/* * linux/arch/x86_64/mm/init.c * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2000 Pavel Machek * Copyright (C) 2002,2003 Andi Kleen */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries. * The direct mapping extends to max_pfn_mapped, so that we can directly access * apertures, ACPI and other tables without having to play with fixmaps. */ unsigned long max_low_pfn_mapped; unsigned long max_pfn_mapped; static unsigned long dma_reserve __initdata; DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); int direct_gbpages __meminitdata #ifdef CONFIG_DIRECT_GBPAGES = 1 #endif ; static int __init parse_direct_gbpages_off(char *arg) { direct_gbpages = 0; return 0; } early_param("nogbpages", parse_direct_gbpages_off); static int __init parse_direct_gbpages_on(char *arg) { direct_gbpages = 1; return 0; } early_param("gbpages", parse_direct_gbpages_on); /* * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the * physical space so we can cache the place of the first one and move * around without checking the pgd every time. */ void show_mem(void) { long i, total = 0, reserved = 0; long shared = 0, cached = 0; struct page *page; pg_data_t *pgdat; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); for_each_online_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; ++i) { /* * This loop can take a while with 256 GB and * 4k pages so defer the NMI watchdog: */ if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) touch_nmi_watchdog(); if (!pfn_valid(pgdat->node_start_pfn + i)) continue; page = pfn_to_page(pgdat->node_start_pfn + i); total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } } printk(KERN_INFO "%lu pages of RAM\n", total); printk(KERN_INFO "%lu reserved pages\n", reserved); printk(KERN_INFO "%lu pages shared\n", shared); printk(KERN_INFO "%lu pages swap cached\n", cached); } int after_bootmem; static __init void *spp_getpage(void) { void *ptr; if (after_bootmem) ptr = (void *) get_zeroed_page(GFP_ATOMIC); else ptr = alloc_bootmem_pages(PAGE_SIZE); if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem ? "after bootmem" : ""); } pr_debug("spp_getpage %p\n", ptr); return ptr; } void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) { pud_t *pud; pmd_t *pmd; pte_t *pte; pud = pud_page + pud_index(vaddr); if (pud_none(*pud)) { pmd = (pmd_t *) spp_getpage(); pud_populate(&init_mm, pud, pmd); if (pmd != pmd_offset(pud, 0)) { printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud, 0)); return; } } pmd = pmd_offset(pud, vaddr); if (pmd_none(*pmd)) { pte = (pte_t *) spp_getpage(); pmd_populate_kernel(&init_mm, pmd, pte); if (pte != pte_offset_kernel(pmd, 0)) { printk(KERN_ERR "PAGETABLE BUG #02!\n"); return; } } pte = pte_offset_kernel(pmd, vaddr); if (!pte_none(*pte) && pte_val(new_pte) && pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask)) pte_ERROR(*pte); set_pte(pte, new_pte); /* * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ __flush_tlb_one(vaddr); } void set_pte_vaddr(unsigned long vaddr, pte_t pteval) { pgd_t *pgd; pud_t *pud_page; pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); pgd = pgd_offset_k(vaddr); if (pgd_none(*pgd)) { printk(KERN_ERR "PGD FIXMAP MISSING, it should be setup in head.S!\n"); return; } pud_page = (pud_t*)pgd_page_vaddr(*pgd); set_pte_vaddr_pud(pud_page, vaddr, pteval); } /* * Create large page table mappings for a range of physical addresses. */ static void __init __init_extra_mapping(unsigned long phys, unsigned long size, pgprot_t prot) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { pgd = pgd_offset_k((unsigned long)__va(phys)); if (pgd_none(*pgd)) { pud = (pud_t *) spp_getpage(); set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | _PAGE_USER)); } pud = pud_offset(pgd, (unsigned long)__va(phys)); if (pud_none(*pud)) { pmd = (pmd_t *) spp_getpage(); set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER)); } pmd = pmd_offset(pud, phys); BUG_ON(!pmd_none(*pmd)); set_pmd(pmd, __pmd(phys | pgprot_val(prot))); } } void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) { __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); } void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) { __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); } /* * The head.S code sets up the kernel high mapping: * * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) * * phys_addr holds the negative offset to the kernel, which is added * to the compile time generated pmds. This results in invalid pmds up * to the point where we hit the physaddr 0 mapping. * * We limit the mappings to the region from _text to _end. _end is * rounded up to the 2MB boundary. This catches the invalid pmds as * well, as they are located before _text: */ void __init cleanup_highmap(void) { unsigned long vaddr = __START_KERNEL_map; unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1; pmd_t *pmd = level2_kernel_pgt; pmd_t *last_pmd = pmd + PTRS_PER_PMD; for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) { if (pmd_none(*pmd)) continue; if (vaddr < (unsigned long) _text || vaddr > end) set_pmd(pmd, __pmd(0)); } } static unsigned long __initdata table_start; static unsigned long __meminitdata table_end; static unsigned long __meminitdata table_top; static __meminit void *alloc_low_page(unsigned long *phys) { unsigned long pfn = table_end++; void *adr; if (after_bootmem) { adr = (void *)get_zeroed_page(GFP_ATOMIC); *phys = __pa(adr); return adr; } if (pfn >= table_top) panic("alloc_low_page: ran out of memory"); adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE); memset(adr, 0, PAGE_SIZE); *phys = pfn * PAGE_SIZE; return adr; } static __meminit void unmap_low_page(void *adr) { if (after_bootmem) return; early_iounmap(adr, PAGE_SIZE); } static unsigned long __meminit phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end) { unsigned pages = 0; unsigned long last_map_addr = end; int i; pte_t *pte = pte_page + pte_index(addr); for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) { if (addr >= end) { if (!after_bootmem) { for(; i < PTRS_PER_PTE; i++, pte++) set_pte(pte, __pte(0)); } break; } if (pte_val(*pte)) continue; if (0) printk(" pte=%p addr=%lx pte=%016lx\n", pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL)); last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; pages++; } update_page_count(PG_LEVEL_4K, pages); return last_map_addr; } static unsigned long __meminit phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end) { pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd); return phys_pte_init(pte, address, end); } static unsigned long __meminit phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, unsigned long page_size_mask) { unsigned long pages = 0; unsigned long last_map_addr = end; int i = pmd_index(address); for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { unsigned long pte_phys; pmd_t *pmd = pmd_page + pmd_index(address); pte_t *pte; if (address >= end) { if (!after_bootmem) { for (; i < PTRS_PER_PMD; i++, pmd++) set_pmd(pmd, __pmd(0)); } break; } if (pmd_val(*pmd)) { if (!pmd_large(*pmd)) last_map_addr = phys_pte_update(pmd, address, end); continue; } if (page_size_mask & (1<> PAGE_SHIFT, PAGE_KERNEL_LARGE)); last_map_addr = (address & PMD_MASK) + PMD_SIZE; continue; } pte = alloc_low_page(&pte_phys); last_map_addr = phys_pte_init(pte, address, end); unmap_low_page(pte); pmd_populate_kernel(&init_mm, pmd, __va(pte_phys)); } update_page_count(PG_LEVEL_2M, pages); return last_map_addr; } static unsigned long __meminit phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end, unsigned long page_size_mask) { pmd_t *pmd = pmd_offset(pud, 0); unsigned long last_map_addr; spin_lock(&init_mm.page_table_lock); last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask); spin_unlock(&init_mm.page_table_lock); __flush_tlb_all(); return last_map_addr; } static unsigned long __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, unsigned long page_size_mask) { unsigned long pages = 0; unsigned long last_map_addr = end; int i = pud_index(addr); for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) { unsigned long pmd_phys; pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; if (addr >= end) break; if (!after_bootmem && !e820_any_mapped(addr, addr+PUD_SIZE, 0)) { set_pud(pud, __pud(0)); continue; } if (pud_val(*pud)) { if (!pud_large(*pud)) last_map_addr = phys_pmd_update(pud, addr, end, page_size_mask); continue; } if (page_size_mask & (1<> PAGE_SHIFT, PAGE_KERNEL_LARGE)); last_map_addr = (addr & PUD_MASK) + PUD_SIZE; continue; } pmd = alloc_low_page(&pmd_phys); spin_lock(&init_mm.page_table_lock); last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask); unmap_low_page(pmd); pud_populate(&init_mm, pud, __va(pmd_phys)); spin_unlock(&init_mm.page_table_lock); } __flush_tlb_all(); update_page_count(PG_LEVEL_1G, pages); return last_map_addr; } static unsigned long __meminit phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long page_size_mask) { pud_t *pud; pud = (pud_t *)pgd_page_vaddr(*pgd); return phys_pud_init(pud, addr, end, page_size_mask); } static void __init find_early_table_space(unsigned long end) { unsigned long puds, pmds, ptes, tables, start; puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; tables = roundup(puds * sizeof(pud_t), PAGE_SIZE); if (direct_gbpages) { unsigned long extra; extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT); pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT; } else pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE); if (cpu_has_pse) { unsigned long extra; extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT); ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT; } else ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE); /* * RED-PEN putting page tables only on node 0 could * cause a hotspot and fill up ZONE_DMA. The page tables * need roughly 0.5KB per GB. */ start = 0x8000; table_start = find_e820_area(start, end, tables, PAGE_SIZE); if (table_start == -1UL) panic("Cannot find space for the kernel page tables"); table_start >>= PAGE_SHIFT; table_end = table_start; table_top = table_start + (tables >> PAGE_SHIFT); printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n", end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT); } static void __init init_gbpages(void) { if (direct_gbpages && cpu_has_gbpages) printk(KERN_INFO "Using GB pages for direct mapping\n"); else direct_gbpages = 0; } static unsigned long __init kernel_physical_mapping_init(unsigned long start, unsigned long end, unsigned long page_size_mask) { unsigned long next, last_map_addr = end; start = (unsigned long)__va(start); end = (unsigned long)__va(end); for (; start < end; start = next) { pgd_t *pgd = pgd_offset_k(start); unsigned long pud_phys; pud_t *pud; next = (start + PGDIR_SIZE) & PGDIR_MASK; if (next > end) next = end; if (pgd_val(*pgd)) { last_map_addr = phys_pud_update(pgd, __pa(start), __pa(end), page_size_mask); continue; } if (after_bootmem) pud = pud_offset(pgd, start & PGDIR_MASK); else pud = alloc_low_page(&pud_phys); last_map_addr = phys_pud_init(pud, __pa(start), __pa(next), page_size_mask); unmap_low_page(pud); pgd_populate(&init_mm, pgd_offset_k(start), __va(pud_phys)); } return last_map_addr; } struct map_range { unsigned long start; unsigned long end; unsigned page_size_mask; }; #define NR_RANGE_MR 5 static int save_mr(struct map_range *mr, int nr_range, unsigned long start_pfn, unsigned long end_pfn, unsigned long page_size_mask) { if (start_pfn < end_pfn) { if (nr_range >= NR_RANGE_MR) panic("run out of range for init_memory_mapping\n"); mr[nr_range].start = start_pfn<> PAGE_SHIFT; end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); /* big page (2M) range*/ start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT))) end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)); nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & ((1<>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<>PAGE_SHIFT; nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); /* try to merge same page size and continuous */ for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { unsigned long old_start; if (mr[i].end != mr[i+1].start || mr[i].page_size_mask != mr[i+1].page_size_mask) continue; /* move it */ old_start = mr[i].start; memmove(&mr[i], &mr[i+1], (nr_range - 1 - i) * sizeof (struct map_range)); mr[i].start = old_start; nr_range--; } for (i = 0; i < nr_range; i++) printk(KERN_DEBUG " %010lx - %010lx page %s\n", mr[i].start, mr[i].end, (mr[i].page_size_mask & (1< table_start) reserve_early(table_start << PAGE_SHIFT, table_end << PAGE_SHIFT, "PGTABLE"); printk(KERN_INFO "last_map_addr: %lx end: %lx\n", last_map_addr, end); if (!after_bootmem) early_memtest(start, end); return last_map_addr >> PAGE_SHIFT; } #ifndef CONFIG_NUMA void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn) { unsigned long bootmap_size, bootmap; bootmap_size = bootmem_bootmap_pages(end_pfn)<> PAGE_SHIFT, 0, end_pfn); e820_register_active_regions(0, start_pfn, end_pfn); free_bootmem_with_active_regions(0, end_pfn); early_res_to_bootmem(0, end_pfn<node_zones + ZONE_NORMAL; unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; int ret; last_mapped_pfn = init_memory_mapping(start, start + size-1); if (last_mapped_pfn > max_pfn_mapped) max_pfn_mapped = last_mapped_pfn; ret = __add_pages(zone, start_pfn, nr_pages); WARN_ON(1); return ret; } EXPORT_SYMBOL_GPL(arch_add_memory); #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA) int memory_add_physaddr_to_nid(u64 start) { return 0; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif #endif /* CONFIG_MEMORY_HOTPLUG */ /* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * * On x86, access has to be given to the first megabyte of ram because that area * contains bios code and data regions used by X and dosemu and similar apps. * Access has to be given to non-kernel-ram areas as well, these contain the PCI * mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { if (pagenr <= 256) return 1; if (!page_is_ram(pagenr)) return 1; return 0; } static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules, kcore_vsyscall; void __init mem_init(void) { long codesize, reservedpages, datasize, initsize; pci_iommu_alloc(); /* clear_bss() already clear the empty_zero_page */ reservedpages = 0; /* this will put all low memory onto the freelists */ #ifdef CONFIG_NUMA totalram_pages = numa_free_all_bootmem(); #else totalram_pages = free_all_bootmem(); #endif reservedpages = max_pfn - totalram_pages - absent_pages_in_range(0, max_pfn); after_bootmem = 1; codesize = (unsigned long) &_etext - (unsigned long) &_text; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; /* Register memory areas for /proc/kcore */ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); kclist_add(&kcore_kernel, &_stext, _end - _stext); kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, VSYSCALL_END - VSYSCALL_START); printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " "%ldk reserved, %ldk data, %ldk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), max_pfn << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10); cpa_init(); } void free_init_pages(char *what, unsigned long begin, unsigned long end) { unsigned long addr = begin; if (addr >= end) return; /* * If debugging page accesses then do not free this memory but * mark them not present - any buggy init-section access will * create a kernel page fault: */ #ifdef CONFIG_DEBUG_PAGEALLOC printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", begin, PAGE_ALIGN(end)); set_memory_np(begin, (end - begin) >> PAGE_SHIFT); #else printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); for (; addr < end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); memset((void *)(addr & ~(PAGE_SIZE-1)), POISON_FREE_INITMEM, PAGE_SIZE); free_page(addr); totalram_pages++; } #endif } void free_initmem(void) { free_init_pages("unused kernel memory", (unsigned long)(&__init_begin), (unsigned long)(&__init_end)); } #ifdef CONFIG_DEBUG_RODATA const int rodata_test_data = 0xC3; EXPORT_SYMBOL_GPL(rodata_test_data); void mark_rodata_ro(void) { unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata); unsigned long rodata_start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK; #ifdef CONFIG_DYNAMIC_FTRACE /* Dynamic tracing modifies the kernel text section */ start = rodata_start; #endif printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", (end - start) >> 10); set_memory_ro(start, (end - start) >> PAGE_SHIFT); /* * The rodata section (but not the kernel text!) should also be * not-executable. */ set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT); rodata_test(); #ifdef CONFIG_CPA_DEBUG printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); set_memory_rw(start, (end-start) >> PAGE_SHIFT); printk(KERN_INFO "Testing CPA: again\n"); set_memory_ro(start, (end-start) >> PAGE_SHIFT); #endif } #endif #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { free_init_pages("initrd memory", start, end); } #endif int __init reserve_bootmem_generic(unsigned long phys, unsigned long len, int flags) { #ifdef CONFIG_NUMA int nid, next_nid; int ret; #endif unsigned long pfn = phys >> PAGE_SHIFT; if (pfn >= max_pfn) { /* * This can happen with kdump kernels when accessing * firmware tables: */ if (pfn < max_pfn_mapped) return -EFAULT; printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n", phys, len); return -EFAULT; } /* Should check here against the e820 map to avoid double free */ #ifdef CONFIG_NUMA nid = phys_to_nid(phys); next_nid = phys_to_nid(phys + len - 1); if (nid == next_nid) ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags); else ret = reserve_bootmem(phys, len, flags); if (ret != 0) return ret; #else reserve_bootmem(phys, len, BOOTMEM_DEFAULT); #endif if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { dma_reserve += len / PAGE_SIZE; set_dma_reserve(dma_reserve); } return 0; } int kern_addr_valid(unsigned long addr) { unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if (above != 0 && above != -1UL) return 0; pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) return 0; pud = pud_offset(pgd, addr); if (pud_none(*pud)) return 0; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return 0; if (pmd_large(*pmd)) return pfn_valid(pmd_pfn(*pmd)); pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) return 0; return pfn_valid(pte_pfn(*pte)); } /* * A pseudo VMA to allow ptrace access for the vsyscall page. This only * covers the 64bit vsyscall page now. 32bit has a real VMA now and does * not need special handling anymore: */ static struct vm_area_struct gate_vma = { .vm_start = VSYSCALL_START, .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), .vm_page_prot = PAGE_READONLY_EXEC, .vm_flags = VM_READ | VM_EXEC }; struct vm_area_struct *get_gate_vma(struct task_struct *tsk) { #ifdef CONFIG_IA32_EMULATION if (test_tsk_thread_flag(tsk, TIF_IA32)) return NULL; #endif return &gate_vma; } int in_gate_area(struct task_struct *task, unsigned long addr) { struct vm_area_struct *vma = get_gate_vma(task); if (!vma) return 0; return (addr >= vma->vm_start) && (addr < vma->vm_end); } /* * Use this when you have no reliable task/vma, typically from interrupt * context. It is less reliable than using the task's vma and may give * false positives: */ int in_gate_area_no_task(unsigned long addr) { return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); } const char *arch_vma_name(struct vm_area_struct *vma) { if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) return "[vdso]"; if (vma == &gate_vma) return "[vsyscall]"; return NULL; } #ifdef CONFIG_SPARSEMEM_VMEMMAP /* * Initialise the sparsemem vmemmap using huge-pages at the PMD level. */ static long __meminitdata addr_start, addr_end; static void __meminitdata *p_start, *p_end; static int __meminitdata node_start; int __meminit vmemmap_populate(struct page *start_page, unsigned long size, int node) { unsigned long addr = (unsigned long)start_page; unsigned long end = (unsigned long)(start_page + size); unsigned long next; pgd_t *pgd; pud_t *pud; pmd_t *pmd; for (; addr < end; addr = next) { void *p = NULL; pgd = vmemmap_pgd_populate(addr, node); if (!pgd) return -ENOMEM; pud = vmemmap_pud_populate(pgd, addr, node); if (!pud) return -ENOMEM; if (!cpu_has_pse) { next = (addr + PAGE_SIZE) & PAGE_MASK; pmd = vmemmap_pmd_populate(pud, addr, node); if (!pmd) return -ENOMEM; p = vmemmap_pte_populate(pmd, addr, node); if (!p) return -ENOMEM; addr_end = addr + PAGE_SIZE; p_end = p + PAGE_SIZE; } else { next = pmd_addr_end(addr, end); pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { pte_t entry; p = vmemmap_alloc_block(PMD_SIZE, node); if (!p) return -ENOMEM; entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE); set_pmd(pmd, __pmd(pte_val(entry))); /* check to see if we have contiguous blocks */ if (p_end != p || node_start != node) { if (p_start) printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", addr_start, addr_end-1, p_start, p_end-1, node_start); addr_start = addr; node_start = node; p_start = p; } addr_end = addr + PMD_SIZE; p_end = p + PMD_SIZE; } else vmemmap_verify((pte_t *)pmd, node, addr, next); } } return 0; } void __meminit vmemmap_populate_print_last(void) { if (p_start) { printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", addr_start, addr_end-1, p_start, p_end-1, node_start); p_start = NULL; p_end = NULL; node_start = 0; } } #endif