/* * fs/f2fs/f2fs.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _LINUX_F2FS_H #define _LINUX_F2FS_H #include #include #include #include #include #include /* * For mount options */ #define F2FS_MOUNT_BG_GC 0x00000001 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 #define F2FS_MOUNT_DISCARD 0x00000004 #define F2FS_MOUNT_NOHEAP 0x00000008 #define F2FS_MOUNT_XATTR_USER 0x00000010 #define F2FS_MOUNT_POSIX_ACL 0x00000020 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) #define ver_after(a, b) (typecheck(unsigned long long, a) && \ typecheck(unsigned long long, b) && \ ((long long)((a) - (b)) > 0)) typedef u32 block_t; /* * should not change u32, since it is the on-disk block * address format, __le32. */ typedef u32 nid_t; struct f2fs_mount_info { unsigned int opt; }; static inline __u32 f2fs_crc32(void *buff, size_t len) { return crc32_le(F2FS_SUPER_MAGIC, buff, len); } static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size) { return f2fs_crc32(buff, buff_size) == blk_crc; } /* * For checkpoint manager */ enum { NAT_BITMAP, SIT_BITMAP }; /* for the list of orphan inodes */ struct orphan_inode_entry { struct list_head list; /* list head */ nid_t ino; /* inode number */ }; /* for the list of directory inodes */ struct dir_inode_entry { struct list_head list; /* list head */ struct inode *inode; /* vfs inode pointer */ }; /* for the list of fsync inodes, used only during recovery */ struct fsync_inode_entry { struct list_head list; /* list head */ struct inode *inode; /* vfs inode pointer */ block_t blkaddr; /* block address locating the last inode */ }; #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) { int before = nats_in_cursum(rs); rs->n_nats = cpu_to_le16(before + i); return before; } static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) { int before = sits_in_cursum(rs); rs->n_sits = cpu_to_le16(before + i); return before; } /* * ioctl commands */ #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS #if defined(__KERNEL__) && defined(CONFIG_COMPAT) /* * ioctl commands in 32 bit emulation */ #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS #endif /* * For INODE and NODE manager */ #define XATTR_NODE_OFFSET (-1) /* * store xattrs to one node block per * file keeping -1 as its node offset to * distinguish from index node blocks. */ enum { ALLOC_NODE, /* allocate a new node page if needed */ LOOKUP_NODE, /* look up a node without readahead */ LOOKUP_NODE_RA, /* * look up a node with readahead called * by get_datablock_ro. */ }; #define F2FS_LINK_MAX 32000 /* maximum link count per file */ /* for in-memory extent cache entry */ struct extent_info { rwlock_t ext_lock; /* rwlock for consistency */ unsigned int fofs; /* start offset in a file */ u32 blk_addr; /* start block address of the extent */ unsigned int len; /* length of the extent */ }; /* * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. */ #define FADVISE_COLD_BIT 0x01 #define FADVISE_CP_BIT 0x02 struct f2fs_inode_info { struct inode vfs_inode; /* serve a vfs inode */ unsigned long i_flags; /* keep an inode flags for ioctl */ unsigned char i_advise; /* use to give file attribute hints */ unsigned int i_current_depth; /* use only in directory structure */ unsigned int i_pino; /* parent inode number */ umode_t i_acl_mode; /* keep file acl mode temporarily */ /* Use below internally in f2fs*/ unsigned long flags; /* use to pass per-file flags */ atomic_t dirty_dents; /* # of dirty dentry pages */ f2fs_hash_t chash; /* hash value of given file name */ unsigned int clevel; /* maximum level of given file name */ nid_t i_xattr_nid; /* node id that contains xattrs */ struct extent_info ext; /* in-memory extent cache entry */ }; static inline void get_extent_info(struct extent_info *ext, struct f2fs_extent i_ext) { write_lock(&ext->ext_lock); ext->fofs = le32_to_cpu(i_ext.fofs); ext->blk_addr = le32_to_cpu(i_ext.blk_addr); ext->len = le32_to_cpu(i_ext.len); write_unlock(&ext->ext_lock); } static inline void set_raw_extent(struct extent_info *ext, struct f2fs_extent *i_ext) { read_lock(&ext->ext_lock); i_ext->fofs = cpu_to_le32(ext->fofs); i_ext->blk_addr = cpu_to_le32(ext->blk_addr); i_ext->len = cpu_to_le32(ext->len); read_unlock(&ext->ext_lock); } struct f2fs_nm_info { block_t nat_blkaddr; /* base disk address of NAT */ nid_t max_nid; /* maximum possible node ids */ nid_t next_scan_nid; /* the next nid to be scanned */ /* NAT cache management */ struct radix_tree_root nat_root;/* root of the nat entry cache */ rwlock_t nat_tree_lock; /* protect nat_tree_lock */ unsigned int nat_cnt; /* the # of cached nat entries */ struct list_head nat_entries; /* cached nat entry list (clean) */ struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ /* free node ids management */ struct list_head free_nid_list; /* a list for free nids */ spinlock_t free_nid_list_lock; /* protect free nid list */ unsigned int fcnt; /* the number of free node id */ struct mutex build_lock; /* lock for build free nids */ /* for checkpoint */ char *nat_bitmap; /* NAT bitmap pointer */ int bitmap_size; /* bitmap size */ }; /* * this structure is used as one of function parameters. * all the information are dedicated to a given direct node block determined * by the data offset in a file. */ struct dnode_of_data { struct inode *inode; /* vfs inode pointer */ struct page *inode_page; /* its inode page, NULL is possible */ struct page *node_page; /* cached direct node page */ nid_t nid; /* node id of the direct node block */ unsigned int ofs_in_node; /* data offset in the node page */ bool inode_page_locked; /* inode page is locked or not */ block_t data_blkaddr; /* block address of the node block */ }; static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, struct page *ipage, struct page *npage, nid_t nid) { memset(dn, 0, sizeof(*dn)); dn->inode = inode; dn->inode_page = ipage; dn->node_page = npage; dn->nid = nid; } /* * For SIT manager * * By default, there are 6 active log areas across the whole main area. * When considering hot and cold data separation to reduce cleaning overhead, * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, * respectively. * In the current design, you should not change the numbers intentionally. * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 * logs individually according to the underlying devices. (default: 6) * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for * data and 8 for node logs. */ #define NR_CURSEG_DATA_TYPE (3) #define NR_CURSEG_NODE_TYPE (3) #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) enum { CURSEG_HOT_DATA = 0, /* directory entry blocks */ CURSEG_WARM_DATA, /* data blocks */ CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ CURSEG_HOT_NODE, /* direct node blocks of directory files */ CURSEG_WARM_NODE, /* direct node blocks of normal files */ CURSEG_COLD_NODE, /* indirect node blocks */ NO_CHECK_TYPE }; struct f2fs_sm_info { struct sit_info *sit_info; /* whole segment information */ struct free_segmap_info *free_info; /* free segment information */ struct dirty_seglist_info *dirty_info; /* dirty segment information */ struct curseg_info *curseg_array; /* active segment information */ struct list_head wblist_head; /* list of under-writeback pages */ spinlock_t wblist_lock; /* lock for checkpoint */ block_t seg0_blkaddr; /* block address of 0'th segment */ block_t main_blkaddr; /* start block address of main area */ block_t ssa_blkaddr; /* start block address of SSA area */ unsigned int segment_count; /* total # of segments */ unsigned int main_segments; /* # of segments in main area */ unsigned int reserved_segments; /* # of reserved segments */ unsigned int ovp_segments; /* # of overprovision segments */ }; /* * For directory operation */ #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1) #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2) #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3) #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4) #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5) /* * For superblock */ /* * COUNT_TYPE for monitoring * * f2fs monitors the number of several block types such as on-writeback, * dirty dentry blocks, dirty node blocks, and dirty meta blocks. */ enum count_type { F2FS_WRITEBACK, F2FS_DIRTY_DENTS, F2FS_DIRTY_NODES, F2FS_DIRTY_META, NR_COUNT_TYPE, }; /* * Uses as sbi->fs_lock[NR_GLOBAL_LOCKS]. * The checkpoint procedure blocks all the locks in this fs_lock array. * Some FS operations grab free locks, and if there is no free lock, * then wait to grab a lock in a round-robin manner. */ #define NR_GLOBAL_LOCKS 8 /* * The below are the page types of bios used in submti_bio(). * The available types are: * DATA User data pages. It operates as async mode. * NODE Node pages. It operates as async mode. * META FS metadata pages such as SIT, NAT, CP. * NR_PAGE_TYPE The number of page types. * META_FLUSH Make sure the previous pages are written * with waiting the bio's completion * ... Only can be used with META. */ enum page_type { DATA, NODE, META, NR_PAGE_TYPE, META_FLUSH, }; struct f2fs_sb_info { struct super_block *sb; /* pointer to VFS super block */ struct buffer_head *raw_super_buf; /* buffer head of raw sb */ struct f2fs_super_block *raw_super; /* raw super block pointer */ int s_dirty; /* dirty flag for checkpoint */ /* for node-related operations */ struct f2fs_nm_info *nm_info; /* node manager */ struct inode *node_inode; /* cache node blocks */ /* for segment-related operations */ struct f2fs_sm_info *sm_info; /* segment manager */ struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */ sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */ struct rw_semaphore bio_sem; /* IO semaphore */ /* for checkpoint */ struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ struct inode *meta_inode; /* cache meta blocks */ struct mutex cp_mutex; /* checkpoint procedure lock */ struct mutex fs_lock[NR_GLOBAL_LOCKS]; /* blocking FS operations */ struct mutex node_write; /* locking node writes */ struct mutex writepages; /* mutex for writepages() */ unsigned char next_lock_num; /* round-robin global locks */ int por_doing; /* recovery is doing or not */ int on_build_free_nids; /* build_free_nids is doing */ /* for orphan inode management */ struct list_head orphan_inode_list; /* orphan inode list */ struct mutex orphan_inode_mutex; /* for orphan inode list */ unsigned int n_orphans; /* # of orphan inodes */ /* for directory inode management */ struct list_head dir_inode_list; /* dir inode list */ spinlock_t dir_inode_lock; /* for dir inode list lock */ /* basic file system units */ unsigned int log_sectors_per_block; /* log2 sectors per block */ unsigned int log_blocksize; /* log2 block size */ unsigned int blocksize; /* block size */ unsigned int root_ino_num; /* root inode number*/ unsigned int node_ino_num; /* node inode number*/ unsigned int meta_ino_num; /* meta inode number*/ unsigned int log_blocks_per_seg; /* log2 blocks per segment */ unsigned int blocks_per_seg; /* blocks per segment */ unsigned int segs_per_sec; /* segments per section */ unsigned int secs_per_zone; /* sections per zone */ unsigned int total_sections; /* total section count */ unsigned int total_node_count; /* total node block count */ unsigned int total_valid_node_count; /* valid node block count */ unsigned int total_valid_inode_count; /* valid inode count */ int active_logs; /* # of active logs */ block_t user_block_count; /* # of user blocks */ block_t total_valid_block_count; /* # of valid blocks */ block_t alloc_valid_block_count; /* # of allocated blocks */ block_t last_valid_block_count; /* for recovery */ u32 s_next_generation; /* for NFS support */ atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ struct f2fs_mount_info mount_opt; /* mount options */ /* for cleaning operations */ struct mutex gc_mutex; /* mutex for GC */ struct f2fs_gc_kthread *gc_thread; /* GC thread */ unsigned int cur_victim_sec; /* current victim section num */ /* * for stat information. * one is for the LFS mode, and the other is for the SSR mode. */ #ifdef CONFIG_F2FS_STAT_FS struct f2fs_stat_info *stat_info; /* FS status information */ unsigned int segment_count[2]; /* # of allocated segments */ unsigned int block_count[2]; /* # of allocated blocks */ int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ int bg_gc; /* background gc calls */ unsigned int n_dirty_dirs; /* # of dir inodes */ #endif unsigned int last_victim[2]; /* last victim segment # */ spinlock_t stat_lock; /* lock for stat operations */ }; /* * Inline functions */ static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) { return container_of(inode, struct f2fs_inode_info, vfs_inode); } static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) { return (struct f2fs_super_block *)(sbi->raw_super); } static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) { return (struct f2fs_checkpoint *)(sbi->ckpt); } static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_nm_info *)(sbi->nm_info); } static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_sm_info *)(sbi->sm_info); } static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) { return (struct sit_info *)(SM_I(sbi)->sit_info); } static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) { return (struct free_segmap_info *)(SM_I(sbi)->free_info); } static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) { return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); } static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) { sbi->s_dirty = 1; } static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) { sbi->s_dirty = 0; } static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); return ckpt_flags & f; } static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); ckpt_flags |= f; cp->ckpt_flags = cpu_to_le32(ckpt_flags); } static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); ckpt_flags &= (~f); cp->ckpt_flags = cpu_to_le32(ckpt_flags); } static inline void mutex_lock_all(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < NR_GLOBAL_LOCKS; i++) { /* * This is the only time we take multiple fs_lock[] * instances; the order is immaterial since we * always hold cp_mutex, which serializes multiple * such operations. */ mutex_lock_nest_lock(&sbi->fs_lock[i], &sbi->cp_mutex); } } static inline void mutex_unlock_all(struct f2fs_sb_info *sbi) { int i = 0; for (; i < NR_GLOBAL_LOCKS; i++) mutex_unlock(&sbi->fs_lock[i]); } static inline int mutex_lock_op(struct f2fs_sb_info *sbi) { unsigned char next_lock = sbi->next_lock_num % NR_GLOBAL_LOCKS; int i = 0; for (; i < NR_GLOBAL_LOCKS; i++) if (mutex_trylock(&sbi->fs_lock[i])) return i; mutex_lock(&sbi->fs_lock[next_lock]); sbi->next_lock_num++; return next_lock; } static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, int ilock) { if (ilock < 0) return; BUG_ON(ilock >= NR_GLOBAL_LOCKS); mutex_unlock(&sbi->fs_lock[ilock]); } /* * Check whether the given nid is within node id range. */ static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) { WARN_ON((nid >= NM_I(sbi)->max_nid)); if (nid >= NM_I(sbi)->max_nid) return -EINVAL; return 0; } #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 /* * Check whether the inode has blocks or not */ static inline int F2FS_HAS_BLOCKS(struct inode *inode) { if (F2FS_I(inode)->i_xattr_nid) return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1); else return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS); } static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, struct inode *inode, blkcnt_t count) { block_t valid_block_count; spin_lock(&sbi->stat_lock); valid_block_count = sbi->total_valid_block_count + (block_t)count; if (valid_block_count > sbi->user_block_count) { spin_unlock(&sbi->stat_lock); return false; } inode->i_blocks += count; sbi->total_valid_block_count = valid_block_count; sbi->alloc_valid_block_count += (block_t)count; spin_unlock(&sbi->stat_lock); return true; } static inline int dec_valid_block_count(struct f2fs_sb_info *sbi, struct inode *inode, blkcnt_t count) { spin_lock(&sbi->stat_lock); BUG_ON(sbi->total_valid_block_count < (block_t) count); BUG_ON(inode->i_blocks < count); inode->i_blocks -= count; sbi->total_valid_block_count -= (block_t)count; spin_unlock(&sbi->stat_lock); return 0; } static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) { atomic_inc(&sbi->nr_pages[count_type]); F2FS_SET_SB_DIRT(sbi); } static inline void inode_inc_dirty_dents(struct inode *inode) { atomic_inc(&F2FS_I(inode)->dirty_dents); } static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) { atomic_dec(&sbi->nr_pages[count_type]); } static inline void inode_dec_dirty_dents(struct inode *inode) { atomic_dec(&F2FS_I(inode)->dirty_dents); } static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) { return atomic_read(&sbi->nr_pages[count_type]); } static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) { unsigned int pages_per_sec = sbi->segs_per_sec * (1 << sbi->log_blocks_per_seg); return ((get_pages(sbi, block_type) + pages_per_sec - 1) >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; } static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) { block_t ret; spin_lock(&sbi->stat_lock); ret = sbi->total_valid_block_count; spin_unlock(&sbi->stat_lock); return ret; } static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); /* return NAT or SIT bitmap */ if (flag == NAT_BITMAP) return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); else if (flag == SIT_BITMAP) return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); return 0; } static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); int offset = (flag == NAT_BITMAP) ? le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; return &ckpt->sit_nat_version_bitmap + offset; } static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) { block_t start_addr; struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver); start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); /* * odd numbered checkpoint should at cp segment 0 * and even segent must be at cp segment 1 */ if (!(ckpt_version & 1)) start_addr += sbi->blocks_per_seg; return start_addr; } static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, struct inode *inode, unsigned int count) { block_t valid_block_count; unsigned int valid_node_count; spin_lock(&sbi->stat_lock); valid_block_count = sbi->total_valid_block_count + (block_t)count; sbi->alloc_valid_block_count += (block_t)count; valid_node_count = sbi->total_valid_node_count + count; if (valid_block_count > sbi->user_block_count) { spin_unlock(&sbi->stat_lock); return false; } if (valid_node_count > sbi->total_node_count) { spin_unlock(&sbi->stat_lock); return false; } if (inode) inode->i_blocks += count; sbi->total_valid_node_count = valid_node_count; sbi->total_valid_block_count = valid_block_count; spin_unlock(&sbi->stat_lock); return true; } static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, struct inode *inode, unsigned int count) { spin_lock(&sbi->stat_lock); BUG_ON(sbi->total_valid_block_count < count); BUG_ON(sbi->total_valid_node_count < count); BUG_ON(inode->i_blocks < count); inode->i_blocks -= count; sbi->total_valid_node_count -= count; sbi->total_valid_block_count -= (block_t)count; spin_unlock(&sbi->stat_lock); } static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) { unsigned int ret; spin_lock(&sbi->stat_lock); ret = sbi->total_valid_node_count; spin_unlock(&sbi->stat_lock); return ret; } static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) { spin_lock(&sbi->stat_lock); BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count); sbi->total_valid_inode_count++; spin_unlock(&sbi->stat_lock); } static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi) { spin_lock(&sbi->stat_lock); BUG_ON(!sbi->total_valid_inode_count); sbi->total_valid_inode_count--; spin_unlock(&sbi->stat_lock); return 0; } static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) { unsigned int ret; spin_lock(&sbi->stat_lock); ret = sbi->total_valid_inode_count; spin_unlock(&sbi->stat_lock); return ret; } static inline void f2fs_put_page(struct page *page, int unlock) { if (!page || IS_ERR(page)) return; if (unlock) { BUG_ON(!PageLocked(page)); unlock_page(page); } page_cache_release(page); } static inline void f2fs_put_dnode(struct dnode_of_data *dn) { if (dn->node_page) f2fs_put_page(dn->node_page, 1); if (dn->inode_page && dn->node_page != dn->inode_page) f2fs_put_page(dn->inode_page, 0); dn->node_page = NULL; dn->inode_page = NULL; } static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, size_t size, void (*ctor)(void *)) { return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor); } #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) static inline bool IS_INODE(struct page *page) { struct f2fs_node *p = (struct f2fs_node *)page_address(page); return RAW_IS_INODE(p); } static inline __le32 *blkaddr_in_node(struct f2fs_node *node) { return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; } static inline block_t datablock_addr(struct page *node_page, unsigned int offset) { struct f2fs_node *raw_node; __le32 *addr_array; raw_node = (struct f2fs_node *)page_address(node_page); addr_array = blkaddr_in_node(raw_node); return le32_to_cpu(addr_array[offset]); } static inline int f2fs_test_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); return mask & *addr; } static inline int f2fs_set_bit(unsigned int nr, char *addr) { int mask; int ret; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); ret = mask & *addr; *addr |= mask; return ret; } static inline int f2fs_clear_bit(unsigned int nr, char *addr) { int mask; int ret; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); ret = mask & *addr; *addr &= ~mask; return ret; } /* used for f2fs_inode_info->flags */ enum { FI_NEW_INODE, /* indicate newly allocated inode */ FI_DIRTY_INODE, /* indicate inode is dirty or not */ FI_INC_LINK, /* need to increment i_nlink */ FI_ACL_MODE, /* indicate acl mode */ FI_NO_ALLOC, /* should not allocate any blocks */ FI_UPDATE_DIR, /* should update inode block for consistency */ FI_DELAY_IPUT, /* used for the recovery */ }; static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) { set_bit(flag, &fi->flags); } static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) { return test_bit(flag, &fi->flags); } static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) { clear_bit(flag, &fi->flags); } static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) { fi->i_acl_mode = mode; set_inode_flag(fi, FI_ACL_MODE); } static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) { if (is_inode_flag_set(fi, FI_ACL_MODE)) { clear_inode_flag(fi, FI_ACL_MODE); return 1; } return 0; } static inline int f2fs_readonly(struct super_block *sb) { return sb->s_flags & MS_RDONLY; } /* * file.c */ int f2fs_sync_file(struct file *, loff_t, loff_t, int); void truncate_data_blocks(struct dnode_of_data *); void f2fs_truncate(struct inode *); int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); int f2fs_setattr(struct dentry *, struct iattr *); int truncate_hole(struct inode *, pgoff_t, pgoff_t); int truncate_data_blocks_range(struct dnode_of_data *, int); long f2fs_ioctl(struct file *, unsigned int, unsigned long); long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); /* * inode.c */ void f2fs_set_inode_flags(struct inode *); struct inode *f2fs_iget(struct super_block *, unsigned long); void update_inode(struct inode *, struct page *); int update_inode_page(struct inode *); int f2fs_write_inode(struct inode *, struct writeback_control *); void f2fs_evict_inode(struct inode *); /* * namei.c */ struct dentry *f2fs_get_parent(struct dentry *child); /* * dir.c */ struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, struct page **); struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); ino_t f2fs_inode_by_name(struct inode *, struct qstr *); void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, struct page *, struct inode *); int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); int f2fs_make_empty(struct inode *, struct inode *); bool f2fs_empty_dir(struct inode *); static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) { return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, inode); } /* * super.c */ int f2fs_sync_fs(struct super_block *, int); extern __printf(3, 4) void f2fs_msg(struct super_block *, const char *, const char *, ...); /* * hash.c */ f2fs_hash_t f2fs_dentry_hash(const char *, size_t); /* * node.c */ struct dnode_of_data; struct node_info; int is_checkpointed_node(struct f2fs_sb_info *, nid_t); void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); int truncate_inode_blocks(struct inode *, pgoff_t); int remove_inode_page(struct inode *); struct page *new_inode_page(struct inode *, const struct qstr *); struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); void ra_node_page(struct f2fs_sb_info *, nid_t); struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); struct page *get_node_page_ra(struct page *, int); void sync_inode_page(struct dnode_of_data *); int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); bool alloc_nid(struct f2fs_sb_info *, nid_t *); void alloc_nid_done(struct f2fs_sb_info *, nid_t); void alloc_nid_failed(struct f2fs_sb_info *, nid_t); void recover_node_page(struct f2fs_sb_info *, struct page *, struct f2fs_summary *, struct node_info *, block_t); int recover_inode_page(struct f2fs_sb_info *, struct page *); int restore_node_summary(struct f2fs_sb_info *, unsigned int, struct f2fs_summary_block *); void flush_nat_entries(struct f2fs_sb_info *); int build_node_manager(struct f2fs_sb_info *); void destroy_node_manager(struct f2fs_sb_info *); int __init create_node_manager_caches(void); void destroy_node_manager_caches(void); /* * segment.c */ void f2fs_balance_fs(struct f2fs_sb_info *); void invalidate_blocks(struct f2fs_sb_info *, block_t); void locate_dirty_segment(struct f2fs_sb_info *, unsigned int); void clear_prefree_segments(struct f2fs_sb_info *); int npages_for_summary_flush(struct f2fs_sb_info *); void allocate_new_segments(struct f2fs_sb_info *); struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); struct bio *f2fs_bio_alloc(struct block_device *, int); void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync); void write_meta_page(struct f2fs_sb_info *, struct page *); void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int, block_t, block_t *); void write_data_page(struct inode *, struct page *, struct dnode_of_data*, block_t, block_t *); void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t); void recover_data_page(struct f2fs_sb_info *, struct page *, struct f2fs_summary *, block_t, block_t); void rewrite_node_page(struct f2fs_sb_info *, struct page *, struct f2fs_summary *, block_t, block_t); void write_data_summaries(struct f2fs_sb_info *, block_t); void write_node_summaries(struct f2fs_sb_info *, block_t); int lookup_journal_in_cursum(struct f2fs_summary_block *, int, unsigned int, int); void flush_sit_entries(struct f2fs_sb_info *); int build_segment_manager(struct f2fs_sb_info *); void destroy_segment_manager(struct f2fs_sb_info *); /* * checkpoint.c */ struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); int check_orphan_space(struct f2fs_sb_info *); void add_orphan_inode(struct f2fs_sb_info *, nid_t); void remove_orphan_inode(struct f2fs_sb_info *, nid_t); int recover_orphan_inodes(struct f2fs_sb_info *); int get_valid_checkpoint(struct f2fs_sb_info *); void set_dirty_dir_page(struct inode *, struct page *); void add_dirty_dir_inode(struct inode *); void remove_dirty_dir_inode(struct inode *); struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t); void sync_dirty_dir_inodes(struct f2fs_sb_info *); void write_checkpoint(struct f2fs_sb_info *, bool); void init_orphan_info(struct f2fs_sb_info *); int __init create_checkpoint_caches(void); void destroy_checkpoint_caches(void); /* * data.c */ int reserve_new_block(struct dnode_of_data *); void update_extent_cache(block_t, struct dnode_of_data *); struct page *find_data_page(struct inode *, pgoff_t, bool); struct page *get_lock_data_page(struct inode *, pgoff_t); struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int); int do_write_data_page(struct page *); /* * gc.c */ int start_gc_thread(struct f2fs_sb_info *); void stop_gc_thread(struct f2fs_sb_info *); block_t start_bidx_of_node(unsigned int); int f2fs_gc(struct f2fs_sb_info *); void build_gc_manager(struct f2fs_sb_info *); int __init create_gc_caches(void); void destroy_gc_caches(void); /* * recovery.c */ int recover_fsync_data(struct f2fs_sb_info *); bool space_for_roll_forward(struct f2fs_sb_info *); /* * debug.c */ #ifdef CONFIG_F2FS_STAT_FS struct f2fs_stat_info { struct list_head stat_list; struct f2fs_sb_info *sbi; struct mutex stat_lock; int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; int main_area_segs, main_area_sections, main_area_zones; int hit_ext, total_ext; int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; int nats, sits, fnids; int total_count, utilization; int bg_gc; unsigned int valid_count, valid_node_count, valid_inode_count; unsigned int bimodal, avg_vblocks; int util_free, util_valid, util_invalid; int rsvd_segs, overp_segs; int dirty_count, node_pages, meta_pages; int prefree_count, call_count; int tot_segs, node_segs, data_segs, free_segs, free_secs; int tot_blks, data_blks, node_blks; int curseg[NR_CURSEG_TYPE]; int cursec[NR_CURSEG_TYPE]; int curzone[NR_CURSEG_TYPE]; unsigned int segment_count[2]; unsigned int block_count[2]; unsigned base_mem, cache_mem; }; #define stat_inc_call_count(si) ((si)->call_count++) #define stat_inc_seg_count(sbi, type) \ do { \ struct f2fs_stat_info *si = sbi->stat_info; \ (si)->tot_segs++; \ if (type == SUM_TYPE_DATA) \ si->data_segs++; \ else \ si->node_segs++; \ } while (0) #define stat_inc_tot_blk_count(si, blks) \ (si->tot_blks += (blks)) #define stat_inc_data_blk_count(sbi, blks) \ do { \ struct f2fs_stat_info *si = sbi->stat_info; \ stat_inc_tot_blk_count(si, blks); \ si->data_blks += (blks); \ } while (0) #define stat_inc_node_blk_count(sbi, blks) \ do { \ struct f2fs_stat_info *si = sbi->stat_info; \ stat_inc_tot_blk_count(si, blks); \ si->node_blks += (blks); \ } while (0) int f2fs_build_stats(struct f2fs_sb_info *); void f2fs_destroy_stats(struct f2fs_sb_info *); void __init f2fs_create_root_stats(void); void f2fs_destroy_root_stats(void); #else #define stat_inc_call_count(si) #define stat_inc_seg_count(si, type) #define stat_inc_tot_blk_count(si, blks) #define stat_inc_data_blk_count(si, blks) #define stat_inc_node_blk_count(sbi, blks) static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } static inline void __init f2fs_create_root_stats(void) { } static inline void f2fs_destroy_root_stats(void) { } #endif extern const struct file_operations f2fs_dir_operations; extern const struct file_operations f2fs_file_operations; extern const struct inode_operations f2fs_file_inode_operations; extern const struct address_space_operations f2fs_dblock_aops; extern const struct address_space_operations f2fs_node_aops; extern const struct address_space_operations f2fs_meta_aops; extern const struct inode_operations f2fs_dir_inode_operations; extern const struct inode_operations f2fs_symlink_inode_operations; extern const struct inode_operations f2fs_special_inode_operations; #endif