// SPDX-License-Identifier: GPL-2.0-only /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The Internet Protocol (IP) output module. * * Authors: Ross Biro * Fred N. van Kempen, * Donald Becker, * Alan Cox, * Richard Underwood * Stefan Becker, * Jorge Cwik, * Arnt Gulbrandsen, * Hirokazu Takahashi, * * See ip_input.c for original log * * Fixes: * Alan Cox : Missing nonblock feature in ip_build_xmit. * Mike Kilburn : htons() missing in ip_build_xmit. * Bradford Johnson: Fix faulty handling of some frames when * no route is found. * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit * (in case if packet not accepted by * output firewall rules) * Mike McLagan : Routing by source * Alexey Kuznetsov: use new route cache * Andi Kleen: Fix broken PMTU recovery and remove * some redundant tests. * Vitaly E. Lavrov : Transparent proxy revived after year coma. * Andi Kleen : Replace ip_reply with ip_send_reply. * Andi Kleen : Split fast and slow ip_build_xmit path * for decreased register pressure on x86 * and more readibility. * Marc Boucher : When call_out_firewall returns FW_QUEUE, * silently drop skb instead of failing with -EPERM. * Detlev Wengorz : Copy protocol for fragments. * Hirokazu Takahashi: HW checksumming for outgoing UDP * datagrams. * Hirokazu Takahashi: sendfile() on UDP works now. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu, int (*output)(struct net *, struct sock *, struct sk_buff *)); /* Generate a checksum for an outgoing IP datagram. */ void ip_send_check(struct iphdr *iph) { iph->check = 0; iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); } EXPORT_SYMBOL(ip_send_check); int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { struct iphdr *iph = ip_hdr(skb); iph->tot_len = htons(skb->len); ip_send_check(iph); /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip_out(sk, skb); if (unlikely(!skb)) return 0; skb->protocol = htons(ETH_P_IP); return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); } int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = __ip_local_out(net, sk, skb); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } EXPORT_SYMBOL_GPL(ip_local_out); static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) { int ttl = inet->uc_ttl; if (ttl < 0) ttl = ip4_dst_hoplimit(dst); return ttl; } /* * Add an ip header to a skbuff and send it out. * */ int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) { struct inet_sock *inet = inet_sk(sk); struct rtable *rt = skb_rtable(skb); struct net *net = sock_net(sk); struct iphdr *iph; /* Build the IP header. */ skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->version = 4; iph->ihl = 5; iph->tos = inet->tos; iph->ttl = ip_select_ttl(inet, &rt->dst); iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); iph->saddr = saddr; iph->protocol = sk->sk_protocol; if (ip_dont_fragment(sk, &rt->dst)) { iph->frag_off = htons(IP_DF); iph->id = 0; } else { iph->frag_off = 0; __ip_select_ident(net, iph, 1); } if (opt && opt->opt.optlen) { iph->ihl += opt->opt.optlen>>2; ip_options_build(skb, &opt->opt, daddr, rt, 0); } skb->priority = sk->sk_priority; if (!skb->mark) skb->mark = sk->sk_mark; /* Send it out. */ return ip_local_out(net, skb->sk, skb); } EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = (struct rtable *)dst; struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; bool is_v6gw = false; if (rt->rt_type == RTN_MULTICAST) { IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); } else if (rt->rt_type == RTN_BROADCAST) IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); /* Be paranoid, rather than too clever. */ if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { struct sk_buff *skb2; skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); if (!skb2) { kfree_skb(skb); return -ENOMEM; } if (skb->sk) skb_set_owner_w(skb2, skb->sk); consume_skb(skb); skb = skb2; } if (lwtunnel_xmit_redirect(dst->lwtstate)) { int res = lwtunnel_xmit(skb); if (res < 0 || res == LWTUNNEL_XMIT_DONE) return res; } rcu_read_lock_bh(); neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); if (!IS_ERR(neigh)) { int res; sock_confirm_neigh(skb, neigh); /* if crossing protocols, can not use the cached header */ res = neigh_output(neigh, skb, is_v6gw); rcu_read_unlock_bh(); return res; } rcu_read_unlock_bh(); net_dbg_ratelimited("%s: No header cache and no neighbour!\n", __func__); kfree_skb(skb); return -EINVAL; } static int ip_finish_output_gso(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu) { struct sk_buff *segs, *nskb; netdev_features_t features; int ret = 0; /* common case: seglen is <= mtu */ if (skb_gso_validate_network_len(skb, mtu)) return ip_finish_output2(net, sk, skb); /* Slowpath - GSO segment length exceeds the egress MTU. * * This can happen in several cases: * - Forwarding of a TCP GRO skb, when DF flag is not set. * - Forwarding of an skb that arrived on a virtualization interface * (virtio-net/vhost/tap) with TSO/GSO size set by other network * stack. * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an * interface with a smaller MTU. * - Arriving GRO skb (or GSO skb in a virtualized environment) that is * bridged to a NETIF_F_TSO tunnel stacked over an interface with an * insufficent MTU. */ features = netif_skb_features(skb); BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) { kfree_skb(skb); return -ENOMEM; } consume_skb(skb); skb_list_walk_safe(segs, segs, nskb) { int err; skb_mark_not_on_list(segs); err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); if (err && ret == 0) ret = err; } return ret; } static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { unsigned int mtu; #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) /* Policy lookup after SNAT yielded a new policy */ if (skb_dst(skb)->xfrm) { IPCB(skb)->flags |= IPSKB_REROUTED; return dst_output(net, sk, skb); } #endif mtu = ip_skb_dst_mtu(sk, skb); if (skb_is_gso(skb)) return ip_finish_output_gso(net, sk, skb, mtu); if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) return ip_fragment(net, sk, skb, mtu, ip_finish_output2); return ip_finish_output2(net, sk, skb); } static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { int ret; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_SUCCESS: return __ip_finish_output(net, sk, skb); case NET_XMIT_CN: return __ip_finish_output(net, sk, skb) ? : ret; default: kfree_skb(skb); return ret; } } static int ip_mc_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct rtable *new_rt; bool do_cn = false; int ret, err; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_CN: do_cn = true; fallthrough; case NET_XMIT_SUCCESS: break; default: kfree_skb(skb); return ret; } /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, * see ipv4_pktinfo_prepare(). */ new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); if (new_rt) { new_rt->rt_iif = 0; skb_dst_drop(skb); skb_dst_set(skb, &new_rt->dst); } err = dev_loopback_xmit(net, sk, skb); return (do_cn && err) ? ret : err; } int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); struct net_device *dev = rt->dst.dev; /* * If the indicated interface is up and running, send the packet. */ IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); /* * Multicasts are looped back for other local users */ if (rt->rt_flags&RTCF_MULTICAST) { if (sk_mc_loop(sk) #ifdef CONFIG_IP_MROUTE /* Small optimization: do not loopback not local frames, which returned after forwarding; they will be dropped by ip_mr_input in any case. Note, that local frames are looped back to be delivered to local recipients. This check is duplicated in ip_mr_input at the moment. */ && ((rt->rt_flags & RTCF_LOCAL) || !(IPCB(skb)->flags & IPSKB_FORWARDED)) #endif ) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); if (newskb) NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, ip_mc_finish_output); } /* Multicasts with ttl 0 must not go beyond the host */ if (ip_hdr(skb)->ttl == 0) { kfree_skb(skb); return 0; } } if (rt->rt_flags&RTCF_BROADCAST) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); if (newskb) NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, ip_mc_finish_output); } return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb->dev, ip_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, indev, dev, ip_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } /* * copy saddr and daddr, possibly using 64bit load/stores * Equivalent to : * iph->saddr = fl4->saddr; * iph->daddr = fl4->daddr; */ static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) { BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); memcpy(&iph->saddr, &fl4->saddr, sizeof(fl4->saddr) + sizeof(fl4->daddr)); } /* Note: skb->sk can be different from sk, in case of tunnels */ int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, __u8 tos) { struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ip_options_rcu *inet_opt; struct flowi4 *fl4; struct rtable *rt; struct iphdr *iph; int res; /* Skip all of this if the packet is already routed, * f.e. by something like SCTP. */ rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); fl4 = &fl->u.ip4; rt = skb_rtable(skb); if (rt) goto packet_routed; /* Make sure we can route this packet. */ rt = (struct rtable *)__sk_dst_check(sk, 0); if (!rt) { __be32 daddr; /* Use correct destination address if we have options. */ daddr = inet->inet_daddr; if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; /* If this fails, retransmit mechanism of transport layer will * keep trying until route appears or the connection times * itself out. */ rt = ip_route_output_ports(net, fl4, sk, daddr, inet->inet_saddr, inet->inet_dport, inet->inet_sport, sk->sk_protocol, RT_CONN_FLAGS_TOS(sk, tos), sk->sk_bound_dev_if); if (IS_ERR(rt)) goto no_route; sk_setup_caps(sk, &rt->dst); } skb_dst_set_noref(skb, &rt->dst); packet_routed: if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) goto no_route; /* OK, we know where to send it, allocate and build IP header. */ skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); skb_reset_network_header(skb); iph = ip_hdr(skb); *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) iph->frag_off = htons(IP_DF); else iph->frag_off = 0; iph->ttl = ip_select_ttl(inet, &rt->dst); iph->protocol = sk->sk_protocol; ip_copy_addrs(iph, fl4); /* Transport layer set skb->h.foo itself. */ if (inet_opt && inet_opt->opt.optlen) { iph->ihl += inet_opt->opt.optlen >> 2; ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); } ip_select_ident_segs(net, skb, sk, skb_shinfo(skb)->gso_segs ?: 1); /* TODO : should we use skb->sk here instead of sk ? */ skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; res = ip_local_out(net, sk, skb); rcu_read_unlock(); return res; no_route: rcu_read_unlock(); IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); kfree_skb(skb); return -EHOSTUNREACH; } EXPORT_SYMBOL(__ip_queue_xmit); int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) { return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); } EXPORT_SYMBOL(ip_queue_xmit); static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; to->skb_iif = from->skb_iif; skb_dst_drop(to); skb_dst_copy(to, from); to->dev = from->dev; to->mark = from->mark; skb_copy_hash(to, from); #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); skb_ext_copy(to, from); #if IS_ENABLED(CONFIG_IP_VS) to->ipvs_property = from->ipvs_property; #endif skb_copy_secmark(to, from); } static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct iphdr *iph = ip_hdr(skb); if ((iph->frag_off & htons(IP_DF)) == 0) return ip_do_fragment(net, sk, skb, output); if (unlikely(!skb->ignore_df || (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size > mtu))) { IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); kfree_skb(skb); return -EMSGSIZE; } return ip_do_fragment(net, sk, skb, output); } void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, unsigned int hlen, struct ip_fraglist_iter *iter) { unsigned int first_len = skb_pagelen(skb); iter->frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); iter->offset = 0; iter->iph = iph; iter->hlen = hlen; skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; iph->tot_len = htons(first_len); iph->frag_off = htons(IP_MF); ip_send_check(iph); } EXPORT_SYMBOL(ip_fraglist_init); static void ip_fraglist_ipcb_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) { struct sk_buff *to = iter->frag; /* Copy the flags to each fragment. */ IPCB(to)->flags = IPCB(skb)->flags; if (iter->offset == 0) ip_options_fragment(to); } void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) { unsigned int hlen = iter->hlen; struct iphdr *iph = iter->iph; struct sk_buff *frag; frag = iter->frag; frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), iph, hlen); iter->iph = ip_hdr(frag); iph = iter->iph; iph->tot_len = htons(frag->len); ip_copy_metadata(frag, skb); iter->offset += skb->len - hlen; iph->frag_off = htons(iter->offset >> 3); if (frag->next) iph->frag_off |= htons(IP_MF); /* Ready, complete checksum */ ip_send_check(iph); } EXPORT_SYMBOL(ip_fraglist_prepare); void ip_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int ll_rs, unsigned int mtu, bool DF, struct ip_frag_state *state) { struct iphdr *iph = ip_hdr(skb); state->DF = DF; state->hlen = hlen; state->ll_rs = ll_rs; state->mtu = mtu; state->left = skb->len - hlen; /* Space per frame */ state->ptr = hlen; /* Where to start from */ state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; state->not_last_frag = iph->frag_off & htons(IP_MF); } EXPORT_SYMBOL(ip_frag_init); static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, bool first_frag, struct ip_frag_state *state) { /* Copy the flags to each fragment. */ IPCB(to)->flags = IPCB(from)->flags; /* ANK: dirty, but effective trick. Upgrade options only if * the segment to be fragmented was THE FIRST (otherwise, * options are already fixed) and make it ONCE * on the initial skb, so that all the following fragments * will inherit fixed options. */ if (first_frag) ip_options_fragment(from); } struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) { unsigned int len = state->left; struct sk_buff *skb2; struct iphdr *iph; len = state->left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > state->mtu) len = state->mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < state->left) { len &= ~7; } /* Allocate buffer */ skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); if (!skb2) return ERR_PTR(-ENOMEM); /* * Set up data on packet */ ip_copy_metadata(skb2, skb); skb_reserve(skb2, state->ll_rs); skb_put(skb2, len + state->hlen); skb_reset_network_header(skb2); skb2->transport_header = skb2->network_header + state->hlen; /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(skb2, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); /* * Copy a block of the IP datagram. */ if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) BUG(); state->left -= len; /* * Fill in the new header fields. */ iph = ip_hdr(skb2); iph->frag_off = htons((state->offset >> 3)); if (state->DF) iph->frag_off |= htons(IP_DF); /* * Added AC : If we are fragmenting a fragment that's not the * last fragment then keep MF on each bit */ if (state->left > 0 || state->not_last_frag) iph->frag_off |= htons(IP_MF); state->ptr += len; state->offset += len; iph->tot_len = htons(len + state->hlen); ip_send_check(iph); return skb2; } EXPORT_SYMBOL(ip_frag_next); /* * This IP datagram is too large to be sent in one piece. Break it up into * smaller pieces (each of size equal to IP header plus * a block of the data of the original IP data part) that will yet fit in a * single device frame, and queue such a frame for sending. */ int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct iphdr *iph; struct sk_buff *skb2; struct rtable *rt = skb_rtable(skb); unsigned int mtu, hlen, ll_rs; struct ip_fraglist_iter iter; ktime_t tstamp = skb->tstamp; struct ip_frag_state state; int err = 0; /* for offloaded checksums cleanup checksum before fragmentation */ if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_checksum_help(skb))) goto fail; /* * Point into the IP datagram header. */ iph = ip_hdr(skb); mtu = ip_skb_dst_mtu(sk, skb); if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) mtu = IPCB(skb)->frag_max_size; /* * Setup starting values. */ hlen = iph->ihl * 4; mtu = mtu - hlen; /* Size of data space */ IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; ll_rs = LL_RESERVED_SPACE(rt->dst.dev); /* When frag_list is given, use it. First, check its validity: * some transformers could create wrong frag_list or break existing * one, it is not prohibited. In this case fall back to copying. * * LATER: this step can be merged to real generation of fragments, * we can switch to copy when see the first bad fragment. */ if (skb_has_frag_list(skb)) { struct sk_buff *frag, *frag2; unsigned int first_len = skb_pagelen(skb); if (first_len - hlen > mtu || ((first_len - hlen) & 7) || ip_is_fragment(iph) || skb_cloned(skb) || skb_headroom(skb) < ll_rs) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < hlen + ll_rs) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } /* Everything is OK. Generate! */ ip_fraglist_init(skb, iph, hlen, &iter); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (iter.frag) { ip_fraglist_ipcb_prepare(skb, &iter); ip_fraglist_prepare(skb, &iter); } skb->tstamp = tstamp; err = output(net, sk, skb); if (!err) IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); if (err || !iter.frag) break; skb = ip_fraglist_next(&iter); } if (err == 0) { IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); return 0; } kfree_skb_list(iter.frag); IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: /* * Fragment the datagram. */ ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, &state); /* * Keep copying data until we run out. */ while (state.left > 0) { bool first_frag = (state.offset == 0); skb2 = ip_frag_next(skb, &state); if (IS_ERR(skb2)) { err = PTR_ERR(skb2); goto fail; } ip_frag_ipcb(skb, skb2, first_frag, &state); /* * Put this fragment into the sending queue. */ skb2->tstamp = tstamp; err = output(net, sk, skb2); if (err) goto fail; IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); } consume_skb(skb); IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); return err; fail: kfree_skb(skb); IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); return err; } EXPORT_SYMBOL(ip_do_fragment); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; if (skb->ip_summed == CHECKSUM_PARTIAL) { if (!copy_from_iter_full(to, len, &msg->msg_iter)) return -EFAULT; } else { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, odd); } return 0; } EXPORT_SYMBOL(ip_generic_getfrag); static inline __wsum csum_page(struct page *page, int offset, int copy) { char *kaddr; __wsum csum; kaddr = kmap(page); csum = csum_partial(kaddr + offset, copy, 0); kunmap(page); return csum; } static int __ip_append_data(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); struct ubuf_info *uarg = NULL; struct sk_buff *skb; struct ip_options *opt = cork->opt; int hh_len; int exthdrlen; int mtu; int copy; int err; int offset = 0; unsigned int maxfraglen, fragheaderlen, maxnonfragsize; int csummode = CHECKSUM_NONE; struct rtable *rt = (struct rtable *)cork->dst; unsigned int wmem_alloc_delta = 0; bool paged, extra_uref = false; u32 tskey = 0; skb = skb_peek_tail(queue); exthdrlen = !skb ? rt->dst.header_len : 0; mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; paged = !!cork->gso_size; if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) tskey = sk->sk_tskey++; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; if (cork->length + length > maxnonfragsize - fragheaderlen) { ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu - (opt ? opt->optlen : 0)); return -EMSGSIZE; } /* * transhdrlen > 0 means that this is the first fragment and we wish * it won't be fragmented in the future. */ if (transhdrlen && length + fragheaderlen <= mtu && rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && (!(flags & MSG_MORE) || cork->gso_size) && (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) csummode = CHECKSUM_PARTIAL; if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); if (!uarg) return -ENOBUFS; extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ if (rt->dst.dev->features & NETIF_F_SG && csummode == CHECKSUM_PARTIAL) { paged = true; } else { uarg->zerocopy = 0; skb_zcopy_set(skb, uarg, &extra_uref); } } cork->length += length; /* So, what's going on in the loop below? * * We use calculated fragment length to generate chained skb, * each of segments is IP fragment ready for sending to network after * adding appropriate IP header. */ if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = mtu - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen; unsigned int pagedlen; struct sk_buff *skb_prev; alloc_new_skb: skb_prev = skb; if (skb_prev) fraggap = skb_prev->len - maxfraglen; else fraggap = 0; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > mtu - fragheaderlen) datalen = maxfraglen - fragheaderlen; fraglen = datalen + fragheaderlen; pagedlen = 0; if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else if (!paged) alloclen = fraglen; else { alloclen = min_t(int, fraglen, MAX_HEADER); pagedlen = fraglen - alloclen; } alloclen += exthdrlen; /* The last fragment gets additional space at tail. * Note, with MSG_MORE we overallocate on fragments, * because we have no idea what fragment will be * the last. */ if (datalen == length + fraggap) alloclen += rt->dst.trailer_len; if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen + hh_len + 15, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 2 * sk->sk_sndbuf) skb = alloc_skb(alloclen + hh_len + 15, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->ip_summed = csummode; skb->csum = 0; skb_reserve(skb, hh_len); /* * Find where to start putting bytes. */ data = skb_put(skb, fraglen + exthdrlen - pagedlen); skb_set_network_header(skb, exthdrlen); skb->transport_header = (skb->network_header + fragheaderlen); data += fragheaderlen + exthdrlen; if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } copy = datalen - transhdrlen - fraggap - pagedlen; if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } offset += copy; length -= copy + transhdrlen; transhdrlen = 0; exthdrlen = 0; csummode = CHECKSUM_NONE; /* only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = cork->tx_flags; cork->tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; skb_zcopy_set(skb, uarg, &extra_uref); if ((flags & MSG_CONFIRM) && !skb_prev) skb_set_dst_pending_confirm(skb, 1); /* * Put the packet on the pending queue. */ if (!skb->destructor) { skb->destructor = sock_wfree; skb->sk = sk; wmem_alloc_delta += skb->truesize; } __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG) && skb_tailroom(skb) >= copy) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else if (!uarg || !uarg->zerocopy) { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; wmem_alloc_delta += copy; } else { err = skb_zerocopy_iter_dgram(skb, from, copy); if (err < 0) goto error; } offset += copy; length -= copy; } if (wmem_alloc_delta) refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return 0; error_efault: err = -EFAULT; error: if (uarg) sock_zerocopy_put_abort(uarg, extra_uref); cork->length -= length; IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return err; } static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, struct ipcm_cookie *ipc, struct rtable **rtp) { struct ip_options_rcu *opt; struct rtable *rt; rt = *rtp; if (unlikely(!rt)) return -EFAULT; /* * setup for corking. */ opt = ipc->opt; if (opt) { if (!cork->opt) { cork->opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation); if (unlikely(!cork->opt)) return -ENOBUFS; } memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); cork->flags |= IPCORK_OPT; cork->addr = ipc->addr; } cork->fragsize = ip_sk_use_pmtu(sk) ? dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); if (!inetdev_valid_mtu(cork->fragsize)) return -ENETUNREACH; cork->gso_size = ipc->gso_size; cork->dst = &rt->dst; /* We stole this route, caller should not release it. */ *rtp = NULL; cork->length = 0; cork->ttl = ipc->ttl; cork->tos = ipc->tos; cork->mark = ipc->sockc.mark; cork->priority = ipc->priority; cork->transmit_time = ipc->sockc.transmit_time; cork->tx_flags = 0; sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); return 0; } /* * ip_append_data() and ip_append_page() can make one large IP datagram * from many pieces of data. Each pieces will be holded on the socket * until ip_push_pending_frames() is called. Each piece can be a page * or non-page data. * * Not only UDP, other transport protocols - e.g. raw sockets - can use * this interface potentially. * * LATER: length must be adjusted by pad at tail, when it is required. */ int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); if (err) return err; } else { transhdrlen = 0; } return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags); } ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, int offset, size_t size, int flags) { struct inet_sock *inet = inet_sk(sk); struct sk_buff *skb; struct rtable *rt; struct ip_options *opt = NULL; struct inet_cork *cork; int hh_len; int mtu; int len; int err; unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; if (inet->hdrincl) return -EPERM; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) return -EINVAL; cork = &inet->cork.base; rt = (struct rtable *)cork->dst; if (cork->flags & IPCORK_OPT) opt = cork->opt; if (!(rt->dst.dev->features & NETIF_F_SG)) return -EOPNOTSUPP; hh_len = LL_RESERVED_SPACE(rt->dst.dev); mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; if (cork->length + size > maxnonfragsize - fragheaderlen) { ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu - (opt ? opt->optlen : 0)); return -EMSGSIZE; } skb = skb_peek_tail(&sk->sk_write_queue); if (!skb) return -EINVAL; cork->length += size; while (size > 0) { /* Check if the remaining data fits into current packet. */ len = mtu - skb->len; if (len < size) len = maxfraglen - skb->len; if (len <= 0) { struct sk_buff *skb_prev; int alloclen; skb_prev = skb; fraggap = skb_prev->len - maxfraglen; alloclen = fragheaderlen + hh_len + fraggap + 15; skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); if (unlikely(!skb)) { err = -ENOBUFS; goto error; } /* * Fill in the control structures */ skb->ip_summed = CHECKSUM_NONE; skb->csum = 0; skb_reserve(skb, hh_len); /* * Find where to start putting bytes. */ skb_put(skb, fragheaderlen + fraggap); skb_reset_network_header(skb); skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits(skb_prev, maxfraglen, skb_transport_header(skb), fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); pskb_trim_unique(skb_prev, maxfraglen); } /* * Put the packet on the pending queue. */ __skb_queue_tail(&sk->sk_write_queue, skb); continue; } if (len > size) len = size; if (skb_append_pagefrags(skb, page, offset, len)) { err = -EMSGSIZE; goto error; } if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum; csum = csum_page(page, offset, len); skb->csum = csum_block_add(skb->csum, csum, skb->len); } skb->len += len; skb->data_len += len; skb->truesize += len; refcount_add(len, &sk->sk_wmem_alloc); offset += len; size -= len; } return 0; error: cork->length -= size; IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); return err; } static void ip_cork_release(struct inet_cork *cork) { cork->flags &= ~IPCORK_OPT; kfree(cork->opt); cork->opt = NULL; dst_release(cork->dst); cork->dst = NULL; } /* * Combined all pending IP fragments on the socket as one IP datagram * and push them out. */ struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ip_options *opt = NULL; struct rtable *rt = (struct rtable *)cork->dst; struct iphdr *iph; __be16 df = 0; __u8 ttl; skb = __skb_dequeue(queue); if (!skb) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow * to fragment the frame generated here. No matter, what transforms * how transforms change size of the packet, it will come out. */ skb->ignore_df = ip_sk_ignore_df(sk); /* DF bit is set when we want to see DF on outgoing frames. * If ignore_df is set too, we still allow to fragment this frame * locally. */ if (inet->pmtudisc == IP_PMTUDISC_DO || inet->pmtudisc == IP_PMTUDISC_PROBE || (skb->len <= dst_mtu(&rt->dst) && ip_dont_fragment(sk, &rt->dst))) df = htons(IP_DF); if (cork->flags & IPCORK_OPT) opt = cork->opt; if (cork->ttl != 0) ttl = cork->ttl; else if (rt->rt_type == RTN_MULTICAST) ttl = inet->mc_ttl; else ttl = ip_select_ttl(inet, &rt->dst); iph = ip_hdr(skb); iph->version = 4; iph->ihl = 5; iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; iph->frag_off = df; iph->ttl = ttl; iph->protocol = sk->sk_protocol; ip_copy_addrs(iph, fl4); ip_select_ident(net, skb, sk); if (opt) { iph->ihl += opt->optlen>>2; ip_options_build(skb, opt, cork->addr, rt, 0); } skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; skb->mark = cork->mark; skb->tstamp = cork->transmit_time; /* * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec * on dst refcount */ cork->dst = NULL; skb_dst_set(skb, &rt->dst); if (iph->protocol == IPPROTO_ICMP) icmp_out_count(net, ((struct icmphdr *) skb_transport_header(skb))->type); ip_cork_release(cork); out: return skb; } int ip_send_skb(struct net *net, struct sk_buff *skb) { int err; err = ip_local_out(net, skb->sk, skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); } return err; } int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) { struct sk_buff *skb; skb = ip_finish_skb(sk, fl4); if (!skb) return 0; /* Netfilter gets whole the not fragmented skb. */ return ip_send_skb(sock_net(sk), skb); } /* * Throw away all pending data on the socket. */ static void __ip_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork *cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) kfree_skb(skb); ip_cork_release(cork); } void ip_flush_pending_frames(struct sock *sk) { __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, struct inet_cork *cork, unsigned int flags) { struct sk_buff_head queue; int err; if (flags & MSG_PROBE) return NULL; __skb_queue_head_init(&queue); cork->flags = 0; cork->addr = 0; cork->opt = NULL; err = ip_setup_cork(sk, cork, ipc, rtp); if (err) return ERR_PTR(err); err = __ip_append_data(sk, fl4, &queue, cork, ¤t->task_frag, getfrag, from, length, transhdrlen, flags); if (err) { __ip_flush_pending_frames(sk, &queue, cork); return ERR_PTR(err); } return __ip_make_skb(sk, fl4, &queue, cork); } /* * Fetch data from kernel space and fill in checksum if needed. */ static int ip_reply_glue_bits(void *dptr, char *to, int offset, int len, int odd, struct sk_buff *skb) { __wsum csum; csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); skb->csum = csum_block_add(skb->csum, csum, odd); return 0; } /* * Generic function to send a packet as reply to another packet. * Used to send some TCP resets/acks so far. */ void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, const struct ip_options *sopt, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len, u64 transmit_time) { struct ip_options_data replyopts; struct ipcm_cookie ipc; struct flowi4 fl4; struct rtable *rt = skb_rtable(skb); struct net *net = sock_net(sk); struct sk_buff *nskb; int err; int oif; if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) return; ipcm_init(&ipc); ipc.addr = daddr; ipc.sockc.transmit_time = transmit_time; if (replyopts.opt.opt.optlen) { ipc.opt = &replyopts.opt; if (replyopts.opt.opt.srr) daddr = replyopts.opt.opt.faddr; } oif = arg->bound_dev_if; if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) oif = skb->skb_iif; flowi4_init_output(&fl4, oif, IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, RT_TOS(arg->tos), RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, ip_reply_arg_flowi_flags(arg), daddr, saddr, tcp_hdr(skb)->source, tcp_hdr(skb)->dest, arg->uid); security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); rt = ip_route_output_key(net, &fl4); if (IS_ERR(rt)) return; inet_sk(sk)->tos = arg->tos; sk->sk_protocol = ip_hdr(skb)->protocol; sk->sk_bound_dev_if = arg->bound_dev_if; sk->sk_sndbuf = sysctl_wmem_default; ipc.sockc.mark = fl4.flowi4_mark; err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0, &ipc, &rt, MSG_DONTWAIT); if (unlikely(err)) { ip_flush_pending_frames(sk); goto out; } nskb = skb_peek(&sk->sk_write_queue); if (nskb) { if (arg->csumoffset >= 0) *((__sum16 *)skb_transport_header(nskb) + arg->csumoffset) = csum_fold(csum_add(nskb->csum, arg->csum)); nskb->ip_summed = CHECKSUM_NONE; ip_push_pending_frames(sk, &fl4); } out: ip_rt_put(rt); } void __init ip_init(void) { ip_rt_init(); inet_initpeers(); #if defined(CONFIG_IP_MULTICAST) igmp_mc_init(); #endif }