk_wmem_alloc and can know if * some packets are still in some tx queue. * If not null, sock_wfree() will call __sk_free(sk) later */ if (atomic_dec_and_test(&sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sk_free); /* * Last sock_put should drop referrence to sk->sk_net. It has already * been dropped in sk_change_net. Taking referrence to stopping namespace * is not an option. * Take referrence to a socket to remove it from hash _alive_ and after that * destroy it in the context of init_net. */ void sk_release_kernel(struct sock *sk) { if (sk == NULL || sk->sk_socket == NULL) return; sock_hold(sk); sock_release(sk->sk_socket); release_net(sock_net(sk)); sock_net_set(sk, get_net(&init_net)); sock_put(sk); } EXPORT_SYMBOL(sk_release_kernel); struct sock *sk_clone(const struct sock *sk, const gfp_t priority) { struct sock *newsk; newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); if (newsk != NULL) { struct sk_filter *filter; sock_copy(newsk, sk); /* SANITY */ get_net(sock_net(newsk)); sk_node_init(&newsk->sk_node); sock_lock_init(newsk); bh_lock_sock(newsk); newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; atomic_set(&newsk->sk_rmem_alloc, 0); /* * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ atomic_set(&newsk->sk_wmem_alloc, 1); atomic_set(&newsk->sk_omem_alloc, 0); skb_queue_head_init(&newsk->sk_receive_queue); skb_queue_head_init(&newsk->sk_write_queue); #ifdef CONFIG_NET_DMA skb_queue_head_init(&newsk->sk_async_wait_queue); #endif rwlock_init(&newsk->sk_dst_lock); rwlock_init(&newsk->sk_callback_lock); lockdep_set_class_and_name(&newsk->sk_callback_lock, af_callback_keys + newsk->sk_family, af_family_clock_key_strings[newsk->sk_family]); newsk->sk_dst_cache = NULL; newsk->sk_wmem_queued = 0; newsk->sk_forward_alloc = 0; newsk->sk_send_head = NULL; newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; sock_reset_flag(newsk, SOCK_DONE); skb_queue_head_init(&newsk->sk_error_queue); filter = newsk->sk_filter; if (filter != NULL) sk_filter_charge(newsk, filter); if (unlikely(xfrm_sk_clone_policy(newsk))) { /* It is still raw copy of parent, so invalidate * destructor and make plain sk_free() */ newsk->sk_destruct = NULL; sk_free(newsk); newsk = NULL; goto out; } newsk->sk_err = 0; newsk->sk_priority = 0; /* * Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.txt for details) */ smp_wmb(); atomic_set(&newsk->sk_refcnt, 2); /* * Increment the counter in the same struct proto as the master * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that * is the same as sk->sk_prot->socks, as this field was copied * with memcpy). * * This _changes_ the previous behaviour, where * tcp_create_openreq_child always was incrementing the * equivalent to tcp_prot->socks (inet_sock_nr), so this have * to be taken into account in all callers. -acme */ sk_refcnt_debug_inc(newsk); sk_set_socket(newsk, NULL); newsk->sk_sleep = NULL; if (newsk->sk_prot->sockets_allocated) percpu_counter_inc(newsk->sk_prot->sockets_allocated); } out: return newsk; } EXPORT_SYMBOL_GPL(sk_clone); void sk_setup_caps(struct sock *sk, struct dst_entry *dst) { __sk_dst_set(sk, dst); sk->sk_route_caps = dst->dev->features; if (sk->sk_route_caps & NETIF_F_GSO) sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; if (sk_can_gso(sk)) { if (dst->header_len) { sk->sk_route_caps &= ~NETIF_F_GSO_MASK; } else { sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; sk->sk_gso_max_size = dst->dev->gso_max_size; } } } EXPORT_SYMBOL_GPL(sk_setup_caps); void __init sk_init(void) { if (totalram_pages <= 4096) { sysctl_wmem_max = 32767; sysctl_rmem_max = 32767; sysctl_wmem_default = 32767; sysctl_rmem_default = 32767; } else if (totalram_pages >= 131072) { sysctl_wmem_max = 131071; sysctl_rmem_max = 131071; } } /* * Simple resource managers for sockets. */ /* * Write buffer destructor automatically called from kfree_skb. */ void sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { /* * Keep a reference on sk_wmem_alloc, this will be released * after sk_write_space() call */ atomic_sub(len - 1, &sk->sk_wmem_alloc); sk->sk_write_space(sk); len = 1; } /* * if sk_wmem_alloc reaches 0, we must finish what sk_free() * could not do because of in-flight packets */ if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sock_wfree); /* * Read buffer destructor automatically called from kfree_skb. */ void sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_rmem_alloc); sk_mem_uncharge(skb->sk, skb->truesize); } EXPORT_SYMBOL(sock_rfree); int sock_i_uid(struct sock *sk) { int uid; read_lock(&sk->sk_callback_lock); uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; read_unlock(&sk->sk_callback_lock); return uid; } EXPORT_SYMBOL(sock_i_uid); unsigned long sock_i_ino(struct sock *sk) { unsigned long ino; read_lock(&sk->sk_callback_lock); ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; read_unlock(&sk->sk_callback_lock); return ino; } EXPORT_SYMBOL(sock_i_ino); /* * Allocate a skb from the socket's send buffer. */ struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority) { if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { struct sk_buff *skb = alloc_skb(size, priority); if (skb) { skb_set_owner_w(skb, sk); return skb; } } return NULL; } EXPORT_SYMBOL(sock_wmalloc); /* * Allocate a skb from the socket's receive buffer. */ struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority) { if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { struct sk_buff *skb = alloc_skb(size, priority); if (skb) { skb_set_owner_r(skb, sk); return skb; } } return NULL; } /* * Allocate a memory block from the socket's option memory buffer. */ void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) { if ((unsigned)size <= sysctl_optmem_max && atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { void *mem; /* First do the add, to avoid the race if kmalloc * might sleep. */ atomic_add(size, &sk->sk_omem_alloc); mem = kmalloc(size, priority); if (mem) return mem; atomic_sub(size, &sk->sk_omem_alloc); } return NULL; } EXPORT_SYMBOL(sock_kmalloc); /* * Free an option memory block. */ void sock_kfree_s(struct sock *sk, void *mem, int size) { kfree(mem); atomic_sub(size, &sk->sk_omem_alloc); } EXPORT_SYMBOL(sock_kfree_s); /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. I think, these locks should be removed for datagram sockets. */ static long sock_wait_for_wmem(struct sock *sk, long timeo) { DEFINE_WAIT(wait); clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); for (;;) { if (!timeo) break; if (signal_pending(current)) break; set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) break; if (sk->sk_shutdown & SEND_SHUTDOWN) break; if (sk->sk_err) break; timeo = schedule_timeout(timeo); } finish_wait(sk->sk_sleep, &wait); return timeo; } /* * Generic send/receive buffer handlers */ struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode) { struct sk_buff *skb; gfp_t gfp_mask; long timeo; int err; gfp_mask = sk->sk_allocation; if (gfp_mask & __GFP_WAIT) gfp_mask |= __GFP_REPEAT; timeo = sock_sndtimeo(sk, noblock); while (1) { err = sock_error(sk); if (err != 0) goto failure; err = -EPIPE; if (sk->sk_shutdown & SEND_SHUTDOWN) goto failure; if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { skb = alloc_skb(header_len, gfp_mask); if (skb) { int npages; int i; /* No pages, we're done... */ if (!data_len) break; npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; skb->truesize += data_len; skb_shinfo(skb)->nr_frags = npages; for (i = 0; i < npages; i++) { struct page *page; skb_frag_t *frag; page = alloc_pages(sk->sk_allocation, 0); if (!page) { err = -ENOBUFS; skb_shinfo(skb)->nr_frags = i; kfree_skb(skb); goto failure; } frag = &skb_shinfo(skb)->frags[i]; frag->page = page; frag->page_offset = 0; frag->size = (data_len >= PAGE_SIZE ? PAGE_SIZE : data_len); data_len -= PAGE_SIZE; } /* Full success... */ break; } err = -ENOBUFS; goto failure; } set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); err = -EAGAIN; if (!timeo) goto failure; if (signal_pending(current)) goto interrupted; timeo = sock_wait_for_wmem(sk, timeo); } skb_set_owner_w(skb, sk); return skb; interrupted: err = sock_intr_errno(timeo); failure: *errcode = err; return NULL; } EXPORT_SYMBOL(sock_alloc_send_pskb); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode) { return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); } EXPORT_SYMBOL(sock_alloc_send_skb); static void __lock_sock(struct sock *sk) { DEFINE_WAIT(wait); for (;;) { prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&sk->sk_lock.slock); schedule(); spin_lock_bh(&sk->sk_lock.slock); if (!sock_owned_by_user(sk)) break; } finish_wait(&sk->sk_lock.wq, &wait); } static void __release_sock(struct sock *sk) { struct sk_buff *skb = sk->sk_backlog.head; do { sk->sk_backlog.head = sk->sk_backlog.tail = NULL; bh_unlock_sock(sk); do { struct sk_buff *next = skb->next; skb->next = NULL; sk_backlog_rcv(sk, skb); /* * We are in process context here with softirqs * disabled, use cond_resched_softirq() to preempt. * This is safe to do because we've taken the backlog * queue private: */ cond_resched_softirq(); skb = next; } while (skb != NULL); bh_lock_sock(sk); } while ((skb = sk->sk_backlog.head) != NULL); } /** * sk_wait_data - wait for data to arrive at sk_receive_queue * @sk: sock to wait on * @timeo: for how long * * Now socket state including sk->sk_err is changed only under lock, * hence we may omit checks after joining wait queue. * We check receive queue before schedule() only as optimization; * it is very likely that release_sock() added new data. */ int sk_wait_data(struct sock *sk, long *timeo) { int rc; DEFINE_WAIT(wait); prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); finish_wait(sk->sk_sleep, &wait); return rc; } EXPORT_SYMBOL(sk_wait_data); /** * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated * @sk: socket * @size: memory size to allocate * @kind: allocation type * * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means * rmem allocation. This function assumes that protocols which have * memory_pressure use sk_wmem_queued as write buffer accounting. */ int __sk_mem_schedule(struct sock *sk, int size, int kind) { struct proto *prot = sk->sk_prot; int amt = sk_mem_pages(size); int allocated; sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; allocated = atomic_add_return(amt, prot->memory_allocated); /* Under limit. */ if (allocated <= prot->sysctl_mem[0]) { if (prot->memory_pressure && *prot->memory_pressure) *prot->memory_pressure = 0; return 1; } /* Under pressure. */ if (allocated > prot->sysctl_mem[1]) if (prot->enter_memory_pressure) prot->enter_memory_pressure(sk); /* Over hard limit. */ if (allocated > prot->sysctl_mem[2]) goto suppress_allocation; /* guarantee minimum buffer size under pressure */ if (kind == SK_MEM_RECV) { if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) return 1; } else { /* SK_MEM_SEND */ if (sk->sk_type == SOCK_STREAM) { if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) return 1; } else if (atomic_read(&sk->sk_wmem_alloc) < prot->sysctl_wmem[0]) return 1; } if (prot->memory_pressure) { int alloc; if (!*prot->memory_pressure) return 1; alloc = percpu_counter_read_positive(prot->sockets_allocated); if (prot->sysctl_mem[2] > alloc * sk_mem_pages(sk->sk_wmem_queued + atomic_read(&sk->sk_rmem_alloc) + sk->sk_forward_alloc)) return 1; } suppress_allocation: if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { sk_stream_moderate_sndbuf(sk); /* Fail only if socket is _under_ its sndbuf. * In this case we cannot block, so that we have to fail. */ if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) return 1; } /* Alas. Undo changes. */ sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; atomic_sub(amt, prot->memory_allocated); return 0; } EXPORT_SYMBOL(__sk_mem_schedule); /** * __sk_reclaim - reclaim memory_allocated * @sk: socket */ void __sk_mem_reclaim(struct sock *sk) { struct proto *prot = sk->sk_prot; atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, prot->memory_allocated); sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; if (prot->memory_pressure && *prot->memory_pressure && (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0])) *prot->memory_pressure = 0; } EXPORT_SYMBOL(__sk_mem_reclaim); /* * Set of default routines for initialising struct proto_ops when * the protocol does not support a particular function. In certain * cases where it makes no sense for a protocol to have a "do nothing" * function, some default processing is provided. */ int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_bind); int sock_no_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_connect); int sock_no_socketpair(struct socket *sock1, struct socket *sock2) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_socketpair); int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_accept); int sock_no_getname(struct socket *sock, struct sockaddr *saddr, int *len, int peer) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_getname); unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) { return 0; } EXPORT_SYMBOL(sock_no_poll); int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_ioctl); int sock_no_listen(struct socket *sock, int backlog) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_listen); int sock_no_shutdown(struct socket *sock, int how) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_shutdown); int sock_no_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_setsockopt); int sock_no_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_getsockopt); int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg); int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, size_t len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_recvmsg); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { /* Mirror missing mmap method error code */ return -ENODEV; } EXPORT_SYMBOL(sock_no_mmap); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) { ssize_t res; struct msghdr msg = {.msg_flags = flags}; struct kvec iov; char *kaddr = kmap(page); iov.iov_base = kaddr + offset; iov.iov_len = size; res = kernel_sendmsg(sock, &msg, &iov, 1, size); kunmap(page); return res; } EXPORT_SYMBOL(sock_no_sendpage); /* * Default Socket Callbacks */ static void sock_def_wakeup(struct sock *sk) { read_lock(&sk->sk_callback_lock); if (sk_has_sleeper(sk)) wake_up_interruptible_all(sk->sk_sleep); read_unlock(&sk->sk_callback_lock); } static void sock_def_error_report(struct sock *sk) { read_lock(&sk->sk_callback_lock); if (sk_has_sleeper(sk)) wake_up_interruptible_poll(sk->sk_sleep, POLLERR); sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); read_unlock(&sk->sk_callback_lock); } static void sock_def_readable(struct sock *sk, int len) { read_lock(&sk->sk_callback_lock); if (sk_has_sleeper(sk)) wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN | POLLRDNORM | POLLRDBAND); sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); read_unlock(&sk->sk_callback_lock); } static void sock_def_write_space(struct sock *sk) { read_lock(&sk->sk_callback_lock); /* Do not wake up a writer until he can make "significant" * progress. --DaveM */ if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { if (sk_has_sleeper(sk)) wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT | POLLWRNORM | POLLWRBAND); /* Should agree with poll, otherwise some programs break */ if (sock_writeable(sk)) sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); } read_unlock(&sk->sk_callback_lock); } static void sock_def_destruct(struct sock *sk) { kfree(sk->sk_protinfo); } void sk_send_sigurg(struct sock *sk) { if (sk->sk_socket && sk->sk_socket->file) if (send_sigurg(&sk->sk_socket->file->f_owner)) sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); } EXPORT_SYMBOL(sk_send_sigurg); void sk_reset_timer(struct sock *sk, struct timer_list* timer, unsigned long expires) { if (!mod_timer(timer, expires)) sock_hold(sk); } EXPORT_SYMBOL(sk_reset_timer); void sk_stop_timer(struct sock *sk, struct timer_list* timer) { if (timer_pending(timer) && del_timer(timer)) __sock_put(sk); } EXPORT_SYMBOL(sk_stop_timer); void sock_init_data(struct socket *sock, struct sock *sk) { skb_queue_head_init(&sk->sk_receive_queue); skb_queue_head_init(&sk->sk_write_queue); skb_queue_head_init(&sk->sk_error_queue); #ifdef CONFIG_NET_DMA skb_queue_head_init(&sk->sk_async_wait_queue); #endif sk->sk_send_head = NULL; init_timer(&sk->sk_timer); sk->sk_allocation = GFP_KERNEL; sk->sk_rcvbuf = sysctl_rmem_default; sk->sk_sndbuf = sysctl_wmem_default; sk->sk_state = TCP_CLOSE; sk_set_socket(sk, sock); sock_set_flag(sk, SOCK_ZAPPED); if (sock) { sk->sk_type = sock->type; sk->sk_sleep = &sock->wait; sock->sk = sk; } else sk->sk_sleep = NULL; rwlock_init(&sk->sk_dst_lock); rwlock_init(&sk->sk_callback_lock); lockdep_set_class_and_name(&sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); sk->sk_state_change = sock_def_wakeup; sk->sk_data_ready = sock_def_readable; sk->sk_write_space = sock_def_write_space; sk->sk_error_report = sock_def_error_report; sk->sk_destruct = sock_def_destruct; sk->sk_sndmsg_page = NULL; sk->sk_sndmsg_off = 0; sk->sk_peercred.pid = 0; sk->sk_peercred.uid = -1; sk->sk_peercred.gid = -1; sk->sk_write_pending = 0; sk->sk_rcvlowat = 1; sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_stamp = ktime_set(-1L, 0); /* * Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.txt for details) */ smp_wmb(); atomic_set(&sk->sk_refcnt, 1); atomic_set(&sk->sk_drops, 0); } EXPORT_SYMBOL(sock_init_data); void lock_sock_nested(struct sock *sk, int subclass) { might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_lock.owned) __lock_sock(sk); sk->sk_lock.owned = 1; spin_unlock(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); local_bh_enable(); } EXPORT_SYMBOL(lock_sock_nested); void release_sock(struct sock *sk) { /* * The sk_lock has mutex_unlock() semantics: */ mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_backlog.tail) __release_sock(sk); sk->sk_lock.owned = 0; if (waitqueue_active(&sk->sk_lock.wq)) wake_up(&sk->sk_lock.wq); spin_unlock_bh(&sk->sk_lock.slock); } EXPORT_SYMBOL(release_sock); int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) { struct timeval tv; if (!sock_flag(sk, SOCK_TIMESTAMP)) sock_enable_timestamp(sk, SOCK_TIMESTAMP); tv = ktime_to_timeval(sk->sk_stamp); if (tv.tv_sec == -1) return -ENOENT; if (tv.tv_sec == 0) { sk->sk_stamp = ktime_get_real(); tv = ktime_to_timeval(sk->sk_stamp); } return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; } EXPORT_SYMBOL(sock_get_timestamp); int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) { struct timespec ts; if (!sock_flag(sk, SOCK_TIMESTAMP)) sock_enable_timestamp(sk, SOCK_TIMESTAMP); ts = ktime_to_timespec(sk->sk_stamp); if (ts.tv_sec == -1) return -ENOENT; if (ts.tv_sec == 0) { sk->sk_stamp = ktime_get_real(); ts = ktime_to_timespec(sk->sk_stamp); } return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; } EXPORT_SYMBOL(sock_get_timestampns); void sock_enable_timestamp(struct sock *sk, int flag) { if (!sock_flag(sk, flag)) { sock_set_flag(sk, flag); /* * we just set one of the two flags which require net * time stamping, but time stamping might have been on * already because of the other one */ if (!sock_flag(sk, flag == SOCK_TIMESTAMP ? SOCK_TIMESTAMPING_RX_SOFTWARE : SOCK_TIMESTAMP)) net_enable_timestamp(); } } /* * Get a socket option on an socket. * * FIX: POSIX 1003.1g is very ambiguous here. It states that * asynchronous errors should be reported by getsockopt. We assume * this means if you specify SO_ERROR (otherwise whats the point of it). */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_getsockopt); #ifdef CONFIG_COMPAT int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; if (sk->sk_prot->compat_getsockopt != NULL) return sk->sk_prot->compat_getsockopt(sk, level, optname, optval, optlen); return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(compat_sock_common_getsockopt); #endif int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int addr_len = 0; int err; err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, flags & ~MSG_DONTWAIT, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } EXPORT_SYMBOL(sock_common_recvmsg); /* * Set socket options on an inet socket. */ int sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_setsockopt); #ifdef CONFIG_COMPAT int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; if (sk->sk_prot->compat_setsockopt != NULL) return sk->sk_prot->compat_setsockopt(sk, level, optname, optval, optlen); return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(compat_sock_common_setsockopt); #endif void sk_common_release(struct sock *sk) { if (sk->sk_prot->destroy) sk->sk_prot->destroy(sk); /* * Observation: when sock_common_release is called, processes have * no access to socket. But net still has. * Step one, detach it from networking: * * A. Remove from hash tables. */ sk->sk_prot->unhash(sk); /* * In this point socket cannot receive new packets, but it is possible * that some packets are in flight because some CPU runs receiver and * did hash table lookup before we unhashed socket. They will achieve * receive queue and will be purged by socket destructor. * * Also we still have packets pending on receive queue and probably, * our own packets waiting in device queues. sock_destroy will drain * receive queue, but transmitted packets will delay socket destruction * until the last reference will be released. */ sock_orphan(sk); xfrm_sk_free_policy(sk); sk_refcnt_debug_release(sk); sock_put(sk); } EXPORT_SYMBOL(sk_common_release); static DEFINE_RWLOCK(proto_list_lock); static LIST_HEAD(proto_list); #ifdef CONFIG_PROC_FS #define PROTO_INUSE_NR 64 /* should be enough for the first time */ struct prot_inuse { int val[PROTO_INUSE_NR]; }; static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); #ifdef CONFIG_NET_NS void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) { int cpu = smp_processor_id(); per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val; } EXPORT_SYMBOL_GPL(sock_prot_inuse_add); int sock_prot_inuse_get(struct net *net, struct proto *prot) { int cpu, idx = prot->inuse_idx; int res = 0; for_each_possible_cpu(cpu) res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; return res >= 0 ? res : 0; } EXPORT_SYMBOL_GPL(sock_prot_inuse_get); static int sock_inuse_init_net(struct net *net) { net->core.inuse = alloc_percpu(struct prot_inuse); return net->core.inuse ? 0 : -ENOMEM; } static void sock_inuse_exit_net(struct net *net) { free_percpu(net->core.inuse); } static struct pernet_operations net_inuse_ops = { .init = sock_inuse_init_net, .exit = sock_inuse_exit_net, }; static __init int net_inuse_init(void) { if (register_pernet_subsys(&net_inuse_ops)) panic("Cannot initialize net inuse counters"); return 0; } core_initcall(net_inuse_init); #else static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) { __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val; } EXPORT_SYMBOL_GPL(sock_prot_inuse_add); int sock_prot_inuse_get(struct net *net, struct proto *prot) { int cpu, idx = prot->inuse_idx; int res = 0; for_each_possible_cpu(cpu) res += per_cpu(prot_inuse, cpu).val[idx]; return res >= 0 ? res : 0; } EXPORT_SYMBOL_GPL(sock_prot_inuse_get); #endif static void assign_proto_idx(struct proto *prot) { prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { printk(KERN_ERR "PROTO_INUSE_NR exhausted\n"); return; } set_bit(prot->inuse_idx, proto_inuse_idx); } static void release_proto_idx(struct proto *prot) { if (prot->inuse_idx != PROTO_INUSE_NR - 1) clear_bit(prot->inuse_idx, proto_inuse_idx); } #else static inline void assign_proto_idx(struct proto *prot) { } static inline void release_proto_idx(struct proto *prot) { } #endif int proto_register(struct proto *prot, int alloc_slab) { if (alloc_slab) { prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, SLAB_HWCACHE_ALIGN | prot->slab_flags, NULL); if (prot->slab == NULL) { printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", prot->name); goto out; } if (prot->rsk_prot != NULL) { static const char mask[] = "request_sock_%s"; prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); if (prot->rsk_prot->slab_name == NULL) goto out_free_sock_slab; sprintf(prot->rsk_prot->slab_name, mask, prot->name); prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name, prot->rsk_prot->obj_size, 0, SLAB_HWCACHE_ALIGN, NULL); if (prot->rsk_prot->slab == NULL) { printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", prot->name); goto out_free_request_sock_slab_name; } } if (prot->twsk_prot != NULL) { static const char mask[] = "tw_sock_%s"; prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); if (prot->twsk_prot->twsk_slab_name == NULL) goto out_free_request_sock_slab; sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name); prot->twsk_prot->twsk_slab = kmem_cache_create(prot->twsk_prot->twsk_slab_name, prot->twsk_prot->twsk_obj_size, 0, SLAB_HWCACHE_ALIGN | prot->slab_flags, NULL); if (prot->twsk_prot->twsk_slab == NULL) goto out_free_timewait_sock_slab_name; } } write_lock(&proto_list_lock); list_add(&prot->node, &proto_list); assign_proto_idx(prot); write_unlock(&proto_list_lock); return 0; out_free_timewait_sock_slab_name: kfree(prot->twsk_prot->twsk_slab_name); out_free_request_sock_slab: if (prot->rsk_prot && prot->rsk_prot->slab) { kmem_cache_destroy(prot->rsk_prot->slab); prot->rsk_prot->slab = NULL; } out_free_request_sock_slab_name: kfree(prot->rsk_prot->slab_name); out_free_sock_slab: kmem_cache_destroy(prot->slab); prot->slab = NULL; out: return -ENOBUFS; } EXPORT_SYMBOL(proto_register); void proto_unregister(struct proto *prot) { write_lock(&proto_list_lock); release_proto_idx(prot); list_del(&prot->node); write_unlock(&proto_list_lock); if (prot->slab != NULL) { kmem_cache_destroy(prot->slab); prot->slab = NULL; } if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { kmem_cache_destroy(prot->rsk_prot->slab); kfree(prot->rsk_prot->slab_name); prot->rsk_prot->slab = NULL; } if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { kmem_cache_destroy(prot->twsk_prot->twsk_slab); kfree(prot->twsk_prot->twsk_slab_name); prot->twsk_prot->twsk_slab = NULL; } } EXPORT_SYMBOL(proto_unregister); #ifdef CONFIG_PROC_FS static void *proto_seq_start(struct seq_file *seq, loff_t *pos) __acquires(proto_list_lock) { read_lock(&proto_list_lock); return seq_list_start_head(&proto_list, *pos); } static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return seq_list_next(v, &proto_list, pos); } static void proto_seq_stop(struct seq_file *seq, void *v) __releases(proto_list_lock) { read_unlock(&proto_list_lock); } static char proto_method_implemented(const void *method) { return method == NULL ? 'n' : 'y'; } static void proto_seq_printf(struct seq_file *seq, struct proto *proto) { seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", proto->name, proto->obj_size, sock_prot_inuse_get(seq_file_net(seq), proto), proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", proto->max_header, proto->slab == NULL ? "no" : "yes", module_name(proto->owner), proto_method_implemented(proto->close), proto_method_implemented(proto->connect), proto_method_implemented(proto->disconnect), proto_method_implemented(proto->accept), proto_method_implemented(proto->ioctl), proto_method_implemented(proto->init), proto_method_implemented(proto->destroy), proto_method_implemented(proto->shutdown), proto_method_implemented(proto->setsockopt), proto_method_implemented(proto->getsockopt), proto_method_implemented(proto->sendmsg), proto_method_implemented(proto->recvmsg), proto_method_implemented(proto->sendpage), proto_method_implemented(proto->bind), proto_method_implemented(proto->backlog_rcv), proto_method_implemented(proto->hash), proto_method_implemented(proto->unhash), proto_method_implemented(proto->get_port), proto_method_implemented(proto->enter_memory_pressure)); } static int proto_seq_show(struct seq_file *seq, void *v) { if (v == &proto_list) seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", "protocol", "size", "sockets", "memory", "press", "maxhdr", "slab", "module", "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); else proto_seq_printf(seq, list_entry(v, struct proto, node)); return 0; } static const struct seq_operations proto_seq_ops = { .start = proto_seq_start, .next = proto_seq_next, .stop = proto_seq_stop, .show = proto_seq_show, }; static int proto_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &proto_seq_ops, sizeof(struct seq_net_private)); } static const struct file_operations proto_seq_fops = { .owner = THIS_MODULE, .open = proto_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; static __net_init int proto_init_net(struct net *net) { if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops)) return -ENOMEM; return 0; } static __net_exit void proto_exit_net(struct net *net) { proc_net_remove(net, "protocols"); } static __net_initdata struct pernet_operations proto_net_ops = { .init = proto_init_net, .exit = proto_exit_net, }; static int __init proto_init(void) { return register_pernet_subsys(&proto_net_ops); } subsys_initcall(proto_init); #endif /* PROC_FS */